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Multi-dimensional classification (MDC) is the supervised learning problem where an instance is
associated with multiple classes, rather than with a single class, as in traditional classification problems.
Since these classes are often strongly correlated, modeling the dependencies between them allows
MDC methods to improve their performance - at the expense of an increased computational cost. In this
paper we focus on the classifier chains (CC) approach for modeling dependencies, one of the most
popular and highest-performing methods for multi-label classification (MLC), a particular case of MDC
which involves only binary classes (i.e., labels). The original CC algorithm makes a greedy approximation,
and is fast but tends to propagate errors along the chain. Here we present novel Monte Carlo schemes,
both for finding a good chain sequence and performing efficient inference. Our algorithms remain
tractable for high-dimensional data sets and obtain the best predictive performance across several real

Bayesian inference data sets.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Multi-dimensional classification (MDC) is the supervised learn-
ing problem where an instance may be associated with multiple
classes, rather than with a single class as in traditional binary or
multi-class single-dimensional classification (SDC) problems. The
so-called MDC (e.g., in [1]) is also known in the literature as
multi-target, multi-output [2], or multi-objective [3] classifica-
tion,! and is related to multi-task clustering and multi-task
learning. The recently popularised task of multi-label classifica-
tion (see [4-7] for overviews) can be viewed as a particular case
of the multi-dimensional problem that only involves binary
classes, i.e., labels that can be turned on (1) or off (0) for any
data instance. The MDC learning context is receiving increased
attention in the literature, since it arises naturally in a wide
variety of domains, such as image classification [8,9], informa-
tion retrieval and text categorization [10], automated detection
of emotions in music [11] or bioinformatics [10,12].

The main challenge in this area is modeling label dependencies
while being able to deal with the scale of real-world problems.
A basic approach to MDC is the independent classifiers (Ic)
method, (commonly known as binary relevance in multi-label
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T Multi-output, multi-target, multi-variate, etc. can also refer to the regression
case, where the outputs are continuous.
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circles), which decomposes the MDC problem into a set of SDC
problems (one per label) and uses a separate classifier for each
label variable.? In this way, MDC is turned into a series of standard
SDC problems that can be solved with any off-the-shelf binary
classifier (e.g., a logistic regressor or a support vector machine?).
Unfortunately, although 1c has a low computational cost, it
obtains unsatisfactory performance on many data sets and perfor-
mance measures, because it does not take into account the
dependencies between labels [6,14-18].

In order to model dependencies explicitly, several alternative
schemes have been proposed, such as the so-called label powerset
(Lp) method [4]. P considers each potential combination of labels
in the MDC problem as a single label. In this way, the multi-
dimensional problem is turned into a traditional multi-class
SDC problem that can be solved using standard methods.
Unfortunately, given the huge number of class values produced
by this transformation (especially for non-binary labels), this
method is usually unfeasible for practical application, and
suffers from issues like overfitting. This was recognised by
[14,19], which provide approximations to the Lp scheme that
reduce these problems, although such methods have been
superseded in recent years (as shown in [20]).

2 Throughout this work we use the term label to refer generally to a class
variable that takes a number of discrete values (i.e., classes); not necessarily binary
as in the multi-label case.

3 Support vector machines (SVMs) are naturally binary, but can be easily
adapted to a multi-class scenario by using a pairwise voting scheme, as in [13].
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A more recent idea is using classifier chains (cc), which
improves the performance of IC and LP on some measures
(e.g., the subset 0/1 loss) by constructing a sequence of classifiers
that make use of previous outputs of the chain (see [21] for a
detailed discussion on MLC methods and loss functions). The
original cc method [15] performs a greedy approximation, and is
fast (similar to IC in terms of complexity) but is susceptible to
error propagation along the chain of classifiers. Nevertheless, a
very recent extensive experimental comparison reaffirmed that cc
is among the highest-performing methods for MLC, and recom-
mended it as a benchmark algorithm [20].

A cc-based Bayes-optimal method, probabilistic classifier chains
(pcc), was recently proposed [16]. However, although it improves
the performance of cc, its computational cost is too large for most
real-world applications. Some approaches have been proposed to
reduce the computational cost of PCC at test time [18,22,23], but the
problem is still open. Furthermore, the performance of all cc-based
algorithms depends on the label order established at training time,
an issue that so far has only been considered by [22] using a
heuristic search algorithm called beam search.

In this paper we introduce novel methods that attain the
performance of pcc, but remain tractable for high-dimensional
data sets both at training and test times. Our approaches are based
on a double Monte Carlo optimization technique that, aside from
tractable inference, also explicitly searches the space of possible
chain-sequences during the training stage. Another advantage of
the proposed algorithms is that predictive performance can be
traded off for scalability depending on the application. Further-
more, we demonstrate our methods with support vector machine
(SVM) as base classifiers (PCC methods have only been used under
a logistic regression scheme so far). Finally, unlike the bulk of
related literature, we involve the general multi-dimensional sce-
nario (as in [18,2]) and provide a theoretical and empirical analysis
of payoff functions for searching the chain space.

A preliminary version of this work has been published in [24].
With respect to that paper, here we introduce three major
improvements: we consider the more challenging scenario of
multi-dimensional classification (i.e., multi-class labels); at the
training stage, we address the problem of finding the optimum
label order instead of accepting the original one or using a random
label order; for the test stage, we develop a more sophisticated
and efficient population Monte Carlo approach for inference.

The paper is organized as follows. In the following Section 2 we
review MDC and the important developments leading up to this
paper. In Sections 3 and 4 we detail our novel methods for training
(including learning the optimum chain sequence) and inference,
respectively. In Section 5 we elaborate an empirical evaluation of
the proposed algorithms and, finally, in Section 6 we draw some
conclusions and mention possible future work.

2. Multi-dimensional classification (MDC)

Let us assume that we have a set of training data composed of N
labelled examples, D = {(x(”hy‘”))}’,;’: 1» where
XM =[x, x0T e X=X x - x Xp = RP
is the n-th feature vector (input), and
YO =y €Y=V x

is the n-th label vector (output), with

L
><:)7[_CN+

Y eV, =1{1,.., K},

and K,eN, being the finite number of classes associated
to the ¢-th label. The goal of MDC is learning a classification

function®
h=[h, ..

Let us assume that the unknown true posterior probability
density function (PDF) of the data is p(y|x). From a Bayesian point
of view, the optimal label assignment for a given test instance, x*,
is provided by the maximum a posteriori (MAP) label estimate

LTy,

Vmap = hyiap(x*) = argr[;ax p(yIx®), (1)
ye

where the search must be performed over all possible test labels,
y € Y. The MAP label estimate is the one most commonly used in
the literature, although other approaches are possible, as shown in
[16]. Indeed, [16] shows that Eq. (1) minimizes the exact match or
subset 0/1 loss, whereas the Hamming loss is minimized by finding
individual classifiers that maximize the conditional probability for
each label. Unfortunately, the problem is further complicated by
the fact that the true density, p(y|X), is usually unknown, and the
classifier has to work with an approximation, p(y|x), constructed
from the training data. Hence, the (possibly sub-optimal) label
prediction is finally given by

y =h(x*) = argmax p(y|x*). @)
yey
Table 1 summarizes the main notation used throughout this work.

