Available online at www.sciencedirect.com

ScienceDirect PrOCQdiCI

Computer Science

CrossMark

Procedia Computer Science 125 (2018) 346-356

www.elsevier.com/locate/procedia

6th International Conference on Smart Computing and Communications, ICSCC 2017, 7-8
December 2017, Kurukshetra, India

Performance Evaluation of Filter-based Feature Selection
Techniques in Classifying Portable Executable Files

Shiva Darshan S.L.* and Jaidhar C.D.

Department of Information Technology, National Institute of Technology Karnataka, Surathkal, Mangalore, India

Abstract

The dimensionality of the feature space exhibits a significant effect on the processing time and predictive performance of the
Malware Detection Systems (MDS). Therefore, the selection of relevant features is crucial for the classification process. Feature
Selection Technique (FST) is a prominent solution that effectively reduces the dimensionality of the feature space by identifying
and neglecting noisy or irrelevant features from the original feature space. The significant features recommended by FST uplift
the malware detection rate. This paper provides the performance analysis of four chosen filter-based FSTs and their impact on
the classifier decision. FSTs such as Distinguishing Feature Selector (DFS), Mutual Information (MI), Categorical Proportional
Difference (CPD), and Darmstadt Indexing Approach (DIA) have been used in this work and their efficiency has been evaluated
using different datasets, various feature-length, classifiers, and success measures. The experimental results explicitly indicate that
DFS and MI offer a competitive performance in terms of better detection accuracy and that the efficiency of the classifiers does not
decline on both the balanced and unbalanced datasets.

© 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 6th International Conference on Smart Computing and
Communications

Keywords: Feature Selection Technique; Malware; Malware Detection System; Machine Learning; Portable Executable Files;

1. Introduction

Malware is a computer program designed to harm the host system without the user consent. It can morph itself to
gain control of the host system, whereby it can access the system level operations in multiple dimensions. It can easily
evade the existing detection techniques using various modern obfuscation characteristics. It has grown drastically and
has emerged as an insurmountable issue for many anti-malware defensive solutions. Therefore, there is an immediate
need of an intricate MDS [9] to resist the attacks caused by such malware.

* Corresponding author.
E-mail address: it15f02.shivadarshan @nitk.edu.in

1877-0509 © 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 6th International Conference on Smart Computing and Communications
10.1016/j.procs.2017.12.046

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2017.12.046&domain=pdf

S.L. Shiva Darshan et al. / Procedia Computer Science 125 (2018) 346-356 347

Generally, traditional malware defensive solutions rely on signature-based detection technique and thus, are vulner-
able to unknown malware, if the malware database has not been updated. It extracts static features from the executable
file, including binary sequences, function calls, and any other information to determine whether the executable file is a
malware. These techniques are said to be more resilient to the malevolent activity of malware, but are easily disrupted
by the obfuscation characteristics [14].

The behavioural-based detection technique detects the malware by monitoring the behaviour of the executable file
during its runtime [6]. It isolates the malware in an environment called the sandbox [18] and records behaviours such
as API calls, system calls, or any other function-based calls triggered upon the operating systems. Thus, it provides a
new perspective to analyze the unknown malware. However, it fails to balance between False Positive Rate (FPR) and
malware detection rate.

The heuristic-based detection techniques employ the machine learning method to learn the behaviour of an exe-
cutable file. To detect malware, it deliberately analyzes features such as system calls, API calls, Opcodes, and struc-
tural information like header information, etc. [5]. However, in a real scenario, it becomes tedious to examine all the
recorded features to acquire the most predominant features for the purpose of the classification operation. Under such
circumstances, FST plays a vital role in minimizing the dimensionality of the original feature space and boosts the
predictive performance of the classifiers [13]. Information Gain [19], MI [12], Fisher Score [20], Chi-square [7], etc.
are examples of FSTs.

In this paper, an MDS has been designed that detects malware based on the extracted information related to Portable
Executable Optional Header Fields (PEOHF). Moreover, our prime focus is on the performance analysis of FSTs that
are capable of selecting the most relevant features, which are crucial in discriminating between benign and malware PE
files. We have employed Single-Stage-Feature-Selector that acquires significant features by adapting the filter-based
FST. Further, we compute the score for those extracted PEOHF (features) and then, choose the topmost features as
predominant features based on the highest score. From the experimental results, we observe that the features suggested
by the DFS and MI were successful in attaining malware detection accuracy of 98.677% for the Balanced Dataset
(BD) and 99.308% for the Unbalanced Dataset (UBD) under the 10-fold cross-validation test. Finally, the accuracy
shown by the classifiers for both the BD and UBD was considered and the difference was computed to convey that the
efficiency of the classifiers does not change much on the BD and the UBD.

The major contributions of this paper are summarized as follows:

e In this work, MDS is designed, implemented, and evaluated using real-world malware samples. The MDS is
proficient in precisely distinguishing between malware and benign PE files based on the features recommended
by the Single-Stage-Feature-Selector.

e We have employed different FSTs such as DFS, MI, CPD, and DIA to select a compact set of the most significant
features to boost the efficiency of the classifier for better accuracy. Four filter-based FSTs were adopted to
measure the comparison with the intention of identifying the better one. To evaluate the performance of the
different FSTs, two sets of experiments were conducted on the BD and the UBD.

o The experimental results demonstrated that the features recommended by the DFS and MI were successful in
achieving malware detection rate of 98.677% for the BD and 99.308% for the UBD under the 10-fold cross-
validation test.

o Lastly, evaluation on the BD and the UBD was made to measure the accuracy variation between them. The
results clearly indicated that the accuracy difference range of <1% was not of much affect on the efficiency of
the classifiers.

