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a b s t r a c t

Multi-label learning paradigm, which aims at dealing with data associated with potential multiple labels,
has attracted a great deal of attention in machine intelligent community. In this paper, we propose a
novel multi-label twin support vector machine (MLTSVM) for multi-label classification. MLTSVM deter-
mines multiple nonparallel hyperplanes to capture the multi-label information embedded in data, which
is a useful promotion of twin support vector machine (TWSVM) for multi-label classification. To speed up
the training procedure, an efficient successive overrelaxation (SOR) algorithm is developed for solving
the involved quadratic programming problems (QPPs) in MLTSVM. Extensive experimental results on
both synthetic and real-world multi-label datasets confirm the feasibility and effectiveness of the pro-
posed MLTSVM.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Support vector machine (SVM) [1–3], being recognized as one
of the most useful kernel-based tool for data classification and
regression, is successfully and widely used in a variety of real-
world problems [4–7]. To implement the principle of structural
risk minimization (SRM), SVM constructs two parallel optimal
support hyperplanes that maximize the margin between two
classes. However, SVM needs to solve a quadratic programming
problem (QPP) [3], whose computational complexity is Oðm3Þ,
where m is the scale of the dataset. The time-consuming training
stage of SVM may restrict its application to many real-world
problems. Consequently, many improved techniques have been
proposed, e.g. SMO [8], LIBSVM [9], LSSVM [10] and CVM [11].

On the other hand, some variants based on the idea of con-
structing nonparallel hyperplanes have emerged in recent years
[12–22]. Specifically, as a great improvement of SVM, twin support
vector machine (TWSVM) [12] has been studied extensively. It
relaxes the parallel requirement in traditional SVM, and attempts
to generate two nonparallel hyperplanes such that each one is
closer to its own class and as far as possible from the other. For this
purpose, it solves a pair of relatively smaller QPPs, instead of a
large one in classical SVM. Therefore, the learning procedure of
TWSVM is faster than that of the standard SVM [12]. In addition,
TWSVM is excellent at dealing with the “Cross Plane” dataset.
en),
.com (C.-N. Li),
The advantages of TWSVM brought much efforts to its
improvements in many machine learning problems. Such as,
Kumar [14] extended TWSVM to the least square version, leading
to an extremely fast and efficient performance. In the light of
ν-SVM, Peng [15] proposed ν-TWSVM by introducing parameters
ν to control margin error as well as to reduce the number of
support vectors. Shao [13] proposed a twin bounded SVM (TBSVM)
by considering regularization term to minimize SRM principle of
TWSVM. Inspired by linear discriminate analysis (LDA), Chen [16]
presented a new projection twin SVM (PTSVM), which is dedicated
to generating a projection for each class by solving an associated
SVM-type QPP. Further, Shao [17] proposed a nonparallel hyper-
plane SVM (NHSVM) by clustering the training instances according
to the similarity between classes. To make full use of prior infor-
mation, Qi [19] proposed a structural twin SVM (S�TWSVM) to
acquire potential structural information between classes to build
more reasonable classifier. To deal with the positive and unlabeled
(PU) examples problem, Shao [23] proposed a novel Laplacian
unit-hyperplane classifier (LUHC) by introducing manifold term to
exploit both geometrical and discriminant properties of the
examples. Yang [24] extended TWSVM to deal with the multi-class
classification problem, and proposed a multi-class birth twin SVM
(MBTSVM). However, to best of our knowledge, there are no
extensions of TWSVM to multi-label problem. In fact, in many
practical problems, such as image annotation [25], text categor-
ization [26], and functional genomics [27], each instance could
possibly have multiple labels simultaneously and the labels are no
longer mutually exclusive. Such classification tasks pose chal-
lenges to the above nonparallel hyperplane classifiers, which
assume that each instance is only associated with a single label
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from a set of disjoint labels. The above problem could be can be
transfer to the paradigm of multi-label learning (MLL) naturally
[27,28]. In multi-label learning, each instance could be related to a
set of labels instead of a single label, and the learning task is to
determine a decision function which can predict the proper label
set for an unseen instance.

The issue of learning from multi-label data has attracted sig-
nificant attention in recent years. So far, series of approaches have
been developed to tackle the MLL problems [29,28,30,31], most of
which can be summarized into the following three groups: algo-
rithm adaptation, problem transformation and ensemble. (1) Algo-
rithm adaptation strategy extends the traditional single-label clas-
sifiers to perform multi-label classification directly. There are many
well-known approaches, including the multi-label SVM-type meth-
ods (e.g., RankSVM [27], RankSVMz [32] and RankCVM [33]), the
multi-label neural networks (e.g., BPMLL [26] and MLRBF [34]), the
multi-label lazy algorithms (e.g., MLkNN [35] and MLIBLR [36]), and
so on. (2) Problem transformation strategy first converts the MLL
problem into a set of single-label sub-problems, then constructs a
sub-classifier for each sub-problem by an existing single-label
learning algorithm, and finally transforms the output back into a
multi-label form. The representative approaches include the binary
relevance (BR) method (one-against-all) [29], calibrated label rank-
ing (CLR) method (one-against-one) [37], and label power-set (LP)
method [28,25]. (3) Ensemble strategy is one of the most effective
ways to solve the MLL problems, which combines the multi-label or
single-label based classifiers by state-of-the-art ensemble techni-
ques. The famous approaches include the boosting-based method
(BoosTexter and Adaboost.MH) [38], Random k-labelsets (RAkEL)
[39], Ensemble of classifier chains (ECC) [40], and so on [41–43].

In this paper, inspired by the success of TWSVM [12,13] for
single label classification, we propose a novel multi-label twin
support vector machine (MLTSVM) for multi-label classification,
which can capture the multi-label information embedded in
instances via multiple nonparallel hyperplanes. To sum up, our
MLTSVM owns the following compelling properties:

� As far as we know, MLTSVM is the first nonparallel hyperplane
SVM classifier applied in multi-label learning problems, which
is a useful extension of nonparallel SVM.

� In training procedure, the one-against-all strategy is introduced
to construct multiple nonparallel hyperplanes, with the purpose
of exploiting the multi-label information via solving a series of
QPPs. Each resulting hyperplane is closer to its corresponding
class but far away from the others.

� In predicting procedure, the decision function is designed
according to the distances from an instance to different hyper-
planes, and thus the label set for a new instance can be easily
assigned. By doing this, not only the ambiguous situations in
testing procedure can be overcome, but also the mis-
classification probability can be reduced.