2.1. Multi-dimensional classification vs. multi-label classification

Although binary-only multi-label problems can be considered
as a subset of multi-dimensional problems, the reverse is not true,
and there are some important quantitative and qualitative differ-
ences. Quantitatively, there is a higher dimensionality (for the
same value of L); MLC deals with 2 possible values, whereas MDC
deals with T]L _ ,K,. Note that this affects the inference space, but
not the sequence space (i.e., the possible orderings of variables).
Qualitatively, in MDC the distribution of “labellings” is different,
even with binary class variables. In typical MLC problems, the
binary classes indicate relevance (e.g., the label beach is relevant
(or not) to a particular image). Hence, in practice only slightly
more than 1/L labels are typically relevant to each example on an
average [6] (see also Table 5), i.e., XL _,P(y,)<L where P(y,) is the
probability of y, being relevant. This means that a relatively small
part of the Y-space is used. In MDC, classes (including binary
classes) are used differently - e.g., a class gender( e {1,2} =M/F) -
with a less-skewed distribution of classes; prior-knowledge of the
problem aside, we expect P(Y,=y,)~ 1/K,. In summary, in MDC
the practical Y-space is much greater than in MLC, making
probabilistic inference more challenging.

2.2. Independent classifiers (1c)

The method of using independent classifiers (I1C) on each label is
commonly mentioned in the MLC and MDC literature [4,7,15,18].
For each # =1, ...,L a (standard, off-the-shelf binary) classifier h, is
employed to map new data instances to the relevance of the #-th
label, i.e.,

¥ =hx*) =[hy(x*), ..., hy(x)] ",
where, probabilistically speaking, we can define each h, as

¥, = h,(x*) = argmax p(y, |x*). 3)

Y€ Ve

4 We consider h as a vector because this fits naturally into the independent
classifier and classifier chain context, but this is not universal, and h: X - Y is
possible in other contexts (such as LPp).
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Table 1
Summary of the main notation used in this work.

Notation

Description

X=[X1,....xp] T € X = RP
y=W1....y]" eYC Ny
X=[xD, . xNMjexV
Y=[y",...,yM]e N

D= (x™,yM_; = (X.Y)

D-dimensional feature/input vector, with x; € X4 =R, d=1,....D

L-dimensional label/output vector, with y, e Y, ={1,....,K,} (K, >2), £=1,...,L
D x N input matrix with all the features

L x N output matrix with all the labels

training data set, n=1,...,.N

p(yIx) unknown true PDF of the data

pyIx)

X =[x, .5 e X
h=[hy,...h]" : x>y
y=hx)=[y;,...51"

Y =HX): xN >N
s=[sy,....5]  eSt
V=[5Vl €Y

hg =[h,,....hs]" 1 XY

empirical PDF built by the classifier
test feature vector

classification function built from D
generic classifier's output
classification matrix H applied to X
label order, with s, e S=1{1,...,L}
L-dimensional permuted label vector
permuted classification function

As we remarked in Section 1, this method is easy to build using
off-the-shelf classifiers, but it does not explicitly model label
dependencies, and its performance suffers as a result.” In fact, it
assumes complete independence, i.e., it approximates the density
of the data as

L
Py =TI PO 4)

We always expect label dependencies in a multi-label problem
(otherwise we are simply dealing with a collection of unrelated
problems); some labels occur more likely together, or mutually
exclusively. Thus, it is important to model these dependencies,
because doing so can greatly influence the outcome of the
predictions.

2.3. Classifier chains (cc)

The classifier chains (cc) approach [15] is based on modeling
the correlation among labels using the chain rule of probability
(see Fig. 1). Given a test instance, x*, the true label probability may
be expressed exactly as

L
pyIX*) = py;1x*) fl:[zp(yﬁl)(*,yl, Ve 1s (5)

Theoretically, label order is irrelevant in Eq. (5), as all the label
orderings result in the same PDF. However, since in practice we are
modelling an approximation of p (i.e., p), label order can be very
important for attaining a good classification performance, as
recognized in [16,21]. Given some label order, s=[s,...,s;]" (a
permutation of {1, ...,L}), cc approximates the true data density as

L
P(YsIX*) =P(YIX*,8) = P(ys, IX*¥) szﬁ(vsf X*, Ys,s Vs, s (6)
where yg =[y;,, ...,ysL]T is the permuted label vector (see Fig. 2).

First of all, cc considers an arbitrary label order, s, and learns all
the conditional probabilities in (6) from the labelled data during
the training stage, thus effectively constructing a chain of classi-
fiers like the one shown in Fig. 1. Then, during the test stage, given
a new (test) instance, x*, cc predicts y,, = hs (Xx*) using only the
feature vector, whereas for the #-th permuted label (#=2,...,L) it
also makes use of all the previous predictions (¥,,....Js, )

5 An exception to this rule is the minimization of the Hamming loss, which can
be attained by considering each of the individual labels separately. Thus, modeling
label dependencies does not provide an advantage in this case, as already discussed
in [16,21].

predicting each y, as

}A’sf = hs,»(X*Wsl > "'5.95/,1) = ei’rgil})ax Ia(ys,/ |X*=j}sl > "'v})sﬁql (7)
Se S¢

Note that, given a data instance x* and a label order s, each
possible realization of the vector y, can be seen as a path along a
tree of depth L, and p(y,|x*) is the payoff or utility corresponding
to this path. cc follows a single path of labels y, greedily down the
chain of L binary classifiers, as shown in Fig. 3 through a simple
example. In carrying out classification down a chain in this way, cc
models label dependencies and, as a result, usually performs much
better than 1c, while being similar in memory and time require-
ments in practice. However, due to its greedy approach (i.e., only
one path is explored) and depending on the choice of s, its
performance can be very sensitive to errors, especially in the
initial links of the chain [16].

2.4. Probabilistic classifier chains (Pcc) and extensions

Probabilistic classifier chains (pcc) was introduced in [16]. In the
training phase, pcc is identical to cc; considering a particular
order of labels s (either chosen randomly, or as per default in the
dataset). However, during the test stage pcc provides Bayes-
optimal inference by exploring all the [ _ K, = 2! possible paths
(note that [16] only considers the MLC case, where K, =2 for
¢=1,...,L). Hence, for a given test instance, x*, pcCc provides the
optimum y, that minimizes the subset 0/1 loss by maximizing the
probability of the complete label vector, rather than the individual
labels (as in Eq. (7)), i.e.,

Vs =hg(x*) = argm;x P(ysIx®), ®)
Ys €

where p(y,|x*) is given by (6).° In [16] an overall improvement of
PCC over cc is reported, but at the expense of a high computa-
tional complexity: it is intractable for more than about 10 labels
(=2"° paths), which represents the majority of practical problems
in the multi-label domain. Moreover, since all the conditional
densities in (6) are estimated from the training data, the results
can also depend on the chosen label order s, as in cc.