The rest of this paper is organized as follows. In Section 2, we study the background of the Portable Executable
files. In Section 3, we review earlier research work on filter-based FSTs used in classification. Section 4 elucidates the
methodology to effectuate the performance analysis of the filter-based FSTs. Section 5 provides a brief description
of the filter-based FSTs used in our experimental work. The obtained empirical results are presented in Section 6.
Finally, the conclusion is summarized in Section 7.

348 S.L. Shiva Darshan et al. / Procedia Computer Science 125 (2018) 346-356

2. Background

Portable Executable (PE) is represented as a common file format for all variants of the Windows operating system.
Today, majority of the malware target PE files to perform illegitimate actions and acquire necessary information with-
out the user’s consent. Most of the existing anti-malware defensive solutions employ a variety of detection techniques
and determine the type of file before they parse to detect the embedded malicious data. However, the malware can
easily evade the anti-malware solution due to obfuscated characteristics. In order to overcome these issues, a real-time
PE-based MDS is very desirable to identify the malware behaviours.

DOS MZ header /| Address of Entry Point
DOS Stub /I Image Base
= ’ Signature ' Section Alignment
- e File Header | File Alignment
Section Headers *. | optional Header -
Section 1 N -
Section 2 \ Size of Headers
- A Data Directory
Section n

Fig. 1. A general layout of PE file depicting members of the PE Header and PE-Optional Header.

In order to understand the process of disassembling a PE file, it is necessary to perceive the structure of the PE file
(Fig. 1). All PE files start with a Disk Operating System (DOS) MZ Header and its purpose is to verify whether the
file is a valid executable or not when it is running under the DOS system. If the file runs under the DOS environment,
then the DOS stub is a built-in executable used to display the error message. Next, to the DOS stub, there is a PE
Header, which contains a necessary information to be used by the PE loader. There exists several sections such as
Section 1, Section 2 ... Section n after the PE Header, which stores the data in terms of blocks, and each
section data is organized based on common attributes. The PE Header format is an IMAGE_NT_HEADERS data structure,
which consists of the PE-Signature, File Header, and the Optional Header. The Optional Header is composed of several
fields as shown in Fig. 1. For more information, the reader can refer [16].

3. Related Work

Feature representation is essential for malware analysis so as to identify the malware as malware and benign as
benign. If they are not sufficiently distinguished, it is difficult for any machine learning classifier to provide accurate
prediction. The great difficulty in machine learning based technique is to identify a representative set of features in
order to construct a classification model. The FST aims at recognizing a small subset of most supreme features and
thereby, minimizes the dimensionality of the original feature space with the removal of noisy or irrelevant features.
Several FSTs have been proposed in the literature and can be categorized as filter-based and wrapper-based FSTs. In
a filter-based FST, for each feature, a score is computed and the feature is treated as significant based on its score.
The wrapper-based FST makes use of the predictive model to generate a score to the features subsets and gives more
discriminative power to that particular model. Typical examples of filter-based FST include Document Frequency
(DF) [15], Information Gain (IG) [11][19][4], Fisher Score (FS) [15][20], Max-Relevance (MR) [26], MI [25][21][3],
Odds Ratio [8][1], and Chi-square [4][7][2].

The malware analysis approach was proposed and was implemented by adapting Opcode as the file representation
method [15]. The Opcode sequence was derived by disassembling an executable file, and then constructed using the
Opcode N-grams as features for the classification process, but at the same time, they showed that the Document
Frequency FST as accurate for most of the uppermost features. Meanwhile, the Fisher Score predominantly executed
well when the number of features were few, i.e., for the topmost 50 and 100 features.

The detection and classification of the malware, which appears in wild, was addressed by employing renowned
machine learning classifiers [11]. In their work, the experiments were conducted by gathering 1971 benign and 1651

S.L. Shiva Darshan et al. / Procedia Computer Science 125 (2018) 346-356 349

malware executable files and by encoding each of them using the N-gram feature technique. The process resulted in
generating more than 255 million predominant N-gram features and this led to high computational overhead. This
issue was overcome using the IG FST that selected the topmost features based on the highest score and evaluated the
performance of the different classifiers. The evaluation results suggested that 500 N-gram features with boosted J48
classifier produced an area under the curve of 0.996.

An approach to detect obfuscated malware using the frequency of Opcode sequences to construct a representation
of executable files was proposed [17]. The processing of Opcode sequences was done by disassembling the executable
files. Further, the authors built an Opcode profile comprising of Opcodes computing the relevance of each Opcode
based on the frequency of the appearance of each of them in both the benign and malware classes by employing MI
FST. The results showed that the density estimation works well for the Naive Bayes classifier.

The authors introduced a real-time PE MDS based on the interpretation of the PE-Optional Header information [7].
Their system used a combination of the Chi-square and the Phi coefficient FSTs to remove irrelevant features having
Chi-square score lesser than 3.84. This allowed them to achieve better accuracy.

An Intelligent Malware Detection System based on the Windows API calls using association mining was proposed
[26]. As not all extracted API calls contribute to malware detection, the Max relevance FST was applied to select the
distinct features and to achieve better classifier accuracy. Accordingly, the authors successfully obtained an accuracy
of 93.07%.