� To speed up the training procedure, an efficient successive
overrelaxation (SOR) algorithm is further introduced to solve
the QPPs in our MLTSVM.

� Last but not the least, extensive experimental results on both
synthetic and real-world multi-label datasets demonstrate that
under five different evaluation metrics, our approach is a
competitive candidate for multi-label learning tasks compared
with other six existing state-of-the-art multi-label methods.

The remaining parts of the paper are organized as follows.
Section 2 briefly dwells on the classical SVM, TWSVM, and
RankSVM. Section 3 proposes our MLTSVM, at the same time, the
SOR method is designed to solve the optimization problems in
MLTSVM. Experimental results on both synthetic and real-world
datasets are shown in Sections 4 and 5 gives concluding remarks.
In this paper, upper (lower) bold face letters are used for
matrices (column vectors). All vectors will be column vectors
unless transformed to row vectors by a prime superscript ð�Þ0. A
vector of zeros of arbitrary dimension is represented by 0. In
addition, we denote e as a vector of ones and I as an identity
matrix of arbitrary dimensions.
2. Background

2.1. Support vector machine

Consider a binary classification problem in the n-dimensional
space Rn. We denote the set of training data as T ¼ fðxi; yiÞj1r i
rmg, where xiARn represents an input instance with the corre-
sponding label yiAf1; �1g. Standard linear SVM [1] aims to con-
struct a pair of parallel hyperplanes that separate the two classes
well

f 1ðxÞ : w0xþb¼ þ1 and f 2ðxÞ : w0xþb¼ �1; ð1Þ

where w and b are the normal vector and the bias term of
hyperplanes respectively. To measure its empirical risk, the L1-
norm loss function

Rempðf Þ ¼ 1
m

Xm
i ¼ 1

jyif ðxiÞ�1j ð2Þ

is used, where j � j denotes absolute value operation. By introdu-
cing the RKHS regularization term 1

2JwJ2, the primal problem of
SVM can be expressed as

min
w;b;ξi

1
2
JwJ2þc

Xm
i ¼ 1

ξi

s:t: yiðw0xiþbÞZ1�ξi;

ξiZ0; i¼ 1;2;…;m; ð3Þ

where J � J stands for the L2-norm, ξi is the slack variable to
indicate the misclassification error, and c40 is the penalty para-
meter. An intuitive geometric interpretation for SVM is shown in
Fig. 1(a). Note that the minimization of the regularization term 1

2
JwJ2 is equivalent to the maximization of the margin between
two parallel hyperplanes (1).

In practice, rather than solving (3) directly, we solve its dual
problem to get the appropriate hard or soft margin classifier. Using
the Lagrangian technique, the dual version of (3) is derived as

max
α

�1
2

Xm
i;j ¼ 1

αiyixixjyjαjþ
Xm
i ¼ 1

αi

s:t:
Xm
i ¼ 1

αiyi ¼ 0;

αiZ0; i¼ 1;2;…;m: ð4Þ

As we can see, the QPP of (4) has m variables, and therefore, if we
use standard QP solvers, its complexity is Oðm3Þ [3]. When we
obtain the optimal solution to (4), the solution of the primal
problem (3) can be determined by

w¼
Xm
i ¼ 1

αiyixi and b¼ 1
jNsv j

X
iANsv

ðw0xi�yiÞ; ð5Þ

where Nsv is the set of support vectors. Once the solution (w, b) is
obtained, a new data instance x is classified as “þ1” or “�1”
according to whether the decision function, f ðxÞ ¼ signðw0xþbÞ,
yields one or zero respectively.



Fig. 1. An intuitive geometric interpretation: (a) SVM and (b) TWSVM.

1 Instead of outputting multi-label directly, most of multi-label learning sys-
tems usually return a real-valued function f yðxÞ to characterize the confidence of y
being the proper label of instance x. For a successful multi-label learning system, it
will tend to output larger values for relevant labels than irrelevant labels, i.e.,
f y0 AyðxÞ4 f y″ =2yðxÞ.
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2.2. Twin support vector machine

TWSVM [12] is originally proposed for binary single-label
classification problem. It relaxes the requirement that the hyper-
planes should be parallel in classical SVM [1], and aims to seek a
pair of nonparallel proximal hyperplanes

f 1ðxÞ : w0
1xþb1 ¼ 0 and f 2ðxÞ : w0

2xþb2 ¼ 0; ð6Þ
such that each is closer to its own class and is as far as possible
from the other, wherew1;w2 and b1; b2 are the normal vectors and
bias terms of the above two hyperplanes, respectively.

Without loss of generality, we assume the matrix X1ARm1�n as
the labeled data belonging to “þ1” class, and X2ARm2�n as the
labeled data belonging to “�1” class, where m1þm2 ¼m. To
obtain the above two proximal hyperplanes (6), the optimization
problems for TWSVM can be formulated as

min
w1 ;b1 ;ξ

1
2
JX1w1þe1b1 J2þc1e02ξ

s:t: �ðX2w1þe2b1ÞþξZe2; ξZ0; ð7Þ
and

min
w2 ;b2 ;η

1
2
JX2w2þe2b2 J2þc2e01η

s:t: ðX1w2þe1b2ÞþηZe1; ηZ0; ð8Þ
where c1; c240 are the penalty parameters, and ξ;η are the slack
vectors. An intuitive geometric interpretation for the TWSVM is
shown in Fig. 1(b). We now give a detail explanation. The first term
in the objective function of (7) is to make “þ1” labeled instances
proximate to the hyperplane w0

1xþb1 ¼ 0, while the second term
and constraints force “�1” labeled instances bounded in the
hyperplane w0

1xþb1 ¼ �1. We have the similar explanations for
problem (8). To get the solutions of problems (7) and (8), we
derive their dual problems as

max
α

e02α�1
2
α0GðH0HÞ�1G0α

s:t: 0rαrc1e2; ð9Þ
and

max
β

e01β�
1
2
β0HðG0GÞ�1H0β

s:t: 0rβrc1e1; ð10Þ
where H ¼ ½Ae1�, G¼ ½Be2� and J ¼ ½Xe�. By observing (9) and (10),
we see that TWSVM solves a pair of smaller sized QPPs rather than
a large one in the standard SVM. In fact, as mentioned in [12,13],
the complexity of solving problems (9) and (10) approximates to
Oðm3

4 Þ. Once the solutions α and β of problems (9) and (10) are
obtained, the nonparallel proximal hyperplanes (6) can be
constructed by

w1

b1

" #
¼ �ðH0HÞ�1G0α and

w2

b2

" #
¼ �ðG0GÞ�1H0β ð11Þ

A new unseen instance x is assigned to label “þ1” or “�1”,
depending on which of the proximal hyperplanes (6) it lies
closer to.
2.3. Multi-label SVM (Rank-SVM)