An approximate pcc-based inference method with a reduced
computational cost has been proposed in [23]. This approach,

5 Interestingly, it has been shown in [16,21] that the optimum set of labels that
minimize the Hamming loss is given by (3), i.e.,, the 1c approach is optimal for the
Hamming loss and no gain is to be expected from any other method that models
correlation among labels, with the possible exception of small sample-size
problems.
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Fs = (G100, ]
N

Fig. 1. General scheme of the Classifier Chains (CC) approach.

s =[4,1,3,2]

Fig. 2. Example of the permuted label vector in a classifier chain with L=4. In this
example we have s=[4,1,3,2]", so that ys = [y4,¥1,¥3.Y2] " -

Ys; ——

Ysy ——

Fig. 3. Example of the HL,: 1Ko =Ky x Ky x K3 =2 x3 x2=12 possible paths
along the tree of class labels y;, (¢#=1,...,L=3). The best path, y; =[1.3, 21", with
probability 0.2160, is shown with dashed lines.

named e-approximate inference, is based on performing a depth-
first search in the probabilistic tree with a cutting-off list. It is
characterized by quite strong theoretical guarantees regarding the
worst-case regret for the subset 0/1 loss and shows a good
performance in the experiments, but does not tackle the chain
ordering problem. An alternative approach, ‘beam search’ for pcc,
has been proposed in [22]. Beam search is a heuristic search
algorithm that speeds up inference considerably and also allows
experimentation with chain orderings. Furthermore, the authors
of [22] mention the (promising) possibility of using Monte Carlo
methods in future works. A simple Monte Carlo-based pcc
approach has been considered in [23,25] for maximization of the
Hamming and the F-measure loss functions respectively during
the test (i.e., inference) stage. We have independently developed a
Monte Carlo-based approach in [24], which considers not only the
test stage but also the training (i.e., chain order optimization)
stage. In this paper we elaborate on this work, providing more
sophisticated Monte Carlo algorithms that speed up both the
training and test stages.

2.5. Bayesian network classifiers

Conditional dependency networks (cbnN) [17] are used as a way
of avoiding choosing a specific label order s. Whereas both cc and
pcc are dependent on the order of labels appearing in the chain,
cpN is a fully connected network comprised of L label-nodes
POV X Y1, o Ye 1Yo 415 --Yy) for £=1,...,L. Gibbs sampling is
used for inference over T steps, and the marginal probabilities
collected over the final T, steps. However, due to having L(L—1)/2
links, inference may not scale to large L.

Bayesian classifier chains [18] finds a more tractable (non-fully
connected) network based on a maximum spanning tree of label

dependencies; although they again use the faster classifier chain-
type inference, i.e., by treating the resulting graph as a directed
one (by electing one of the nodes to be a root, and thus turning the
graph into a tree). This method is similar to cc in the sense that
classification depends on the order of nodes, but, unlike cc, it does
not model all dependencies (e.g., the dependence between leaf
variables is not necessarily modelled).

2.6. Inference in MDC: our approach

As explained in the previous sections, the optimal solution to
the classifier chain problem is twofold:

1. Find the best label order s, exploring all the L! possible label
orders.

2. Find the best label vector y; within a space composed of
1% _ K, possible label vectors.

Unfortunately, this task is unfeasible except for very small values
of L and K, (¥ = .,L). Indeed, the total space has a cardinality
(TTL _;K,) x L! (i.e., exponential times factorial). For this reason, in
the following we design efficient Monte Carlo techniques to
provide good solutions to both problems: finding a good label
order s at the training stage (see Section 3), and then a good label
vector y at the test (i.e., inference) stage (see Section 4).

3. Training stage: finding the best classifier chain

In the training step, we want to learn each of the individual
classifiers, hs, for #=1, ...,L, and, at the same time, we also wish to
find the best chain order, s =[s;,...,s;] ", out of the L! possibilities.
We use a Monte Carlo approach to search this space efficiently.

3.1. Learning the label order

A first, simple, exploration of the label-sequence space is
summarized in Algorithm 1. This algorithm can start either with
a randomly chosen label order or with the default label order in
the dataset, so. In each iteration a new candidate sequence s’ is
generated randomly according to a chosen proposal density
7(s|s¢_1) (see Section 3.2 for further details). Then, a suitable
payoff function J(s’) is evaluated (see Section 3.3 for a discussion
on possible payoff functions). The new candidate label order, s/, is
accepted if the value of the payoff function is increased w.r.t. the
current one, S (i.e., if J(s") > J(s;_1), then s; =s’). Otherwise, it is
rejected and we set s; =s,_ 1. After a fixed number of iterations T,
the stored label order sr, is returned as the output of the
algorithm, i.e., the estimation of the best chain order provided is
S = ST5~7

Algorithm 1. Finding a good label order §

Input:
e D= {(x(”),y(m)}g: ;:training data.
e 7(s|s;_1): proposal density.
® sg, T: initial label order and number of iterations.
Algorithm:
1.Fort=1,...,Ts
(a) Draw s’ ~ 7(S|S¢_1).
(b) 1£ J(s) > J(S¢-1)

e]|s;<s’ accept.

7 In order to avoid overfitting, this is typically performed using internal train/
test split or cross validation, i.e., using part of the training set for building the
model and the rest for calculating its payoff. See Section 5 for further details.
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(c) else
® s;<S;_1 reject.
Output:
e § =s7: estimated label order.

As we show in Section 3.3, the payoff function J(s) is based on
D(¥ys|X), an approximation of the true data density, p(ys|X). Hence,
in order to decrease the dependence on the training step we can
consider a population of estimated label orders, S = [§(”, ...,§(M)],
instead of a single one. This method is detailed in Algorithm 2. The
underlying idea is similar to the previous Algorithm 1, but
returning the best M label orders (the ones with the highest
payoff) after T iterations instead of a single label order.
Algorithm 2. Finding a good population of label orders S = [5(” ,

8™

Input:
e D= {(x("),ym))}g: ,: training data.
® 77(s|s;_1): proposal density.
esy, Ts, M: initial order, number of iterations and population
size.
Algorithm:
1.Fort=1,...,Ts:
(a) Draw s’ ~ 7z(S|S¢_1).
(b) 1 £ J(s") = J(St-1)
® s S’ accept.
® W;<J(S') set.
(c) else
® S;<S;_1 accept.
® Wy <J(S;_1) set.

2. Sort sq, ..., st, decreasingly w.r.t. wy, ..., wr,, taking the top
M.
Output:
e s=13",....s™1: population of best M estimated label
orders.
o wh . wM: corresponding weights.

Once we have described the two proposed Monte Carlo
approaches for the training step, the following two sections are
devoted to the critical issues for both of the algorithms: the choice
of the proposal (Section 3.2) and of the payoff function (Section 3.3).

3.2. Choice of the proposal function

In order to explore the sequence space, S, a proposal mechan-
ism is required. We remark that performing a search in S requires
(a) learning a probabilistic model and (b) building a new classifier
chain for each sequence we want to try. Hence, this stage is
inherently much more expensive than searching the label space
and the number of label orders that can be explored is thus very
limited. Therefore, the proposal density must be both simple and
effective. Below, we describe two possibilities.

First proposal scheme: As a first approach we consider a very
simple proposal. Specifically, given a sequence

St—1=[se—1(1), ....,sc_1(D)] 7,

the proposal function 7z(s¢|s;_1) consists of choosing uniformly
two positions of the label order (1 <#,m <L) and swapping the
labels corresponding to those positions, so that s;(#) =s;_(m) and
S(m) =S¢ 1(2).