4. Methodology

An overview of the proposed MDS is shown in Fig. 2. It has two phases: 1) Training phase and 2) Prediction phase.
The training phase is used to build a training file, which is needed to train the classifier. The prediction phase measures
the detection ability of the trained classifier. However, the main objective of the proposed approach is to exhibit the
performance analysis of the filter-based FSTs.

Training Phase
PE-File-Parser Single-Stage-Feature-Selector

5
1 1 1 1
1 \ y ! 1 :
'] — 2 H 1| | Contingency- Filter !
! | PE-Optional-Header Benign Malware L i | | Table-Creator [Method '
! Extractor PEOHF PEOHF — H
; | |
= e |

i J

Prediction Phase
Testing File Creator

|

|
Trained classifier]<—-I Testing File l-—[Final Feature Set l | I Train the classifier]
Hﬁ f ' I
I PE-File-Parser |<—| Unknown PE Files l :

I Trained classifier l

o~}
g
2%
o]
85
o]
“H
o

Training- File-Creator]

PR

L Benign Malware
TP P P S S S S e S e

Fig. 2. Process architecture overview.

To train and evaluate the performance of the MDS, a dataset of PE files were collected from various sources
(see Section 6) separately as BD and UBD for further processing. Both the datasets were used for the purpose of
effective analysis of the filter-based FSTs. Each of these was supplied onto the PE-File-Parser individually to initiate
the analysis task.

4.1. Training Phase

In the training phase, the MDS is provided with a training set of benign and malware PE files. Each PE file is parsed
to extract the features related to the Optional Header fields. The representative features of the PE files were processed

350 S.L. Shiva Darshan et al. / Procedia Computer Science 125 (2018) 346-356

using the FST to obtain the most informative features to prepare a training file required to train the classifiers. To
accomplish this task, the training phase utilized the PE-File-Parser, Single-Stage-Feature-Selector, and Training-File-
Creator as its essential components.

4.1.1. PE-File-Parser

The prime goal of the PE-File-Parser is to extract the PE Optional Header Fields names with their corresponding
values as features from the dataset of PE files and output benign PEOHF and malware PEOHF files. This task was
accomplished by employing its subcomponent PE-Optional-Header Extractor, which uses a python module called
pefile! to derive the Optional Header features from the input PE files. However, the extracted set of features size
was quite large due to the presence of noisy or irrelevant features. Therefore, the Single-Stage-Feature-Selector was
utilized to identify the most crucial features required to prepare a training file to train the classifier and simultaneously
reduce the dimensionality of the feature set.

4.1.2. Single-Stage-Feature-Selector

It plays a crucial role in preserving the informative features and to detect the unknown malware accurately from a
number of other benign PE files. To perform this desired operation, it uses the Contingency-Table-Creator as one of
its subcomponents.

In the Single-Stage-Feature-Selector, the task of the Contingency-Table-Creator is to create a Contingency Table
(CT) that provides the frequency distribution of each feature such as the presence and absence in Benign PEOHF
and Malware PEOHF files as an integer count. The FST utilizes the CT to generate a score for each feature, and
based on the score, the features are selected as prominent features. In this regard, the four filter-based FSTs chosen
in this work are DFS, MI, CPD, and DIA. Further, to demonstrate their efficiency, the four Final Feature Sets (FFSs)
were constructed by selecting the topmost features of different thresholds. However, each FFS consists of features
suggested by the individual FST such as the DFS, MI, CPD, and DIA. Finally, a training file was built using the FFS
with the PEOHF files corresponding to the training samples. Lastly, the classifier was trained using the constructed
training file.

4.1.3. Final Feature Set

FFS is a set that consists of distinct benign (malware) features of the benign (malware) PE files. These features are
obtained after carrying out all the processing steps with no further elimination of features, and therefore, named as
FFS. The features available in the FFS are used to prepare a training file as well as testing files crucial in measuring
the efficiency of the classifiers.

4.1.4. Training-File-Creator
Training-File-Creator creates a training file essential to train the classifiers. It parses the training dataset of the
benign and malware PEOHF files with FFS features in order to create a training file.

4.2. Prediction Phase
In the prediction phase, the Testing-File-Creator is used to create a testing file necessary to appraise the predictive
performance of the trained classifiers. It makes use of FFS features and the output of the PE-File-Parser to deliver a

testing file. The generated testing file is sent to the trained classifier to ascertain whether the test input file is benign
or malware.

5. Filter-based Feature Selection Techniques

This section provides a description of the four filter-based FSTs used in this work for the purpose of performance
analysis. Minimization of the immense dimensionality of the feature space is of greatest concern in malware classifi-

! https://code.google.com/p/pefile/

S.L. Shiva Darshan et al. / Procedia Computer Science 125 (2018) 346-356 351

cation. The FST identifies features that have high classification potential and filters features that are noisy or irrelevant.
This results in massive reduction of computational cost.
The following are the different filter-based feature selection techniques utilized in this work:

(i) Distinguishing Feature Selector
DFS [24] evaluates the contribution of the features in a representative vector to the class discrimination in a prob-
abilistic approach and computes the score for each feature as per Eq. 1,

N

~ P(cilf)
DFS(f) = Z‘ P(ie) + PUIG) + 1

ey

Where, N is the total number of categories, P(c;|f) denotes the conditional probability of category ¢; when the
feature f is present, P(f|c;) signifies the conditional probability of the category c; when the feature f is absent, and
P(f]|c;) is the conditional probability of feature f given the category other than c;.