Consider a K possible multi-label classification problem [28] in
the n-dimensional space Rn. Let X �Rn be an input domain of
instances and Y represent a finite domain of K class labels. The
task of multi-label learning is to construct the decision function
hð�Þ : X-2Y , which maps from a training set

T ¼ fðxi; yiÞj1r irmg; ð12Þ

to the power set of Y, where xiAX denotes an input instance with
the associated label set yiDY. For convenience, we write
yi ¼ ½yi1;…; yik;…; yiK �0, where

yik ¼
þ1 if xi belongs to kth class
�1 otherwise

�
; 1rkrK: ð13Þ

For an unseen instance xAX , the classifier will predict hðxÞDY as
its associated label set.1 The decision function h is always required
to generalize well on unseen instances in the sense of optimizing
some expected risk functional with respect to a specific empirical
loss function [28,33].

To extend traditional SVM to the multi-label learning case,
Elisseeff [27] originally proposed a multi-label SVM (RankSVM).
For a K possible multi-label problem, it attempts to find K hyper-
planes

f kðxÞ : w0
kxþbk ¼ 0; k¼ 1;…;K ; ð14Þ

one for each label, such that any relevant label should be ranked
higher than any irrelevant one, where wk and bk are the normal
vector and the bias term of the kth label hyperplane, respectively.
For example, an instance xi, which belongs to the pth label rather
than the q-th label, should satisfy f pðxiÞ4 f qðxiÞ. To characterize
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this, the approximate ranking loss function

Rempðf Þ ¼ 1
m

Xm
i ¼ 1

1
jyi j jyi j

X
ðp;qÞA ðyi�yi Þ

j f pðxiÞ� f qðxiÞ�1j
0
@

1
A; ð15Þ

is introduced, where yi is the relevant label set of the instance xi,
and yi (the complement of yi) is referred to its irrelevant label set,
while jyi j and jyi j denote their cardinalities. Then, the primal
problem of RankSVM can be depicted as

min
w;b;ξipq

1
2

XK
k ¼ 1

Jwk J2þc
Xm
i ¼ 1

1
li

X
ðp;qÞA ðyi�yi Þ

ξipq

0
@

1
A

s:t: ðwp�wqÞ0xiþðbp�bqÞZ1�ξipq;

ξipqZ0; i¼ 1;2;…;m; ð16Þ

where c40 is the penalty parameter, li ¼ jyi j jyi j , and ξipq is the
slack variable to indicate ranking error. The first term in the
objective function of (16) is to minimize the sum of norms of
hyperplanes (14), which controls the model complexity to avoid
over-fitting. The second term and constraints make the value of
relevant label hyperplane f pðxiÞ on instance xi be at least 1 larger
than the value of irrelevant label hyperplane f qðxiÞ.

By introducing the Lagrangian multipliers α, the dual QPP of
(16) can be represented as

max
α

�1
2

XK
k ¼ 1

Xm
i;j ¼ 1

βkiβkjðx0ixjÞþ
Xm
i ¼ 1

X
ðp;qÞA ðyi�yi Þ

αipq

s:t:
Xm
i ¼ 1

βki ¼ 0; 0rαipqr
c
li
; k¼ 1;…;K ; ð17Þ

where

βki ¼
X

ðp;qÞA ðyi�yi Þ
hk
ipqαipq

� �
and hkipq ¼

þ1 if p¼ k

�1 if q¼ k

0 otherwise:

8><
>: ð18Þ

For the ith instance, we define αi ¼ aipq j ðp; qÞAðyi � yi Þ
� �

ARli ,

hki ¼ hk
ipq j ðp; qÞAðyi � yi Þ

h i
ARli , Hi ¼ ½h1i;…;hKi�0ARK�li , and sim-

plify (18) as βki ¼ h0
kiαi. Then, the dual problem (17) can be refor-

mulated as

max
α

�1
2

Xm
i;j ¼ 1

α0
iðH 0

iHjÞαjðx0ixjÞþ
Xm
i ¼ 1

e0αi

s:t:
Xm
i ¼ 1

Hiαi ¼ 0; 0rαir
c
li
e: ð19Þ

As pointed in [33], the complexity of solving the problem (19) is
OðKl2t Þ, where lt ¼

Pm
i li is the number of variables α. Once the
Fig. 2. An intuitive geometric interpretation for MLTSVM: (a) no
solutions of (16) are obtained via solving its dual problem (19), the
multi-label prediction of RankSVM can be fulfilled by

f ðxÞ ¼ fkj f kðxÞZtðxÞ; k¼ 1;…;Kg; ð20Þ
where tðxÞ is a proper threshold. More details can be seen in
[27,33].
3. Multi-label twin support vector machine

In TWSVM [12,13], it assumes that each instance is associated
with a single-label from a set of disjoint labels, which makes it
incapable of dealing with the case that each instance is associated
with multi-labels. In this section, we extend TWSVM to multi-label
problem, and give the derivation of our multi-label twin support
vector machine (MLTSVM) for both linear and nonlinear cases.

3.1. Linear MLTSVM

For K possible multi-label classification problem with the
training set (12), the basic idea of our linear MLTSVM is to seek K
proximal hyperplanes

f kðxÞ : w0
kxþbk ¼ 0; k¼ 1;…;K ; ð21Þ

such that the kth hyperplane is closer to the instances with the
label k, and is as far as possible from the others, where wk and bk
are the normal vector and the bias term, respectively, of the kth
proximal hyperplane.

To obtain the kth proximal hyperplane, for convenience, we use
Ik and I k to denote two complementary index sets, and if the
instance xi is associated with the kth label, then iAI k, otherwise
iAIk . Additionally, we have I ¼ I k⋃Ik , where k¼ 1;2;…;K .
Similar to TWSVM [12], the empirical risk is implemented by the
following loss function:

Rempðf kÞ ¼
X
iAI k

J f kðxiÞJ2þck
X
jAIk

maxð1þ f kðxjÞ;0Þ; ð22Þ

where ck40 is the empirical risk penalty parameter that deter-
mines the trade-off between the loss terms in (22).