Second proposal scheme: The previous proposal does not make a
full use of all the available information. For instance, due to the
chain structure, changing the initial ‘links’ in the chain (e.g., s:(1)

or s¢(2)) implies a larger jump in the sequence space than changing
the final links (e.g., s¢(L—1) or s/(L)). Indeed, if the first L, labels in
s¢ remain unchanged w.r.t. s.q, only L—L; classifiers need to be
re-trained, thus saving valuable computation time. In light of this
observation, we propose an improvement of the previous proposal
based on freezing the links in the chain progressively from the
beginning to the end.® This allows the algorithm to explore the
whole sequence space uniformly in the T, initial iterations (i.e.,
potentially requiring re-training of the whole classifier chain), but
focuses gradually on the last labels of the sequence, which require
almost no re-training and are very cheap to explore. In this case,
the first label at the t-th iteration is drawn from

%, t<Tp;

Pry oC <1 pt/e 9)
— t>Tp;
0 e

with the second label drawn from
1
N-1"
DPm,t € 1
(N—l

t<Tp;
pr/m
) , t>Tp,

where > 0 is a user-defined and constant parameter. First of all,
note that the expressions (9) and (10) indicate only the propor-
tionality of the probabilities w.r.t. t and # or m, i.e., in order to
obtain the probability mass function we have to normalize the
weights above. Moreover, observe that for ¢ > T, the probability of
choosing an index # (resp. m) depends on the position # (resp. m)
and the time t. More specifically, this probability increases with
the value of # (resp. m), and this effect grows as t increases, with
the probability mass function becoming a delta located at the last
possible position when t— +o0o. The speed of convergence is
controlled by the parameter f: the higher the value of f, the
faster Eqs. (9) and (10) become delta functions.

(10)

3.3. Cost functions: Bayesian risk minimization

Let us define two matrices, X =[x, ..., x™M] and Y =[y?, ...,
y™], containing all the features and observations in the training
set respectively. Furthermore, let us assume that the data asso-
ciated with different training instances are independent, i.e.,

N N
p(YIX,s) = [ py™ix™,s)= T[] p(ys"Ix™). (11)
n=1 n=1

From a Bayesian point of view, the best model (i.e., the best chain
or label order) is the one that minimizes the Bayesian risk
[16,21,27]. Let us define a generic cost function

. . N
Y, Y) = FULWS, Yy - 1), (12)
where we have used Y = Y (s) = H(X|s) and 3"1(5”) =hg(x™) to sim-
plify the notation, F(.) is a generic functional and £L(y,y) is some

appropriate loss function, £:Y—R. The Bayesian risk is the
expected cost over the joint density of the data given the model

R(S) = Exys{C(Y, Y)}, (13)

with Exy;s denoting the mathematical expectation w.r.t. the joint
conditional density p(X, Y|s), and the optimum chain corresponding

8 This idea follows the line of the different tempering strategies found in the
literature, such as simulated annealing or simulated tempering [26]. However, from
a Monte Carlo point of view there is an important difference: our tempering is
applied to the proposal, whereas the classical tempering is used to change the
target.
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to the label order which minimizes this risk. For a given set of
training data, the best label order can be determined in a pointwise
way by taking the expectation w.r.t. the conditional probability
[16,21]:°

$(X) = argminEyx s {C(Y., H(X|s))}

sest
N
=argmin ¥ C(Y.HXIs)) [ pys"x™), (14)
sest yeyN n=1

where we have made use of (11) to obtain the last expression.'°

In the following, we explore several cost and loss functions
commonly used in MLC and MDC, showing their probabilistic
interpretation from the point of view of finding the best label
order.

3.3.1. Additive cost functions

In this section we consider the functional 7(-)= ¥N_,(), i.e,, an
additive cost function. Thus, we have

N N R
Cam(Y, V)= ¥ L& 9" (15)
n=1

Inserting (15) into (14), and after some algebra, we obtain the
following estimator for additive cost functions:

N
$SX)=argmin Y ¥ Ly YBYIx™). (16)

sest n=lyPecy

Unfortunately, minimizing (16) for a generic loss function can
be unfeasible in practice. However, by focusing on two of the most
common losses used in MLC and MDC (the exact match and the
Hamming losses), simple expressions with a straightforward
probabilistic interpretation may be found. First of all, let us
consider the exact match loss,"" which is defined as

) . 1, yP =yl
Lemy™. 9 = [y £ 90 ] = w m (17)
0’ ys ZYS ;

where [ - | returns 1 if its predicate holds and 0 otherwise. Using
(17), (16) can be expressed as

N
SemX) =argmin Y ¥ [y £y Py x™)
sest n=1lyWcy

N
=argmin Zl(l — @I x™))

sest n=

N
=argmax Y py.1x™). (18)

sest n=1

From (18) it can be seen that minimizing the exact match loss is
equivalent to maximizing the sum of the likelihoods of the
predictions for each of the instances in the validation set.'”
Therefore, in order to minimize the exact match loss we should
use the following payoff function:

N
Jem(s) = ;lﬁ@é’”lxm)). (19)

9 Note that in [16,21] this approach is followed to find the best classifier for a
given label order, whereas here we use it to find the best label order (i.e., the best
model).

19 In practice, we use internal validation to avoid overfitting, i.e., the training
set is divided into two: a first part for training the classifiers and a second part for
validation. Thus, all the expressions in this section should really consider only the
validation set, which will be a subset of the training set. However, in the following
we always consider n=1,...,N for the sake of simplicity.

11 Also called by some authors the subset0/1 loss (cf. [16]).

12 Note that this is equivalent to the result obtained in [16,21] for the test stage,
i.e,, for inferring the best y for a given label order s.

As a second example, we consider the Hamming loss"
) o L o oo
Lyam(Ys »¥s )= Z] [[ysf #Ys, 1. (20)
l =

Unlike the exact match loss, which returns the same value when
yg’{f) ;ey;? regardless of how dissimilar they are, the Hamming loss
looks at each label component separately. Using (20), it can be shown

(see the Appendix) that, for the Hamming loss, (16) becomes
N L
Swan(X)=argmax ¥ ¥ Py Ix™). 1)
sest n=17=1

Hence, from (21) we notice that the Hamming loss is minimized by
maximizing the sum of the likelihoods of the individual label predic-
tions, given only the data, for each of the instances in the validation
set."* Thus, the corresponding payoff required for minimizing the
Hamming loss is

N L < ()
JHam(S) = ;l f;] Py, XM, (22)

Note that the ccapproach returns 1507?;) IX‘”),ﬁTJ’

the PDF required by (21) and (22), ﬁ(i/gjﬂx(“)). An estimate of
f)(}7§7)|x<")) can be obtained by summing over the unnecessary
variables

Ao
p(ysf Ix(n)) =

y& ), instead of

~ oo () ~ (1) ~ (1)
IR 1A 255 S 2SN DN
o(m ~(n)
Vspods,

but the number of elements in this sum is []¢~1K;, and thus grows
exponentially with 7 (eg, for MLC Ki=2 for i=1,...,¢, so

21K = 27~1). Hence, a better alternative is computing p ;'f) x(M)
directly during the training stage, as done by the 1¢ approach, instead
of the p@ " 1x™, 3", .., ﬁgll) required by the cc approach.