(ii) Mutual Information

MI [23] calculates the mutual dependence of any two random variables. It measures the decline in uncertainty
about one random variable as a function of the other. If the MI score between two random variables is zero, then the
variables are independent, and those with the highest score will have a large reduction in uncertainty. The MI score
for a feature and the category pair is computed as per Eq. 2.

P(f =vys,cr =ve)
P(f =vp)P(ck = ve,)

Mi(f,e)= D, > P(f=vpee=ve)In

vre{1,0} Vey €{1,0}

@

Where, f indicates the feature that takes the value vy = {1,0}. If the value of vy = O then the document does not
contain the feature f, and if vy = 1, it indicates that the document contains the feature f. ¢ is the category that takes
the value one, i.e., v,, = 1, when the document is present in a category cy, otherwise, the value is zero, i.e., v,, = 0
indicating the absence of the document in the category cy.

(iii) Categorical Proportional Difference

CPD [22] calculates the degree to which a feature distinguishes a specific category from other categories. The
attainable values for CPD are limited to the interval (-1, 1). The CPD score near to -1 denotes that the feature is
present in most of the documents in all the categories. If the score is equal to one, it represents that the feature is
present in the document of only one category. The CPD score for the feature f in the category ¢y is formulated as per
Eq. 3 and 4.

N cr N Ck
CPD(f,cp) = =% 3)
f
The CPD for the feature f is the ratio associated with the category ¢, for which the value is highest.
CPD(f) = max {CPD(f, ci)} “

(iv) Darmstadt Indexing Approach
DIA [10] FST considers the properties of the features, categories, and pair-wise relationships as a dimension. The
DIA score for the feature f is calculated as per Eq. 5.

Nf’fk
DIA(f,cy) = 7 5

Where Ny, are the documents containing feature f in the category ¢ and N denotes the number of documents
containing the feature f.

352 S.L. Shiva Darshan et al. / Procedia Computer Science 125 (2018) 346-356

6. Experimental Results and Analysis

Our experimental data consists of two datasets, BD and UBD. BD consists of an equivalent number of benign and
malware PE files. In UBD, the malware PE files are twice the count of the benign PE files as shown in Table 1. The
benign PE files include the Windows system files collected from a freshly installed Windows XP virtual machine. The
malware PE files were downloaded from the public source VirusShare”. To ensure that all the files in the dataset are
correctly labelled, both the datasets were scanned with more than 40 anti-malware engines available on VirusTotal’.

Table 1. Experiment Dataset details

Benign PE files Malware PE files
BD: Balanced Dataset 200 200 (trojan(100) + backdoor(100))
UBD: Unbalanced Dataset 200 400 (trojan(100) + backdoor(100) + rootkit(200))

As explained earlier (in Section 4), the PE-File-Parser receives both the benign and malware PE files to extract
information related to the Optional Header Fields as features. Each extracted feature is indicated by its name and its
corresponding value. The derived features are gathered to form an original feature space. Further, to attain the best
features, FSTs are applied separately onto the original feature space to get the score for each feature separately, and
the topmost K number of features is chosen based on the highest score. Four different FSTs such as DFS, MI, CPD,
and DIA are used with the intention of identifying the best one. Experiments were conducted for different values of K
such as 25, 50, 75, and 100. These best features were processed to prepare a training file as well as testing files, which
were supplied to the classifiers in order to determine which classifier achieved the best malware detection rate with
low FPR.

The main aim was to perform a comparative analysis of the four different FSTs and to identify the best FST with
the potency to recommend the most significant features. The classifier predictive performance utterly depends on
the features used in the training file. From that perspective, the FFS generated consists of features recommended by
the Single-Stage-Feature-Selector. The FFS features are employed as final features since there is no further feature
elimination, and these features are used to prepare the training as well as the testing files desirable to measure the
efficiency of the classifiers. Six different classifiers such as the Sequential Minimal Optimization (SMO), Simple
Logistic, Logistic, J48, Random Forest, and Random Tree available in WEKA were used to know which classifier
outperformed for the derived FFS. The performance of each classifier was evaluated using evaluation metrics such as
True Positive Rate (TPR), FPR, and accuracy.

Two sets of experiments were carried out by us: In the first set of experiments, the BD was considered. The PE-File-
Parser processed both the benign and malware PE files to extract the entire PE Optional Header Fields information as
features. The extracted data was then stored into an appropriate output file and a separate output file was maintained
for each individual PE file. Each extracted data was treated as an individual feature, which is a prerequisite task. Since
200 malware PEOHF and 200 benign PEOHF files produced by the PE-File-Parser were considered, these files were
directly sent as input to the chosen FSTs separately. At first, the DFS FST was executed on distinct features of 1323 to
generate the DFS score using Eq. 1. Since all these 1323 features cannot be used to train the classifier, the predominant
features were identified and selected as crucial features based on their highest score. To evaluate the performance of
each FST, the topmost K number of features were selected in increments of 25, i.e., K=25, K=50, K=75, and K=100.
Accordingly, the corresponding FFSs were prepared. Similarly, the other three FSTs were applied on 1323 features
separately to get the corresponding scores using Eq. 2, Eq. 4, and Eq. 5. Subsequently, the topmost K number of
features was selected in increments of 25, i.e., 25, 50, 75, and 100 and the FFSs were constructed separately.