By introducing the RKHS regularization term 1
2ðJwk J2þb2k Þ, the

primal problem of MLTSVM for the kth hyperplane can be
expressed as

min
wk ;bk ;ξj

1
2

X
iAI k

Jw0
kxiþbk J2þck

X
jAIk

ξjþ
1
2
λkðJwk J2þb2k Þ

s:t: � w0
kxjþbk

� �
Z1�ξj; ξjZ0; jAIk ; ð23Þ
nparallel proximal hyperplanes and (b) decision boundaries.
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where λk40 is the regularization parameter and ξjAIk
are the

slack variables to indicate mislabeled errors.
Before optimizing the problem (23), we give its geometric

interpretation. The first term in the objective function minimizes
the squared sum of f kðxiÞ for xiAI k, which makes the kth labeled
instances xiAIk

be as close as possible to the kth proximal hyper-
plane f kðxÞ. Optimizing the second term together with the con-
straints requires the instances xjAIk

be at a distance larger than
one from the hyperplane f kðxÞ. Otherwise, slack variables ξjAIk

are
introduced to measure the errors. The last term in the objective
function of (23) is the norm of the RKHS term, which controls the
model complexity of MLTSVM to avoid over-fitting.

It is worthy noting that, in the training procedure of our
MLTSVM, the one-against-all strategy is introduced to construct
multiple nonparallel hyperplanes, with the purpose of exploiting
the multi-label information via solving a series of QPPs. Fig. 2
(a) gives a intuitive description of the above optimization techni-
que on the two-dimensional space. As we can see, each hyper-
plane is generated to proximate to its corresponding instances
while is far away from the other instances to some extent. Fur-
thermore, by comparing the primal problems of TWSVM and
MLTSVM, we can see that there is a major difference between
them. In fact, on one hand, each instance appears in objective
function of TWSVM only once, which implies that each instance is
just closer to one hyperplane. On the other hand, the instance may
appear in the objective functions of MLTSVM multiple times,
which means that the instance in MLTSVM may lie near to mul-
tiple associated hyperplanes.

We now turn to the solution to problem (23). For this purpose,
we derive its dual problem. By introducing the non-negative
Lagrangian multipliers αjAIk

and βjAIk
, the Lagrangian problem

of (23) is given by

Lðwk; bk; ξj;αj;βjÞ ¼
1
2

X
iAIk

Jw0
kxiþbk J2þck

X
jAIk

ξjþ
1
2
λkðJwk J2

þb2k Þþ
X
jAIk

αjðw0
kxjþbkþ1�ξjÞ�

X
jAIk

βjξj: ð24Þ

Setting the derivatives of the Lagrangian function (24) with
respect to wk, bk, ξj, αj and βj to zero yields the following Karush–
Kuhn–Tucker (KKT) [3] necessary and sufficient optimality condi-
tions

∇wk L¼
X
iAIk

ðw0
kxiþbkÞxiþλkwkþ

X
jAIk

αjxj ¼ 0; ð25Þ

∇bk L¼
X
iAIk

ðw0
kxiþbkÞþλkbkþ

X
jAIk

αj ¼ 0; ð26Þ

∇ξj L¼ ck�αj�βj ¼ 0; jAI k ; ð27Þ

� w0
kxjþbk

� �
Z1�ξj; ξjZ0; ð28Þ

X
jAIk

αjðw0
kxjþbkþ1�ξjÞ ¼ 0; αjZ0; ð29Þ

X
jAIk

βjξj ¼ 0;βjZ0: ð30Þ

Obviously, combining (25) and (26) leads to

X
iAIk

xi
1

	 

ðxi1Þ

wk

bk

 !
þλk

wk

bk

 !
þ
X
jAIk

xj
1

	 

αj ¼ 0: ð31Þ
If we define zl ¼ ðx0l;1Þ0 for each lAI , then Eq. (31) can be
rewritten as

X
iAIk

ziz0iþλkI

0
@

1
A wk

bk

 !
þ
X
jAIk

zjαj ¼ 0: ð32Þ

This gives

wk

bk

 !
¼ �

X
jAIk

zjαj

X
iAIk

ziz0iþλk

0
@

1
A

�1

: ð33Þ

Since βjZ0, we conclude from (27) that 0rαjrck. Then, repla-
cing (33) into the Lagrangian function (24) with the above KKT
conditions (25)–(30), we obtain the dual of problem (23) as

max
αj

X
jAIk

αj�
1
2

X
j1 AI

k

X
j2 AI

k

αj1αj2z
0
j1

X
iAIk

ziz0iþλkI

0
@

1
A

�1

zj2

s:t: 0rαjrck; jAI k : ð34Þ

Once the solutions αj of the dual problem (34) are obtained, the
kth proximal hyperplane (21) can be constructed according to (33),
where k¼ 1;…;K .

In the following, we describe the prediction strategy for a new
unseen instance xARn. As mentioned above, our MLTSVM is a
proximal classifier, and if the new instance x is closer enough to
some proximal hyperplanes, it will be assigned to the corre-
sponding labels. That is to say, if the distance from x to the kth
proximal hyperplane (21)

dkðxÞ ¼
jw0

kixþbk j
Jwk J

; k¼ 1;…;K; ð35Þ

is small enough, i.e., dkðxÞrΔk with a positive threshold Δk, then
we could assign x to the k-th label.

Next, we give a proper way to choose Δk. Notice that, for the
primal QPP (23) of MLTSVM, it demands the instances xjAIk

to
have at least one distance from the k-th hyperplane. That is to say,
when dkðxÞ41 (i.e., dkðxÞ is bigger than the one distance thresh-
old), then x is more likely irrelevant to the k-th label. On the other
hand, when dkðxÞr1, it is more likely relevant to the k-th label. In
order to keep the consistency, we introduce the normalized
measurement and set Δk ¼ 1

Jwk J
instead of 1 as the threshold for

the kth label class. For all the classes, a simple choice is that we set
the new threshold Δsel ¼mink ¼ 1;…;K ðΔkÞ ¼mink ¼ 1;…;K ð 1

Jwk J
Þ. Then,

we have the following prediction procedure:

1. Compute the distances of instance x to each proximal hyper-
plane according to (35), and set the threshold Δsel ¼mink ¼ 1;…;

Kð 1
Jwk J

Þ.
2. If dkðxÞrΔsel, we associate instance x with the kth label.
3. If there is no dkðxÞ meets the condition in step 2, then we assign

x as label ¼ argmink ¼ 1;…;K ðdkðxÞÞ.

To get a clear picture of the advantages of the above procedure,
we draw the decision boundaries obtained by using our MLTSVM
on the aforementioned two-dimensional example in Fig. 2(b). It
can be seen from Fig. 2(b) that, by introducing the threshold Δsel,
the misclassification possibility in label overlapping place is
reduced and the intrinsic distribution of the data could be cap-
tured well by MLTSVM.