3.3.2. Multiplicative cost functions

As a second family of cost functions we consider multiplicative
cost functions, i.e., we consider a functional #(-)=[IN_,(-), which
leads us to

N N R
Cpoa(¥.¥) =TT L.y, 23)
n=
Inserting (23) into (14), the estimator is now given by

N
$X)=argmin ¥ I £ 95"pyx™)
sest Ye yvn=1

_ N () GMNA (1) 4,(1)
=argmin [ ¥ L5 Vs PYs IX™)

sest n=lyPecy

> Ly yIpydx™) |, 24)
Y(s"' cy

N
=argmin Y log
sest n=1

which has a similar functional form to (16), with the log of the
inner sum inside the outer sum. Hence, following an identical
procedure to the one in Eq. (18) for the exact match loss, we obtain

N
e proa(X) = argmin 3 log(1 —pEIx™))

sest n=

N
=argmax [[ p@’x™), (25)

sest n=1

3 The name is due to the fact that it corresponds to the Hamming distance for
the binary labels used in MLC. Although this is no longer true for the non-binary
labels that can appear in MDC, this definition is still valid and we keep the name
used in MLC.

4 Once more this is equivalent to the result obtained in [16,21] for the
test stage.
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which corresponds to the maximum of the likelihood function.
Hence, the corresponding payoff function is precisely the like-
lihood function:

Jem—proa(8) = H P Ix™), (26)

Similarly, following the steps shown in the Appendix for the
additive cost function, we may obtain the estimator for the
Hamming loss in the multiplicative case:

SHam prod(x) = argmax H Z p(y(n)|x(n)) (27)
sest n=1r=1

which is similar to (25), but now the product is on the individual

label likelihoods instead of the global likelihoods of the different

instances. The payoff function in this case is

]Ham prod(s)— H Z p(y(n)lx(n)) (28)

n=1¢=1

4. Test (inference) stage: finding the best label vector

In the test stage, for a given test instance x* and a label order s,
our aim is finding the optimal label vector y¢ that maximizes
Eq. (8). The pcc method [16] solves this part analytically (by
performing an exhaustive search). However, since this method
becomes computationally intractable for anything but small L (the
full space involves % _ K, possible paths), the goal is providing a
Monte Carlo (MC) approximation of the estimated label vector

Vo Y= argmax p(ys/x") (29)
for the minimization of the exact-match loss or
L
Vo Ay = argmax ¥ p(ys, Ix) (30)
s ‘=

for the Hamming loss, such that §™° -y, when T, — + o0, with T,

being the number of iterations of the MC algorithm.

A first possible MC approach for the minimization of the exact
match loss is provided by Algorithm 3.'>'® Given a test instance x*
and a label order s, this algorithm starts from an initial label vector

y© arbitrarily chosen (e.g., randomly or from the greedy inference

offered by standard cc), and draws samples y{’ (i=1,...Ty)

directly from the model learnt in the training stage, p(y¢/x*)."”

Then, the label vector y&

- (mc) (k)

the output, ie, ys ~ =ys , with

with the highest payoff is returned as

k= argmax PP x*) 31)

i=1,.

for the minimization of the exact-match loss and

k = argmax Z PP x*) (32)

i=1..T¢=1

15 Algorithm 3 can also be used to minimize the Hamming loss, simply
changing the condition in step 1(b) by the following condition:

L , Lo
Y Py, XD > X puL VX,
=1 £=1

where p(y¢~"|x*) can be computed as described at the end of Section 3.3.1

6 An MC-based approach like the one shown in Algorithm 3 has been
independently proposed in [23] for the minimization of the exact match loss
during the test stage.

17 Note that this is equivalent to generating random paths in the tree of class
labels according to the corresponding weights associated to each branch (see
Fig. 3).

when the goal is minimizing the Hamming loss. From a Monte
Carlo point of view,it is important to remark that all the candidate
vectors y’ are always drawn directly from the target density,
D(ysIx*),i.e., y is always a valid path on a tree selected according
to the weights of the different branches. This is an important
consideration,since it guarantees that the estimated label vector,

y ™ will always be a feasible path.

Ys
Algorithm 3. Obtaining §™ ~y, that minimizes the exact-

match loss for a given test instance x*.

Input:
e X* s: test instance and given label order.
° ﬁ(ys\x)' probabilistic model.
oyl ,Ty initial label vector and number of iterations.
Algorithm:
LFort=1,...Ty:
(a) Draw yg ~ p(ys[x*).
(b) 1 £ PyIx*) > Py~ "x*)

oy —y. accept.

(c) else
o yOyl=D reject.
Output:
e ™9 =y predicted label assignment.

As previously discussed, the inference of Algorithm 3 depends
strictly on the chosen label order s. For this reason, we also
propose another scheme that uses a population of label orders
S=[sD,...,sM] (chosen randomly or obtained using Algorithm 2).
A naive procedure to incorporate this information in the inference
technique would be running M parallel algorithms to find

sequences of labels y{ (like Algorithm 3) using different label

orders §” (i=1,...,M) and then selecting the best one. However,
this approach is computationally inefficient. In Algorithm 4 we
propose a more sophisticated approach that makes use of the
information within the entire population § but requires running
only one random search. The main steps of the method can be
summarized as follows:

1. A label order s’ €S is selected according to some weights (e.g.,
those provided by Algorithm 2) proportional to a certain payoff
function.

2. A good label vector y is found by following Algorithm 3.

3. The procedure is repeated T, times, with the best label vector
for the Ts label orders explored being returned as the output.

Algorithm 4. Obtaining y™° ~y, that minimizes the exact-

match loss given x*,and a population S.

Input:
e X*: test instance.
e S=[sD, ..., sM7: population of M label orders.
o w, . . wM: corresponding weights.
® P(y,|X) = P(y|X,s): probabilistic model.
e T, T,: number of iterations for searching s and y; resp.
e y'”: initial label vector.
Algorithm:
1.Fort1=1,...,Ts:
(a) Choose s, —s@ ~wi/¥M  wh for j=1,...M.
(b) Set z; _y“‘
(c) For t =1, ...7Ty.
i. 2z’ ~p@z|x*,sy,).
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ii. 1 p(Z'IX*,sr,) > D(Z¢, IX*, S¢,)
® 7, . 1< accept.
iii. else
® 7, 1<Z;, reject.
(d) Setyg, =2zr,.
Output:

o y"9 =y{*): predicted label assignment.

5. Experiments

In order to compare fairly both the performance and the
computational effort, we progressively apply the ideas introduced
in the previous sections to form four novel methods:

® vcc (Algorithm 3): given a classifier chain trained on some
previously determined label order s (e.g., randomly as in cc or
pcc), we infer the label vector for all test instances using a
simple MC approach.

® ygcc (Algorithm 1 plus Algorithm 3): like mMcc, but we addi-
tionally search for a suitable label order § during the training
stage. Specifically, we use Algorithm 1 with the simplest
proposal density n(s|s;_1) described in the first part of
Section 3.2.

® pyMgCC (Algorithm 2 plus Algorithm 4): population version of
Mscc, still using the simplest proposal density (s|s;_1)
described in Section 3.2.

® pM;CcC (Algorithm 2 plus Algorithm 4): pMscc with the
improved proposal m(s|s;_1) described in the last part of
Section 3.2.

Note that Mmcc and Mscc differ on how they obtain the label order s
(randomly chosen for mMcc or estimated using Algorithm 1 for
MsCC), whereas pMgcC and piMgcC differ on the proposal used to
search for the best label order.