From the experimental results depicted in Table 2, we noticed that the SMO, Simple Logistic, and J48 classifiers
outperformed by achieving maximum identical accuracy of 98.677% with 0.013 FPR for all the topmost K number
of features such as 25, 50, 75, and 100 recommended by the DFS and MI FSTs. The performance was not much
appreciable when the same training file and testing files were supplied to other classifiers such as Logistic, Random

2 https://virusshare.com
3 https://www.virustotal.com/

S.L. Shiva Darshan et al. / Procedia Computer Science 125 (2018) 346-356 353

Forest, and Random Tree. The accuracy achieved by each of them is tabulated in Table 2. At the same time, we noticed
that the features recommended by the CPD and DIA FSTs for the topmost K number of features (K=25, K=50, K=75,
and K=100) underperformed by achieving drastically reduced accuracy.

The second sets of experiments were conducted with the UBD mentioned in Table 1. The operational steps per-
formed in this set of experiments are similar to the first set of experiments, except for the number of files. In the
second set of experiments, the PE-File-Parser was fed 200 benign and 400 malware PE files in order to extract all the
PE Optional Header Fields using the PE-Optional-Header-Extractor. The PE-File-Parser produced benign (200) and
malware (400) PEOHEF files and these files were supplied as input to the FSTs chosen in this experimental work. The
DFS FST was executed on 1877 features to compute a score for each feature using Eq. 1.

Furthermore, the same original features space of 1877 features was supplied as input to the other FSTs one after
another to determine the score for the features using Eq. 2, Eq. 4, and Eq. 5. The uppermost K number of features was
selected in increments of 25 up to 100 to prepare a separate FFS, and each of them was used to build a training file
as well as testing files to measure the efficiency of the classifiers. The accuracy produced by the different classifiers is
presented in Table 2. In the case of UBD, the SMO, and Simple Logistic classifiers outperformed by accomplishing
highest equivalent accuracy of 99.308% with 0.014 FPR for all the topmost number of features (K=25, K=50, K=75,
and K=100) recommended by the DFS and MI FSTs. The other classifiers such as J48, Logistic, Random Forest,
and Random Tree underachieved for the same topmost number of features (K=25, K=50, K=75, and K=100) and the
accuracy accomplished by each of them is also tabulated in Table 2. FSTs such as the CPD and DIA were found to be
inefficient and consistently performed in a way similar to in the first set of experiments.

The two sets of experiments were computed substantially and analyzed thoroughly to decide the best FST based on
the accuracy produced by the classifier. In this direction, the obtained and analyzed results proved that FST certainly
provided the most significant features based on the computed score, but all the features may not contribute to detect
the malware.

Table 2. Accuracy of different classifiers on BD and UBD

Feature Accuracy (%)
No. of

Selection SMO Simple Logistic Logistic J48 Random Forest Random Tree

Technique features BD UBD Diff BD UBD Diff BD UBD Dif BD UBD Diff BD UBD Diff BD UBD Diff
DFS 25 98.677 99.308 0.631 98.677 99.308 0.631 96.296 98.270 1.974 98.677 99.135 0.458 98.148 99.308 1.160 98.148 99.135 1.160
MI 25 98.677 99.308 0.631 98.677 99.308 0.631 97.090 97.232 0.142 98.677 99.135 0.458 98.677 99.135 0.458 98.677 98.962 0.285
CPD 25 53.968 67.474 13.506 56.085 67.474 11.389 56.614 67.474 10.860 52.910 67.474 14.564 56.614 67.474 10.860 56.614 67.474 10.86
DIA 25 51.852 67.301 15.449 51.852 67.474 15.622 51.323 67.301 15.978 50.265 67.474 17.209 51.323 67.474 16.151 52.116 67.301 15.185
DFS 50 98.677 99.135 0.458 98.677 99.308 0.631 98.148 98.616 0.468 98.677 99.135 0.458 98.677 99.308 0.631 98.413 98.270 0.143
MI 50 98.677 99.308 0.631 98.677 99.308 0.631 96.032 98.789 2.757 98.677 99.135 0.458 98.413 99.135 0.722 96.296 99.135 2.839
CPD 50 61.905 67.820 5915 62.169 67.474 5.305 63.492 67.820 4.328 56.878 67.474 10.596 63.757 67.820 4.063 63.228 67.820 4.592
DIA 50 53.439 67.647 14.208 53.439 67.474 14.035 53.704 67.647 13.943 51.587 67.474 15.887 53.439 67.820 14.381 53.704 67.647 13.943
DFS 75 98.677 99.308 0.631 98.677 99.308 0.631 98.413 98.962 0.549 98.677 99.135 0.458 98.148 99.135 0.987 98.413 98.616 0.203
MI 75 98.677 99.308 0.631 98.677 99.308 0.631 98.148 98.097 0.051 98.677 99.135 0.458 98.413 99.308 0.895 97.619 98.270 0.651
CPD 75 63.757 68.512 4.755 61.905 68.166 6.261 64.286 68.512 4.226 56.878 68.166 11.288 64.286 68.512 4.226 63.492 68.512 5.020
DIA 75 57.672 67.647 9.975 57.407 67.474 10.067 57.672 67.647 9.975 55.027 67.474 12.447 57.672 67.820 10.148 57.672 67.647 9.975
DFS 100 98.677 99.308 0.631 98.677 99.135 0.458 98.148 98.616 0.468 98.677 99.135 0.458 98.413 99.308 0.895 97.355 98.443 1.088
MI 100 98.677 99.308 0.631 98.677 99.308 0.631 97.884 98.270 0.386 98.677 99.135 0.458 98.148 99.135 0.987 97.619 98.097 0.478
CPD 100 69.550 69.841 0.291 66.402 69.031 2.629 70.370 69.550 0.820 62.434 68.858 6.424 70.106 69.550 0.556 69.312 69.550 0.238
DIA 100 63.492 67.474 3.982 63.227 67.474 4.247 64.286 67.647 3.361 60.318 67.474 7.156 64.286 67.820 3.534 64.021 67.647 3.626