3.2. Nonlinear MLTSVM

For the nonlinear case, we introduce the kernel trick to realize
the learning process by mapping the linearly nonseparable
instances in the input space into a kernel space, which will make
them more likely linearly separable. For this purpose, we consider
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the following K kernel-generated proximal surfaces instead of
linear hyperplanes:

f kðxÞ : w0
kKðX; xÞþbk ¼ 0; k¼ 1;…;K ; ð36Þ

where X denotes all the training instances,wk and bk represent the
normal vector and the bias term, respectively, in the kernel space,
and Kð�; �Þ is a proper chosen kernel.2

Similar to the linear case, the kth kernel-based proximal surface
is determined by the following primal problem:

min
wk ;bk ;ξj

1
2

X
iAIk

Jw0
kKðX; xiÞþbk J2þck

X
jAIk

ξjþ
1
2
λkðJwk J2þb2k Þ

s:t: � w0
kKðX; xjÞþbk

� �
Z1�ξj; ξjZ0; jAI k ; ð37Þ

where ck40 is the empirical risk penalty parameter, λk40 is the
regularization parameter, and ξjAIk

are the slack variables.
Let us now derive the dual problem of (37). Its Lagrangian

function is given by

Lðwk; bk; ξj;αj;βjÞ ¼
1
2

X
iAIk

Jw0
kKðX; xiÞþbk J2þck

X
jAI k

ξjþ
1
2
λkðJwk J2þb2k Þþ

X
jAIk

αjðw0
kKðX; xjÞþbkþ1�ξjÞ�

X
jAIk

βjξj;

ð38Þ
where αjAIk

and βjAI k
are the non-negative Lagrangian multi-

pliers. The KKT conditions are given by

∇wk L¼
X
iAI k

ðw0
kKðX; xiÞþbkÞKðX; xiÞþλkwkþ

X
jAIk

αjKðX; xjÞ ¼ 0;

ð39Þ

∇bk L¼
X
iAIk

ðw0
kKðX; xiÞþbkÞþλkbkþ

X
jAIk

αj ¼ 0; ð40Þ

∇ξj L¼ ck�αj�βj ¼ 0; jAI k ; ð41Þ

� w0
kKðX; xjÞþbk

� �
Z1�ξj; ξjZ0; ð42Þ

X
jAIk

αjðw0
kKðX; xjÞþbkþ1�ξjÞ ¼ 0; αjZ0; ð43Þ

X
jAIk

βjξj ¼ 0; βjZ0: ð44Þ

Obviously, combining (39) and (40) leads to

X
iAIk

KðX; xiÞ
1

	 

ðKðX; xiÞ1Þ

wk

bk

 !
þλk

wk

bk

 !
þ
X
jAIk

KðX; xjÞ
1

	 

αj ¼ 0:

ð45Þ
If we define z l ¼ ðKðX; xlÞ0;1Þ0 for each instance lAI , then

Eq. (45) can be rewritten as

X
iAIk

z iz
0
iþλkI

0
@

1
A wk

bk

 !
þ
X
jAI k

z jαj ¼ 0: ð46Þ

This gives

wk

bk

 !
¼ �

X
jAIk

z jαj

X
iAIk

z iz
0
iþλkI

0
@

1
A

�1

: ð47Þ

Since βjZ0, from (41) we conclude 0rαjrck. Then, putting (47)
into the Lagrangian function (38) with the above KKT conditions
2 Such as the RBF kernel Kðxi ; xjÞ ¼ e�γ Jxi �xj J 2
with parameter γ40. Note that

the surfaces (36) will be degraded into the hyperplanes (21) when the linear kernel
is selected.
(39)–(44), we obtain the dual of problem (37) as

max
αj

X
jAIk

αj�
1
2

X
j1 AIk

X
j2 AI k

αj1αj2z
0
j1

X
iAI k

z iz
0
iþλkI

0
@

1
A

�1

z j2

s:t: 0rαjrck; jAI k : ð48Þ
After optimizing the above dual QPP (48), we obtain the normal

vector and the bias term of the kth proximal surface (36) according
to (47). For an unseen instance xARn, we can construct a similar
prediction strategy as the linear case.

3.3. Implementation

Now, we discuss the implementation of our proposed method.
In our MLTSVM, the most computational cost occurs when solving
the dual QPPs (34) and (48). For convenience, we define the set
XIk ¼ fxiAIk

g as the instances associated with the kth label, and
XIk

¼ fxjAIk
g as the rest instances. It is easy to see that these

problems can be rewritten in the following unified matrix form:

max
α

e0α�1
2
α0Qα

s:t: 0rαrcke; ð49Þ
where α¼ ½α1;…;αl�ARl, l is the scale of I k , and Q is defined by

Q ¼ G0
kðH0

kHkþλkIÞ�1Gk; ð50Þ

Hk ¼ ½XIke�; Gk ¼ ½XIk
e� ð51Þ

for linear case, or

Q ¼ G
0
kðH

0
kH kþλkIÞ�1Gk; ð52Þ

H k ¼ ½KðX;XI k Þe�; Gk ¼ ½KðX;XIk
Þe� ð53Þ

for nonlinear case. It is time-consuming to solve problem (49) by
some standard QP packages. Luckily, for such special simplex
constraints, this QP problem can be solved effectively by an opti-
mization technique called successive overrelaxation (SOR)
[13,17,44]. Mangasarian [44] pointed out that the SOR can linearly
converge to an optimum, and process large-scale datasets without
needing to reside in memory.

Algorithm 1. The successive overrelaxation algorithm for
MLTSVM.
ut:
Inp

The penalty parameter ck, the relaxation factor ωAð0;2Þ,
and the matrix Q is defined by (50) or (52).

tput:
Ou

The optimal solution α for the problem (49).

Initialize iterator i¼0 and start with any α0ARl.

Split Q ¼ LþDþL0, where L is the strictly lower triangular
matrix and D is the diagonal matrix.
while (Jαiþ1�αi Jo10�6) do

Compute αiþ1 ¼αiþωΔα , where Δα is given by�1 i 0 iþ1 i
4:

Δα ¼ �D ðQα �eþL ðα �α ÞÞ:
Project αiþ1 to the feasible range ½0; ck�.

end while
6:

The whole procedure is summarized in Algorithm 3.3. In each
iteration, having αi, compute αiþ1 as follows:

αiþ1 ¼αiþωΔα;

Δα ¼ �D�1ðQαi�eþL0ðαiþ1�αiÞÞ; ð54Þ
where ωAð0;2Þ is the relaxation factor, the nonzero elements of L



Table 1
Statistics for the synthetic multi-label datasets used in our experiments.