5.1. Comparison of different cost functions

In this section we analyze the performance of different payoff
functions: the two additive payoffs given by (19) and (22), and the
multiplicative payoff of Eq. (26). Initially we focus on the Music
dataset, because it is faster to run and easier to visualise than other
datasets. Indeed, since L=6 (see Table 5) we can find the optimum
label order for the exact match payoff (Sgm =[3,5,0,1,4,2]7) by
performing an exhaustive search over the L!=720 possibilities.
Table 2 shows that the proposed Monte Carlo approach (Algorithm
1) arrives to the optimum label order under two separate initializa-
tions after 1935 and 1626 iterations; although we note that after a
much smaller number of iterations (310 and 225 respectively), the
difference is minimal in payoff. The search also converges maximiz-
ing Jem_proa (Table not displayed), although we noted that it is a
different maxima, specifically, Sguv _ proa =[4.,5.1,2,3,0] .

A similar analysis may be performed for other datasets where
the optimum label order cannot be found by exhaustive search.
Fig. 4 plots similar statistics for the Yeast data (L=14), whereas
Fig. 5 shows the payoffs when maximizing them separately (using
the same random seed in both graphs) for Enron (L=53). All these
analyses suggest that the payoff functions are climbing the same
terrain, but there are many peaks of similar height. Thus, while
§=[4,5,1,2,3,0]" does not appear superficially close to § =3,
5,0,1,4,2]", as found by using the different payoff functions on
Music, both result in higher performance than selecting s ran-
domly. This is also confirmed by the results of predictive perfor-
mance shown later on, and justifies searching the S-space. The fact

Table 2

Running algorithm 1 on Music dataset using payoff Jgy, under Ts = oo (i.e., run until
convergence to the optimum label order, $gy =[3,5,0,1,4,2] ", obtained through
an exhaustive search). We only show the iterations where a new s;«s’ is accepted
(plus the default so); displaying also the payoffs Jgy, Jem_proa (in the log domain)
and Jy,,, (note that these numbers have not been normalized by N). The experiment
is performed twice for two different random seeds (i.e., starting from a different sp).

t S[T Jem ]EM—prod JHam

(a) Random seed 1

0 [5,2,4,1,0, 3] 164.92 —1079.26 2889.89
2 [5,4,0,1,2,3] 166.14 —1084.91 28873
4 [5,3,0,21, 4] 166.89 —1085.4 2886.84
310 [5,3,0,1,4,2] 167.42 —1084.58 2887.14
492 [3,5,1,0, 4, 2] 167.53 —1083.97 2887.41
1682 [3,0,5,1, 4, 2] 167.62 —1082.89 2887.94
1935 [3,5,0,1,4,2] 167.73 —1082.79 2887.91
Random seed 2

0 [4,2,0,1,3,5] 155.7 —1109.58 2864.41
1 [4,2,0,3,1,5] 156.87 —1102.82 2868.08
2 [4,2,0,3,5,1] 159.45 —1096.79 2873.95
3 [4,0,2,3,5,1] 161.79 —1091.6 2880.18
5 [4,0,5,2,3,1] 163.14 —1093.32 2880.16
18 [5,1,4,3,2,0] 163.59 —1085.69 2885.91
23 [5,4,0,1,2,3] 166.12 —1084.97 2887.24
128 [3,5,1,0, 2, 4] 167.05 —1084.7 2887.2
176 [5,3,1,0, 4, 2] 167.22 —1085.75 2886.65
225 [5,3,1,4,0, 2] 167.41 —1083.1 2887.93
1422 [3,5,1,4,0, 2] 167.69 —1081.35 2888.68
1626 [3,5,0,1,4,2] 167.73 —1082.82 28879

that many label orders provide good results, as opposed to just one, is
not unexpected and justifies our population Monte Carlo method
(Algorithm 2). As a general remark, we also note that the terrain of
Jem—prod @ppears much rougher: when maximizing Jem_prod» Jem's
appreciation is still relatively smooth, but not vice versa.

Table 3 compares the predictive performance using different
payoff functions. Jgy performs better than Jgy_proq, Which has a
rougher terrain to climb. However, we remark again that all of
them are better than choosing a random s. This corresponds with
our intuition and theoretical results, although perhaps even more
experimentation is necessary to resolve the question in the formal
statistical significant sense; due to randomly varying the D-split
and the initial sq, the payoff function, plus taking into account the
huge S space, a vast number of experiments would be necessary
for getting conclusive statistical-significant figures. We instead
decided to invest more computation in our large-scale comparison
between methods (Section 5.3).

5.2. Comparison of MCC with other MLC approaches

Table 4 outlines all the methods used in the experiments, their
parameters, and relevant references. We compare to baseline 1c,
the original classifier chains method cc, the ensemble version
ECC, the Bayes-optimal rendition pcc and the e-approximate and
beam search variants; the conditional dependency networks
method cDN; and RF-PCT, a decision-tree based approach.

As a base classifier (for all methods relying on one) we mainly
use support vector machines (SVMs) fitted with logistic models (as
according to [13]) so as to provide a probabilistic output and
otherwise with the default parameters as in the sMo implementa-
tion of the Weka framework [28]. Logistic regression has so far been
a popular choice in the probabilistic multi-label literature (e.g.,
[16,17]) due to its probabilistic output. However, we have found that
SVM-based methods can perform better, at least without tuning the
parameters. For best accuracy, it is highly recommended to tune the
base classifier. However, we wish to avoid this “dimension” and
instead focus on the multi-label methods.
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Fig. 4. A plotted version of Table 2 for the Yeast data, for both Jgy and Jgm_proa UP till Ts =10,000. The left vertical axis corresponds to Jgy, and the right vertical axis to
Jem-proa- Note the log-scale horizontal axis. (a) Random seed 1 and (b) Random seed 2.
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Fig. 5. Searching s space on the Enron dataset, displaying both payoff scores, but maximizing only one of them (Jgy left, Jgy_proq Tight) — using the same random seed (initial
So); until Ts =10,000. The left vertical axis corresponds to Jgy, and the right vertical axis to Jgm_proq- Note the log-scale horizontal axis. (a) Maximizing Jgwm_proq and

(b) Maximizing Jgy,.

Table 3
Average exact match and Hamming score across 100 experiments (2/3:1/5 random
data split), under different payoff functions, including none (i.e., random s).

Payoff Exact match Payoff Ham. Score

(a) Music, Ts = 1500

Jem 0.3386 + 0.026 Jem 0.7998 + 0.011
JeM-prod 0.3307 + 0.025 JEM-prod 0.7982 + 0.010
JHam 0.3319 + 0.024 JHam 0.7988 + 0.010
None 0.3264 + 0.022 None 0.7935+ 0.014
(b) Yeast, T;=100

Jem 0.2107 + 0.0126 Jem 0.7815 + 0.0047
JeM-prod 0.2071 +0.0108 JeM—prod 0.7816 + 0.0043
JHam 0.2104 + 0.0115 JHam 0.7804 + 0.0046
None 0.2055 + 0.0115 None 0.7802 + 0.0048

All our methods are implemented and will be made available
within the Meka framework'®; an open-source framework based
on the Weka machine learning framework [28] with added
support for multi-label classification and evaluation. Table 5 dis-
plays the collection of real world datasets that we use; most are
familiar to the MLC and MDC literature [14-16].

The two contrasting measures exact MatcH Loss (Eq. (17)) and
Hamming Loss (Eq. (20)) are almost invariably used in the multi-label
literature, so we use them here. Note that in some results we pose
both as a payoft/score 1— £, where £ denotes normalized loss; in
other words, exact MatcH and HammING score, where 1.0 is the best
possible performance.