Diff: |BD — UBD|

354 S.L. Shiva Darshan et al. / Procedia Computer Science 125 (2018) 346-356

6.1. Evaluation on Balanced and Unbalanced Datasets

In order to measure accuracy variation between BD and UBD, we calculated the difference. Table 2 demonstrates
that the difference in classifier accuracy is not of much significance.

We noticed that the SMO classifier produced an accuracy of 98.677% for BD and 99.308% for UBD with 25
features recommended by the DFS. The difference found was 0.631% (i.e., [98.677 — 99.308|). Further, the SMO
classifier accuracy difference between BD and UBD was 0.458%, 0.631%, and 0.631%, respectively, for the other
three FFSs of sizes 50, 75, and 100 features suggested by the DFS. This indicates that the classifier accuracy did
not decline for a UBD and justified that the accuracy variation was in the range of 0.458% to 0.631%. Similarly,
when the same 25, 50, 75, and 100 features were applied to the Simple Logistic, Logistic, J48, Random Forest, and
Random Tree classifiers, their counselled range was 0.458% to 0.631%, 0.468% to 1.974%, 0% to 0.458%, 0.631%
to 1.16%, and 0.143% to 1.16%, respectively. The accuracy difference in the range of 0% to 0.631% indicated better
classification and specified that the efficiency of the classifiers did not minimize much and good enough for both the
BD and UBD. Other FST such as MI was also efficient and guaranteed that the classifier performed well in the range
of 0.458% to 0.631%.

On the other hand, the classifier performance was inefficient for the top features selected based on the highest
score recommended by the CPD and DIA FSTs. The expected range to determine the better classifier accuracy was
very high. Accordingly, as per the observations in Table 2, the SMO classifier gained an accuracy of 53.968% for
BD and 67.474% for UBD with the highest difference of 13.506% for the top 25 features selected based on the CPD
score. Subsequently, when the SMO classifier accuracy was checked with the foremost 100 features based on the
CPD score, it attained 69.550% for BD and 69.841% for UBD with least difference of 0.291%. The other classifiers
performance was not remarkable and achieved very less accuracy with maximum distinguishable range. The observed
accuracy difference range for the Simple Logistic classifier was between 0.112% -15.622%, for the Logistic classifier
it was between 0.051% - 15.978%, for the J48 classifier between 0.458% - 17.209%, for the Random Forest classifier
between 0.556% - 16.151%, and lastly, for the Random Tree classifier between 0.143% - 15.185%. The evaluation on
BD and UBD showed that the accuracy difference range (i.e., <1%) did not have much impact on the efficiency of the
classifier and resulted in poor performance.

Table 3. Comparison of TPR achieved by different classifiers on different feature lengths of BD and UBD

No. of Classifiers DFS MI CPD DIA

Features BD UBD BD UBD BD UBD BD UBD
SMO 0.987 0.993 0.987 0.993 0.540 0.675 0.519 0.673

Simple Logistic 0.987 0.993 0.987 0.993 0.561 0.675 0.519 0.675

25 Logistic 0.963 0.983 0.971 0.972 0.566 0.675 0.513 0.673
J48 0.987 0.991 0.987 0.991 0.529 0.675 0.503 0.675

Random Forest 0.981 0.993 0.987 0.991 0.566 0.675 0.513 0.675

Random Tree 0.981 0.993 0.987 0.990 0.566 0.675 0.521 0.673

SMO 0.987 0.991 0.987 0.993 0.632 0.678 0.534 0.676

Simple Logistic 0.987 0.993 0.987 0.993 0.627 0.675 0.534 0.675

50 Logistic 0.979 0.986 0.968 0.988 0.632 0.678 0.537 0.676
J48 0.984 0.991 0.984 0.991 0.503 0.675 0.503 0.675

Random Forest 0.987 0.993 0.987 0.991 0.635 0.678 0.534 0.678

Random Tree 0.976 0.983 0.974 0.991 0.635 0.678 0.537 0.676

SMO 0.987 0.993 0.987 0.993 0.638 0.685 0.577 0.676

Simple Logistic 0.987 0.993 0.987 0.988 0.619 0.682 0.574 0.675

75 Logistic 0.984 0.990 0.981 0.981 0.643 0.685 0.577 0.676
J48 0.987 0.991 0.987 0.991 0.569 0.682 0.550 0.675

Random Forest 0.981 0.991 0.976 0.993 0.643 0.685 0.577 0.678

Random Tree 0.984 0.986 0.984 0.983 0.635 0.685 0.577 0.676

SMO 0.987 0.991 0.987 0.995 0.698 0.696 0.619 0.675

Simple Logistic 0.987 0.991 0.987 0.990 0.680 0.690 0.616 0.675

100 Logistic 0.987 0.986 0.979 0.983 0.701 0.696 0.632 0.676
J48 0.984 0.991 0.984 0.991 0.545 0.689 0.545 0.675

Random Forest 0.984 0.993 0.981 0.991 0.701 0.696 0.632 0.678
Random Tree 0.976 0.984 0.979 0.981 0.696 0.696 0.630 0.676