Dataset Instances Features Labels Cardinality Density

Relevant Irrelevant Redundant

Hyperspheres (HS1) 400 15 5 0 5 1.268 0.254
Hyperspheres (HS2) 600 35 10 5 10 1.408 0.141
Hyperspheres (HS3) 1000 50 20 15 20 1.433 0.072
Hyperspheres (HS4) 2000 100 30 25 40 1.805 0.045
Hypercubes (HC1) 400 15 5 0 5 1.225 0.245
Hypercubes (HC2) 600 35 10 5 10 1.133 0.113
Hypercubes (HC3) 1000 50 20 15 20 1.109 0.055
Hypercubes (HC4) 2000 100 30 25 40 1.344 0.034

W.-J. Chen et al. / Pattern Recognition 52 (2016) 61–74 67
constitute the strictly lower triangular part of the symmetric
matrix Q , and the nonzero elements of D constitute the diagonal of
Q . The SOR is an iterative procedure that employs the Gauss–
Seidel (GS) iterations with the relaxation factor3 ω to accelerate
the solving of QPP (49). In practice [44,45], αiþ1

j is computed from

ðαiþ1
1 ;…;αiþ1

j�1;α
i
j;…;αi

lÞ, and the lower triangular matrix L in (54)

can be seen as a substitution operator, i.e., using ðαiþ1
1 ;…;αiþ1

j�1Þ to
replace the components ðαi

1;…;αi
j�1Þ in the latest αi. Then, the

iterative formula in (54) can be rewritten as

αiþ1
j ¼ αi

j�ωD�1
jj

Xj�1

k ¼ 1

Qjkαiþ1
k þ

Xl
k ¼ j

Q jkαi
k�1

0
@

1
A: ð55Þ

From (55), we can see that there is only one variable αiþ1
j needs

to be updated in each iteration, which requires ðlþ2Þ products.4
This implies that the complexity of each updating iteration is O lð Þ.
Thus, the complexity of solving QPP (49) is reduced to ♯Iter �O lð Þ,
where ♯Iter is the number of SOR iterations.
4. Numerical experiments

4.1. Experimental setup

To evaluate the performance of our MLTSVM,5 in this section,
we investigate its performance on both synthetic and real-world
datasets. In our implementation, we focus on the comparison
between MLTSVM and six start-of-the-art multi-label classification
methods, including BoosTexter [38], CLR [37], MLkNN [35], BPMLL
[26], RAkEL [39] and RankSVM [27]. For a test set
S ¼ fðxi; yiÞj1r irpg, similar to [29,30,35,28,32,33], we choose the
following five popular and indicative metrics to perform compar-
ison, including the Hloss (hamming loss), Avepre (average preci-
sion), Cov (coverage), Rloss (ranking loss), and Oerr (one-error).
Here, we use “↓” to denote the metric that the larger values, the
better performance, while “↑” means the smaller, the better.

1. Hamming loss: Evaluates how many times an instance-label pair
is misclassified between the predicted label set hðxÞ and the
3 In this paper, as suggested in [44,45], we set the factor ω¼ 0:2 for our
experiments.

4 In each iteration, SOR requires ðlþ2Þ products: the term
Pj�1

k ¼ 1 Qjkαiþ1
k needs

ðj�1Þ products, the term
Pl

k ¼ j Q jkαi
k needs ðl� jþ1Þ product, and the multiplied

ωand D�1
jj need 2 products. Additionally, we can cache the inversion of diagonal

matrix D (i.e., D�1
jj ) before iteration.

5 Code is available at http://www.optimal-group.org/Resource/MLTSVM.html
ground-truth label set y

Hloss↓¼ 1
p

Xp
i ¼ 1

1
K
jhðxiÞΔyi j A ½0;1�; ð56Þ

where Δ stands for the symmetric difference of two sets.
2. Average precision: Evaluates the average fraction of labels

ranked above a particular label yAyi:

Avepre ↑¼ 1
p

Xp
i ¼ 1

1
jyi j

X
yAyi

j fy0Ayi j rankf ðxi; y0Þrrankf ðxi; yÞgj
rankf ðxi; yÞ

 !
A ½0;1�:

ð57Þ

3. Coverage: Evaluates how far we need, on average, to go down
the ranked list of labels in order to cover all the possible labels
of the instance:

Cov↓¼ 1
p

Xp
i ¼ 1

max
yAyi

rankf ðxi; yÞ�1
	 


A ½0;K�1�: ð58Þ

4. Ranking loss: Evaluates the average fraction of label pairs that
are reversely ordered. Let y be the complementary set of y in Y

Rloss ↓¼ 1
p

Xp
i ¼ 1

1
jyi j jyi j

fðy0; y″Þj f y0 Ayi ðxiÞr f y″ Ayi ðxiÞg
��� ���	 


A ½0;1�:

ð59Þ

5. One-error: Evaluates how many times the top-ranked label is
not in the set of proper labels of the instance

Oerr↓¼ 1
p

Xp
i ¼ 1

HðxiÞA ½0;1�;HðxiÞ ¼
0 if arg maxf yðxiÞAyi
1 otherwise

�
:

ð60Þ

All the experiments are implemented on a personal computer
(PC) with an Intel Core-i5 processor (2.3 GHz) and 4 GB random-
access memory (RAM). With regard to parameter selection, we
employ the 10-fold cross-validation technique.6 For the sake of
brevity, we set all penalties ck ¼ c and λk ¼ λ for our MLTSVM. For
BoosTexter, the number of boosting rounds is set to be 500. For
MLkNN, the parameter range f6;8;…;20g is considered for the
number of neighbors in kNN during the model selection, and the
Laplacian estimator s is fixed to be 1. For BPMLL, the number of
hidden neurons is f5%;10%;…;25%g of the number of input
neurons, the training epochs is set to be 100 and the regularization
constant is fixed to be 0.1. For CLR, RAkEL, RankSVM and MLTSVM,
6 In detail [3], each dataset is partitioned into 10 subsets with similar sizes and
distributions. Then, the union of nine subsets is used as the training set while the
remaining subset is used as the test set. The experiment is repeated 10 times such
that every subset is used once as a test set.

http://www.optimal-group.org/Resource/MLTSVM.html


Fig. 3. Learning results of the multi-label learning approaches on benchmark synthetic datasets, in terms of Hloss↓, Avepre↑, Cov↓, Rloss↓ and Oerr↓ metric.
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the penalty and the kernel parameter are selected from the set
f2�6;2�5;…;26g and f2�4;2�3;…;24g, respectively. Once the
optimal parameters are selected, they are employed to learn the
final decision function.
4.2. Results on benchmark synthetic datasets

To compare our MLTSVM with the aforementioned five multi-
label classifiers, we utilize eight benchmark synthetic datasets



Table 3
Statistics for the real-world multi-label datasets used in our experiments.