18 http://meka.sourceforge.net

5.3. Results

Table 7 displays the average results of 5-fold cross validation.
Results for running time performance are given in Table 8. All
experiments were carried out on Intel Xeon CPUs at 3.16 GHz
allowing up to 2 GB of RAM. The ranks and average ranks of each
method are displayed, and significance according to the Nemenyi
test [29]; where amac;sc; b indicates that algorithm a is signifi-
cantly better than b (under a p-value of 0.10).

In Table 6, to compare with existing methods from the
literature, we have taken results from [23,22,20], and displayed
results for our methods alongside using the same train/test
splits.’® Note that the PCC methods use logistic regression as a
base classifier, and RF-PCT is decision-tree based.

As in the literature, cc improves over IC considerably, particu-
larly under exact marcH, where label dependence must be modelled
for best performance. pcc improves further on cc - in the cases
where it is tractable - also across both evaluation measures.

In Table 7 we see that Mcc outperforms cc on almost every
occasion (only two exceptions) and is identical to pcc on all
datasets where pcc completes, indicating that our methods
conduct accurate inference like pcc, but are much more compu-
tationally tractable. Recall that pcc's inference is optimal.

Overall, MscC obtains similar performance to mcc. It would
follow that higher performance could be obtained with a higher
value of T, hinted at by the fact that most wins over MgCC are on
the smaller datasets (SolFlare, Bridges, Music) where the chain-
sequence space is smaller and easier to explore (with small T;). Of

19 As made available on the Mulan website: http://mulan.sourceforge.net/
datasets.html
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Table 4

The methods considered and their parameters. The novel methods proposed are below the middle line; where each inherits the parameters of the previous
ones, e.g., PMsCC takes parameters Ty = 100, T; = 50,M = 10, # = 0.03. For cDN, T. is the number of collection iterations. M indicates generally the number of
models. We selected the ‘width’ parameter configuration for the Beam Search that gave the best 0/1 Loss rank in [22], and similarly for e-approximate PCC in

[23]. RF-PCT parameters are as in [20].

Key Method Parameters Reference
IC Independent classifiers [4]
cc Classifier chains [15]
ECC Ensembles of classifier chains M=10 [15]
PCC Probabilistic classifier chains [16]
CDN Conditional dependency networks T=1000 [17]
T.=100
PCC-¢ e-approx. PCC e=0.25 [23]
PCC-Beam Beam search PCC w =3 [22]
RF-PCT Random forest of PCTs M=100 [2]
MCC Monte Carlo optimization for CC T,=100 Algorithm 1
MsCC 2 x MCC Ts=50 Algorithms 1 and 3
PMsCC Population MscC M=10 Algorithms 2 and 4
PtMsCC Population Mscc (w/ temperature) $=0.03 Algorithms 2 and 4

Table 5

A collection of datasets and associated statistics, where L.c is label cardinality: the
average number of labels relevant to each example; relevant for binary labels [4].
We have divided multi-dimensional datasets, and multi-label (binary-only)
datasets.

Table 6

Comparison of other methods from the literature on the train/test splits used in
these papers. N/A indicates that the result is not available (the dataset was not used
by the algorithm's authors). DNF indicates did Not Finish in 24 h. Ranks are not
shown due to many missing values. Best results are highlighted in bold.

Dataset N L K d LC Type Dataset PCC-¢ PCC-Beam RF-PCT MCC MsCC PMsCC
Solar Flare 323 3 5 10 N/A Astrology (a) 0/1 Exact-MarcH Loss
Bridges 107 5 2-6 7 N/A Civil engineering Music 0.718 0.673 0.693 0.673 0.688 0.653
Thyroid 9172 7  2-5 28 N/A  Medical Scene 0385  0.362 0.482 0419 0382 0360
Parkinson's 488 5 3 58 N/A  Medical Yeast 0.764  0.758 0.848 0775 0776  0.776
. . Genbase N/A 0.020 N/A 0.020 0.020 0.020
'S"'C:;‘ec 2233 g i 2;21 }:g; fm“:;‘; Medical 0541 0360 0.372 0364 0360 0.360
4ty 14 5 103 424 Biol Enron 0.848  0.805 0.869 0.822 0870  0.867
éi?lsgase st b S hss 195 Biolog TMC2007  0.718 N/A 0.816 0796  DNF DNF
Medical 978 45 2 1449 125  Medical/text MediaMill  N/A N/A 0.878 0913 DNF DNF
Enron 1702 53 2 1001 3.38 Email/text (b) HamMING Loss
Reuters 6000 103 2 500 146  News/text Music 0219 0221 0.189 0226 0216  0.202
TMC2007 28596 22 2 500 216  Text Scene 0107  0.106 0.094 0119 0110 0105
MediaMill 43907 101 2 120 438  Video Yeast 0.211 0.210 0.197 0211 0213  0.209
Genbase N/A 0.001 N/A 0.001  0.001 0.001
Medical 0.015  0.011 0.014 0011 0011 0011
Enron 0.046  0.052 0.046 0.053 058 0.58
course, increasing Ts implies a correspondingly increased compu- TMC2007  0.055 N/A 0.011 0.076 DNF DNF
tational cost. On the other hand, it is likely that this issue stems MediaMill N/A N/A 0.029 0.034  DNF DNF

from the fact that a single chain sequence may not necessarily be
best for predicting all test instances. This was a motivation behind
our population-of-s method, pMsCC.

In Table 7 pMscC obtains the best performance of all methods,
under both exact matcH and HammiNG Loss, across the majority of
datasets. It appears that on Medical and Enron the random chains
of Ecc provide better performance. Perhaps adding an Ecc-like
voting scheme would make up the difference. pMsCC obtains
almost as good performance as pMsCC, but is more efficient on
most datasets. This is exactly what it was designed to be: an
efficient version of pMscc. However, we were surprised to see in
Table 8 that it is not more efficient on some of the large datasets,
indicating that there may be some overhead in our implementa-
tion which is sensitive to L. In Table 6 competition to p{MsCC is
shown by pcC-Beam under Exact MaTcH, and RF-PCT under Hawm-
MING Loss. It is worth noting that the Beam-search implementation
paid more attention to setting up the base classifier, and we select
the 5! configuration from [22] as the best of several combinations,
whereas we used a single combination of T,/T;/M parameters in
our MCC methods. Both chaining approaches are quite competi-
tive, especially taking into account that RF-PCT was pegged one of
the best of 12 methods in [20]'s evaluation. It is true that PF-pPCT
is more efficient. The Pcc-Beam paper does not report results for
larger datasets like TMC2007 and MediaMill.

Although in Table 6 the methods which search the label
sequence space do not finish within the 24 h cut off, we point
out that for p;Mgcc this is a less-than linear increase with T;
(depending on f3). With T;= 10, we expect the method to take < 10
times longer than Mcc. Further speedups are possible, for example
using faster classifiers and/or smaller sets for internal validation.
We intend to investigate this in future work. Nevertheless, it is
clear that searching the chain space in this fashion becomes less
feasible for larger amounts of data.

Our methods are generally faster than cpn, especially for larger L.
This is interesting, since an attraction of ‘chain-less’ methods like cDN
is that no study of chain sequence is necessary. However, we see that
in this case, although there is no need to choose a chain-sequence,
inference is relatively much more costly.