S.L. Shiva Darshan et al. / Procedia Computer Science 125 (2018) 346-356 355

6.2. Analysis of Evaluation Metrics

The performance of the MDS was analyzed in terms of popular evaluation metrics such as the TPR and FPR. The
TPR (FPR) indicated that the malware instances were correctly (incorrectly) classified. For any MDS, it is desired that
the TPR should be high and the FPR should be as low as possible. Table 3 and Table 4 summarize the TPR and FPR
for different topmost K number of features such as 25, 50, 75, and 100 recommended by different FSTs such as the
DFS, MI, CPD, and DIA.

From Table 3 statistics, we can easily infer that MDS achieved high TPR of 0.987 for features of different thresholds
in terms of 25, 50, 75, and 100 recommended by the DFS and MI on the BD with SMO and Simple Logistic classifiers.
Similarly, maximum TPR of 0.993 was accomplished by the SMO and Simple Logistic classifiers for all the foremost
features of various thresholds (25, 50, 75, and 100) suggested by the DFS and MI. On the other side, the features
suggested by the CPD and DIA attained very low TPR.

Lower FPR value represents the best FST. However, the classifiers were evaluated with the features recommended
by the DFS, MI, CPD, and DIA. Table 4 shows the FPR achieved by the classifiers. The SMO and Simple Logistic
classifiers attained the lowest FPR of 0.013 for all the topmost numbers of features (25, 50, 75, and 100) recommended
by the DFS and MI on the BD. Correspondingly, the same classifiers were successful in obtaining minimum FPR of
0.014 for the features suggested by the DFS and MI for the UBD. Moreover, the same classifiers achieved slightly
high FPR for all the features of different thresholds (25, 50, 75, and 100) suggested by the CPD and DIA FSTs. In
comparison, it is evident that FSTs such as the DFS and MI were able to influence the classifiers to attain highest TPR
with lowest FPR.

Table 4. Comparison of FPR achieved by different classifiers on different feature lengths of BD and UBD

No. of Classifiers DFS MI CPD DIA

Features BD UBD BD UBD BD UBD BD UBD
SMO 0.013 0.014 0.013 0.014 0.455 0.675 0.477 0.676

Simple Logistic 0.013 0.014 0.013 0.014 0.435 0.675 0.476 0.675

25 Logistic 0.037 0.025 0.029 0.033 0.429 0.675 0.483 0.676
J48 0.013 0.015 0.013 0.015 0.466 0.675 0.493 0.675

Random Forest 0.018 0.012 0.013 0.012 0.429 0.675 0.488 0.675

Random Tree 0.018 0.012 0.013 0.016 0.429 0.675 0.474 0.676

SMO 0.013 0.014 0.013 0.014 0.364 0.668 0.462 0.668

Simple Logistic 0.013 0.014 0.013 0.014 0.369 0.675 0.461 0.675

50 Logistic 0.021 0.018 0.032 0.022 0.364 0.668 0.458 0.668
J48 0.013 0.015 0.013 0.015 0.503 0.675 0.503 0.675

Random Forest 0.013 0.014 0.013 0.015 0.361 0.668 0.463 0.668

Random Tree 0.024 0.019 0.026 0.012 0.361 0.668 0.458 0.668

SMO 0.013 0.014 0.013 0.014 0.359 0.653 0.419 0.668

Simple Logistic 0.013 0.014 0.013 0.014 0.377 0.660 0.421 0.675

75 Logistic 0.016 0.013 0.018 0.023 0.353 0.653 0.419 0.668
J48 0.013 0.015 0.013 0.015 0.427 0.660 0.445 0.675

Random Forest 0.018 0.015 0.024 0.014 0.353 0.653 0.419 0.668

Random Tree 0.016 0.018 0.016 0.025 0.361 0.653 0.419 0.668

SMO 0.013 0.014 0.013 0.014 0.298 0.632 0.378 0.672

Simple Logistic 0.013 0.014 0.013 0.014 0.317 0.642 0.380 0.675

100 Logistic 0.016 0.015 0.021 0.017 0.296 0.632 0.364 0.668
J48 0.013 0.015 0.013 0.015 0.451 0.646 0.451 0.675

Random Forest 0.016 0.014 0.019 0.015 0.296 0.632 0.364 0.668

Random Tree 0.024 0.021 0.021 0.020 0.301 0.632 0.366 0.668

7. Conclusion

The MDS is proficient in distinguishing malware and benign PE files precisely based on the features recommended
by the Single-Stage-Feature-Selector. The prime task of this work was to investigate the effectiveness of filter-based
FSTs such as the DFS, MI, CPD, and DIA in classifying the PE files as benign or malware. The experiments carried
out were evaluated using different classifiers available in the WEKA tool. From the experimental observation, it was

356 S.L. Shiva Darshan et al. / Procedia Computer Science 125 (2018) 346-356

found that the best FSTs were DFS and MI, since the features suggested by them resulted in obtaining better classifier
accuracy. The classifiers substantially performed well on both the BD and UBD for different feature lengths of 25,
50, 75, and 100. The accuracy difference calculation manifested that the range specification of <1% did not affect the
efficiency of the classifiers.