Dataset Domain Instances Features Labels Cardinality Density

Emotionsa music 593 72 6 1.869 0.311
Birdsa audio 645 260 19 1.014 0.053
Flagsa images 194 19 7 3.392 0.485
Yeasta biology 2417 103 14 4.237 0.303
Plantb biology 948 440 12 1.082 0.090

a Datasets are available at http://mulan.sourceforge.net/datasets.html.
b Datasets are available at http://computer.njnu.edu.cn/Lab/LABIC/LABIC_Soft

ware.html.

Table 2
Relative performance between MLTSVM and other five compared classifiers on
benchmark synthetic datasets, according to pairwise t-test 5% significance level.

Dataset W–T–L (Win–Tie–Loss)

BoosTexter CLR MLkNN BPMLL RAkEL RankSVM

HS1 3–2–0 3–2–0 2–3–0 3–2–0 4–1–0 4–1-0
HS2 4–1–0 2–2–1 2–2–1 4–1–0 3–2–0 2–3–0
HS3 4–1–0 1–4–0 2–3–0 3–2–0 2–3–0 3–1–1
HS4 3–2–0 2–3–0 3–1–1 3–2–0 2–3–0 4–1–0
HC1 2–3–0 1–4–0 2–1–2 2–3–0 2–2–1 2–3–0
HC2 3–2–0 3–2–0 2–3–0 2–2–1 4–1–0 3–2–0
HC3 3–2–0 3–2–0 2–3–0 3–2–0 3–2–0 3–1–1
HC4 4–1–0 2–3–0 1–4–0 3–2–0 2–3–0 4–1–0

Average 3.25–1.75–0 2.125–
2.75–
0.125

2–2.5–0.5 2.875-
2–0.125

2.75–
2.125–
0.125

3.125–
0.625–0.5
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generated by Mldatagen.7 The synthetics are created according to
the predefined parameters: the strategies (hyperspheres or
hypercubes), number of features (relevant, irrelevant, and redun-
dant), number of instances, and number of labels. After choosing
the strategy to be applied, firstly, Mldatagen randomly generates a
geometric shape (hypersphere or hypercube) for each label, which
is populated with instances randomly generated. Afterwards, each
instance is labeled according to the shape it belongs to, which
defines the instance multi-label. Furthermore, we introduce 5%
noises to pollute the labels of each instance to make the learning
tasks be more challenge. Table 1 presents the basic statistics of the
generated datasets, where “Instances”, “Features”, and “Labels”
represent the number of instances, features, and labels that the
dataset contains, “Cardinality” denotes the average number of
labels per example: 1

m

Pm
i ¼ 1 jyi j , and “Density” indicates the nor-

malized label cardinality in the label space: 1
j Y j �m

Pm
i ¼ 1 jyi j .

Fig. 3 shows the mean of 10-fold cross-validation learning
results of each classifier on the above benchmark synthetic data-
sets (in terms of “Hloss”, “Avepre”, “Cov”, “Rloss” and “Oerr” metric),
where the best performance is highlighted by symbol “♦”. It can be
clearly seen that compared with other multi-label classifiers, our
MLTSVM exhibits very good performance on most of the synthetic
datasets. For example, for the “Hloss” metric, our MLTSVM owns
six best performance among all classifiers, while both MLkNN and
RAkEL obtain one best. For other four metrics, our MLTSVM per-
forms better than other classifiers on all of them, except for “Cov”
metric, where MLTSVM performs the best on two of datasets and
MLkNN obtains three best. This may be explained by the fact that
MLTSVM fully utilizes the underlying multi-label information by
constructing optimal multi-nonparallel hyperplanes, and thus
results in a better generalization ability.

To make a clearer view of the relative performance among
classifiers, similar to [28,35,26], we perform a pairwise t-test to
compare our MLTSVM to the other classifiers for each metric. The
significance level (SL) is set to 0.05. That is, when the t-test value
of two compared classifiers is greater than 1.7341, the performance
between them is deemed as statistically significantly different. By
comparing t-test values, a comprehensive metric “W–T–L” (Win–
Tie–Loss) is further introduced to characterize their relative per-
formance, which denotes the number of metrics that MLTSVM is
significantly superior/equal/inferior to the compared classifiers.
Table 2 displays the relative performance results for our MLTSVM
compared with other multi-label classifiers on synthetic datasets.
It can be clearly seen that MLTSVM performs rather well on most
7 Mldatagen is a benchmark synthetic dataset generator for multi-label learn-
ing, which is available at http://sites.labic.icmc.usp.br/mldatagen/
of the datasets. The average “W–T–L” summarization listed at the
bottom of Table 2 also reveals the feasibility of our approach.

4.3. Results on real-world datasets

In this subsection, we apply our MLTSVM to several real-world
datasets, and investigate its performance and computational effi-
ciency by using the aforementioned five multi-label metrics. For
comparison, we consider five commonly used real-world datasets,
whose statistics are listed in Table 3. These datasets represent a
wide range of domains (include music, image, biology, and so on),
sizes (from 194 to 2417), features (from 19 to 1449), and labels
(from 6 to 45). All reported results are estimated from 10-fold
cross validation executions and the pairwise t-test is then used to
determine their significance in 5% level.

Tables 4–8 list the mean and the deviation of 10-fold cross-
validation multi-label classification results of each classifier on the
above real-world datasets, where the best result on each dataset is
shown in bold face. From these tables, we can find that our
MLTSVM owns the best performance on at least three out of five
metrics for all the real-world datasets. Thus, it is clear that our
approach performs fairly well, which demonstrates the better
performance of MLTSVM compared to the other classifiers. In
particular, MLTSVM outperforms all the other algorithms when
Avepre metric is taken. We also record the ten-run computation
time8 (mean7std) of each classifier for the above real-world
datasets' experiments, which is shown in the right column of
Tables 4–8. The comparison results demonstrate that the learning
efficiency of our MLTSVM is comparable to the lazy classifier
MLkNN, and a lot faster than the remaining five. The possible
explanation is that MLTSVM has benefited from the effectivity of
SOR algorithm, which results in its fast learning speed.