As a side note, we point out that there is clearly a qualitative
difference between the multi-dimensional datasets where K, > 2,
and the binary-labelled datasets, where K, = 2. For example, on
Bridges the otherwise-more-advanced methods (Ecc and mMcc and
variations thereof) perform relatively poorly compared to the basic
baseline 1c, which performs best. More than anything this is
probably due to the relatively smaller size of these datasets,
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Table 7

Predictive Performance from 5-fold CV, displayed as: value rank, i.e., the average value across all folds and the rank of that value for each dataset. Note that the rank is based

on a higher precision than shown in the table.

Dataset Ic cc PCC ECC CDN MCC MsCC PMsCC PMgCC
(@) EXACT MATCH

SolFlare 0.77 7 0.80 1 0.78 5 0.69 8 0599 0.78 5 0.79 2 0.79 2 0.79 2
Bridges 0.09 9 0124 012 4 0.10 8 0141 012 4 0132 0132 0117
Parkins 017 1 017 2 0.16 5 0.16 8 0.16 5 0.16 5 0.16 8 017 4 017 2
Thyroid 083 6 0.029 0.84 3 0827 0.78 8 0.84 3 0.84 3 0.84 2 0851
Music 0307 0299 0354 0316 0308 0354 036 3 0371 0372
Scene 0.54 8 0.55 7 0.64 3 0.616 0.53 9 0.64 3 0.63 5 0.68 2 0691
Yeast 0.14 7 0156 DNF 019 5 0.07 8 0.214 0223 0231 0222
Genbase 094 8 0.96 2 DNF 094 6 0.94 6 0.96 2 0.96 2 0.96 5 0.96 1
Medical 0.58 8 0.62 4 DNF 0.64 1 0.60 7 0.63 2 0623 0.62 5 0.60 6
Enron 0.07 8 0.10 3 DNF 0111 0.07 7 0.10 2 0.09 6 0.09 5 0.10 4
Reuters 0297 0356 DNF 036 5 0.27 8 0374 0371 0371 0373
avg. rank 6.91 4.82 4.00 5.55 6.91 345 345 2.73 2.82
(b) HAMMING SCORE

SolFlare 0.90 7 0921 0.90 4 0.858 0.77 9 0.90 4 0.90 6 0.90 2 0.90 2
Bridges 0.637 0.66 3 0.67 1 0.64 6 0.62 9 0.67 1 0.65 4 0.65 4 0.63 8
Parkins 0.68 2 0.68 1 0.67 7 0.68 3 0.68 3 0.67 7 0.67 7 0.68 3 0.68 6
Thyroid 097 1 0.839 0.97 1 097 7 0.96 8 097 1 097 6 0971 097 1
Music 0.814 079 8 0.80 6 0.815 0.79 9 0.80 6 0.813 0811 0811
Scene 0897 0.86 8 0.89 4 0.90 3 0.86 9 0.89 4 0.89 6 0.90 2 0911
Yeast 0791 0.757 DNF 0.79 3 0.72 8 0.78 6 0.79 4 0.79 2 0.79 4
Genbase 1.00 7 1.00 1 DNF 1.00 7 1.00 5 1.00 1 1.00 1 1.00 5 1.00 1
Medical 099 5 0.99 2 DNF 0991 0.99 8 0.99 2 0.99 2 0.99 5 0.99 5
Enron 0932 0.92 5 DNF 0941 0923 0925 0928 0925 0923
Reuters 098 1 0981 DNF 0981 0.98 8 098 1 098 1 0981 0981
avg. rank 4.00 418 3.83 4.09 7.18 3.45 4.36 2.82 3.00

Nemenyi signif.: MCcCmac; sc; IC; MCCmac; Sc; CDN; MgCCmac; S¢; IC; MgCCMac; S¢; CDN; PMgCCMAC; SC; IC; PMgCCMAC; SC; CDN; P{MgCCMAC; SC; IC; P¢MsCCMAC; SC; CDN.
Nemenyi signif.: Pccmac; sc; CDN; MCCmac; sc; CDN; PMgCCMAC; SC; CDN; PyMgCCMAc; s¢; CDN.

Table 8
Running time; averaged over 5-fold CV and rounded nearest second. Dataset-wise
rankings, and some of the smaller datasets are not shown due to space limitations.

Dataset 1IC CC PCC ECC CDN  MCC  MsCC  PMgCC  PeMsCC

(@) RUNNING TIME (training+testing)

Scene 12 11 15 44 92 90 1347 684 335
Yeast 11 11 DNF 66 88 149 1313 731 546
Genbase 11 8 DNF 56 573 1695 5287 774 823
Medical 9 11 DNF 86 1546 3420 6940 1038 1192
Enron 102 92 DNF 349 3091 3884 10821 2986 3470
Reuters 106 120 DNF 20593 14735 1837 5740 4890 5310

(b) Buip TIME (training only)

Scene 12 10 1 43 13 13 1233 671 322
Yeast 1 11 DNF 64 12 15 1164 707 525
Genbase 9 7 DNF 46 5 11 3875 651 683
Medical 8 8 DNF 63 7 12 4986 835 961

Enron 99 86 DNF 307 72 80 8474 2729 3139
Reuters 96 102 DNF 2030 120 108 4920 4120 4449

making it difficult to get a good approximation p(y|X)~ p(y|x) of
the true density. In future work we intend to create larger MDC
(K, > 2) datasets and investigate this more thoroughly.

6. Conclusions and future work

We designed novel Monte Carlo (MC) schemes for inference in
a multi-dimensional learning framework using classifier chains.
MC techniques are used to efficiently search the chain-order space
at the training stage, and the label-path space at the inference
stage. We analysed several possible choices of payoff functions for
these MC methods, both from a practical and theoretical point of
view. An extensive empirical evaluation showed that our techni-
ques yield better predictive performance than many related

methods while remaining computationally tractable. Our model
convincingly obtains overall the best predictive performance of all
the methods we looked at, and proves tractable enough for many
real-world applications. The MC approach is interesting for, and
applicable, to a wide range of problems, and can be scaled up using
faster base classifiers (either in building the final model and/or the
internal models during the chain-space search). In future work, we
also intend to look at more advanced search algorithms and
dependency structures other than chain models.
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Appendix A. Additive cost function for the Hamming Loss

Inserting (20) into (16), we notice that the optimum label order
for the additive cost function with the Hamming loss is given by

N L
Sham(X)=argmin ¥ ¥ ¥ [y® £y [pydx™)
sest n=1lymcyr=1
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=argmin Z E Y P

sest n=1¢=1 ‘"’Eys{

(") ]]p(y(ﬂ) |x(ﬂ))

x X HP(V‘”’ X, ym y . Ly, (A1)
v, e Vs, kil

where we have used the chain rule of probability with y(”) as root

node, y&, =y, ..y Ly L...¥$’17, and the last expression

has been obtained simply separating the #-th label from the rest.
Now, noticing that the last term in (A.1) is equal to one, we obtain
Eq. (21):

Sm@O—argmin ¥ Y 3 [y® #90 1p ™ 1x™)

sest n=1¢=1 (")Eysf

N L
—argmin ¥ ¥ (1- —p@"1x™)) = argmax XX P x™).
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