References

[1] Ajay Kumara, M, A., Jaidhar, C, D., 2017a. Automated multi-level malware detection system based on reconstructed semantic view of
executables using machine learning techniques at vmm. Future Generation Computer Systems .

[2] Ajay Kumara, M, A., Jaidhar, C, D., 2017b. Leveraging virtual machine introspection with memory forensics to detect and characterize
unknown malware using machine learning techniques at hypervisor. Digital Investigation .

[3] Ambusaidi, M.A., He, X., Nanda, P., Tan, Z., 2016. Building an intrusion detection system using a filter-based feature selection algorithm.
IEEE transactions on computers 65, 2986-2998.

[4] Bai, J., Wang, J., Zou, G., 2014. A malware detection scheme based on mining format information. The Scientific World Journal .

[5] Bazrafshan, Z., Hashemi, H., Fard, S.M.H., Hamzeh, A., 2013. A survey on heuristic malware detection techniques, in: Information and
Knowledge Technology (IKT), 2013 5th Conference on, IEEE. pp. 113-120.

[6] Belaoued, M., Mazouzi, S., 2014. Statistical study of imported apis by pe type malware, in: Advanced Networking Distributed Systems and
Applications (INDS), 2014 International Conference on, IEEE. pp. 82-86.

[7]1 Belaoued, M., Mazouzi, S., 2015. A real-time pe-malware detection system based on chi-square test and pe-file features, in: IFIP International
Conference on Computer Science and its Applications_x000D_, Springer. pp. 416-425.

[8] Chen, J., Huang, H., Tian, S., Qu, Y., 2009. Feature selection for text classification with naive bayes. Expert Systems with Applications 36,
5432-5435.

[9] Egele, M., Scholte, T., Kirda, E., Kruegel, C., 2012. A survey on automated dynamic malware-analysis techniques and tools. ACM Computing
Surveys (CSUR) 44, p. 6.

[10] Jin, W., Srihari, R.K., 2007. Graph-based text representation and knowledge discovery, in: Proceedings of the 2007 ACM symposium on
Applied computing, ACM. pp. 807-811.

[11] Kolter, J.Z., Maloof, M.A., 2006. Learning to detect and classify malicious executables in the wild. Journal of Machine Learning Research 7,
pp. 2721-2744.

[12] Li, S., Xia, R., Zong, C., Huang, C.R., 2009. A framework of feature selection methods for text categorization, in: Proceedings of the Joint
Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP:
Volume 2-Volume 2, Association for Computational Linguistics. pp. 692—700.

[13] Li, Y, Li, T, Liu, H., 2017. Recent advances in feature selection and its applications. Knowledge and Information Systems , pp. 1-27.

[14] Moser, A., Kruegel, C., Kirda, E., 2007. Limits of static analysis for malware detection, in: Computer security applications conference, 2007.
ACSAC 2007. Twenty-third annual, IEEE. pp. 421-430.

[15] Moskovitch, R., Feher, C., Tzachar, N., Berger, E., Gitelman, M., Dolev, S., Elovici, Y., 2008. Unknown malcode detection using opcode
representation. Intelligence and Security Informatics , pp. 204-215.

[16] Peikari, C., Chuvakin, A., 2004. Security Warrior: Know Your Enemy. ” O’Reilly Media, Inc.”.

[17] Peng, H., Long, F., Ding, C., 2005. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-
redundancy. IEEE Transactions on pattern analysis and machine intelligence 27, 1226—1238.

[18] Qiao, Y., Yang, Y., He, J., Tang, C., Liu, Z., 2014. Cbm: free, automatic malware analysis framework using api call sequences, in: Knowledge
Engineering and Management. Springer, pp. 225-236.

[19] Reddy, D.K.S., Pujari, A.K., 2006. N-gram analysis for computer virus detection. Journal in Computer Virology 2, pp. 231-239.

[20] Sami, A., Yadegari, B., Rahimi, H., Peiravian, N., Hashemi, S., Hamze, A., 2010. Malware detection based on mining api calls, in: Proceedings
of the 2010 ACM symposium on applied computing, ACM. pp. 1020-1025.

[21] Santos, 1., Brezo, F., Nieves, J., Penya, Y.K., Sanz, B., Laorden, C., Bringas, P.G., 2010. Idea: Opcode-sequence-based malware detection, in:
International Symposium on Engineering Secure Software and Systems, Springer. pp. 35-43.

[22] Simeon, M., Hilderman, R., 2008. Categorical proportional difference: A feature selection method for text categorization, in: Proceedings of
the 7th Australasian Data Mining Conference-Volume 87, Australian Computer Society, Inc.. pp. 201-208.

[23] Singh, B., Kushwaha, N., Vyas, O.P, et al., 2014. A feature subset selection technique for high dimensional data using symmetric uncertainty.
Journal of Data Analysis and Information Processing 2, p. 95.

[24] Uysal, A.K., Gunal, S., 2012. A novel probabilistic feature selection method for text classification. Knowledge-Based Systems 36, pp. 226-235.

[25] Yang, Y., Pedersen, J.O., 1997. A comparative study on feature selection in text categorization, in: Icml, pp. 412-420.

[26] Ye, Y., Wang, D., Li, T, Ye, D., Jiang, Q., 2008. An intelligent pe-malware detection system based on association mining. Journal in computer
virology 4, pp. 323-334.