For comparison purpose, similar as the synthetic dataset, we
further introduce the comprehensive metric “W–L–T” to measure
the relative performance between our MLTSVM and other five
multi-label classifiers, shown in Table 9. ▴/▿ indicates whether
MLTSVM is statistically superior/inferior to the compared algo-
rithm, according to pairwise t-test 5% significance level. The
results show our approach is very efficacious, since it can more
effectively capture the label information by nonparallel hyper-
planes. Overall, it slightly outperforms MLkNN and CLR, while is
better performance than BoosTexter, BPMLL, RAkEL and RankSVM.
The average “W–T–L” summarization of each compared classifier
is also listed at the bottom of Table 9, which further shows the
advantage of our MLTSVM over the others.

To validate our threshold chosen strategy in prediction process,
we further implement our MLTSVM on the above real-world
datasets with the different threshold parameter Δ. Here, we
denote Δsel as the threshold chosen by our strategy and the range
of parameter Δ is f2m � Δsel jm¼ �4; �3;…;3;4g. Fig. 4 shows the
8 We use the computation time (training and predicting CPU time) to denote
the computational efficiency for each classifier.

http://mulan.sourceforge.net/datasets.html
http://computer.njnu.edu.cn/Lab/LABIC/LABIC_Software.html
http://computer.njnu.edu.cn/Lab/LABIC/LABIC_Software.html
http://sites.labic.icmc.usp.br/mldatagen/


Table 5
Learning results of each multi-label classifier (mean 7std) on the Birds data.

Algorithms Metrics Times (s)

Hloss↓ Avepre↑ Cov↓ Rloss↓ Oerr↓

BoosTexter 0.09470.023 ▴ 0.49670.042 ▴ 3.50770.637 ▴ 0.14870.030 0.74170.073 21.26470.218
CLR 0.07170.013 ▴ 0.53370.081 3.31370.710 0.13770.034 0.73970.053 1.07670.368
MLkNN 0.05770.011 0.50370.070 ▴ 3.02470.705 ▿ 0.14170.032 0.76370.069 ▴ 1.77270.095
BPMLL 0.11470.059 ▴ 0.38770.039 ▴ 6.37171.392 ▴ 0.28870.072 ▴ 0.73170.036 6.74070.508
RAkEL 0.05370.009 0.53270.091 3.96570.905 ▴ 0.17470.041 ▴ 0.73570.085 16.84471.329
RankSVM 0.06470.023 0.49470.091 ▴ 4.17271.052 ▴ 0.12270.053 0.76770.097 ▴ 3.83670.353
MLTSVM 0.04970.018 0.54170.105 3.21870.688 0.12570.045 0.71870.074 1.44570.162

Table 6
Learning results of each multi-label classifier (mean 7std) on the Flags data.

Algorithms Metrics Times (s)

Hloss↓ Avepre↑ Cov↓ Rloss↓ Oerr↓

BoosTexter 0.27670.059 0.80370.104 ▴ 3.76470.588 0.22470.096 0.24770.150 ▴ 0.92970.104
CLR 0.27170.063 0.82770.073 3.60970.468 ▿ 0.23670.062 ▴ 0.22070.145 0.13270.094
MLkNN 0.28670.062 ▴ 0.82170.067 3.75870.506 ▴ 0.21470.060 0.22770.136 0.05970.007
BPMLL 0.29070.063 ▴ 0.78170.065 ▴ 3.82670.512 0.24870.080 ▴ 0.26470.135 ▴ 0.54970.068
RAkEL 0.25770.055 0.80970.071 3.92970.475 ▴ 0.23670.081 ▴ 0.23170.127 0.19470.082
RankSVM 0.28170.072 ▴ 0.78670.083 ▴ 3.86170.614 0.22670.078 0.29770.142 ▴ 0.34970.045
MLTSVM 0.26670.059 0.83170.081 3.72970.508 0.20670.072 0.21970.179 0.07870.012

Table 7
Learning results of each multi-label classifier (mean 7std) on the Yeast data.

Algorithms Metrics Times (s)

Hloss↓ Avepre↑ Cov↓ Rloss↓ Oerr↓

BoosTexter 0.23570.063 ▴ 0.74670.055 6.98470.437 ▴ 0.18770.028 0.27170.036 ▴ 263.70570.218
CLR 0.22470.012 ▴ 0.74370.016 ▴ 6.75770.238 ▴ 0.18070.013 0.24970.029 61.08573.824
MLkNN 0.20970.017 0.75870.017 6.26870.313 0.17970.016 0.24370.015 19.12670.751
BPMLL 0.22670.013 ▴ 0.73970.014 ▴ 6.58770.266 ▴ 0.18170.012 0.25770.025 41.33272.259
RAkEL 0.23370.013 ▴ 0.74970.021 7.71870.295 ▴ 0.22570.018 ▴ 0.28270.041 ▴ 133.707712.97
RankSVM 0.21970.027 0.73770.039 ▴ 7.12970.452 ▴ 0.16970.019 0.26670.029 108.18679.187
MLTSVM 0.20170.015 0.76470.019 6.31270.357 0.17570.009 0.23870.024 20.64071.283

Table 8
Learning results of each multi-label classifier (mean 7std) on the Plant data.

Algorithms Metrics Times (s)

Hloss↓ Avepre↑ Cov↓ Rloss↓ Oerr↓

BoosTexter 0.14770.018 ▴ 0.50270.046 2.94070.482 ▴ 0.30270.057 ▴ 0.72570.073 ▴ 87.04873.463
CLR 0.11570.015 0.49770.057 ▴ 2.75370.560 0.23470.053 0.71170.076 ▴ 53.27271.357
MLkNN 0.09670.006 0.52270.044 2.73170.422 0.25970.040 ▴ 0.68470.065 6.44970.285
BPMLL 0.10270.055 0.42870.020 ▴ 3.18970.318 ▴ 0.29370.028 ▴ 0.79770.031 ▴ 39.08271.536
RAkEL 0.12670.007 ▴ 0.45070.042 ▴ 2.74970.503 0.28670.050 ▴ 0.69170.052 63.45172.747
RankSVM 0.13170.023 ▴ 0.53170.051 2.89470.513 ▴ 0.21870.047 ▿ 0.67570.062 37.51670.492
MLTSVM 0.09370.008 0.54970.039 2.72470.475 0.24270.031 0.66770.048 6.02870.316

Table 4
Learning results of each multi-label classifier (mean 7std) on the Emotions data.

Algorithms Metrics Times (s)

Hloss↓ Avepre↑ Cov↓ Rloss↓ Oerr↓

BoosTexter 0.23870.042 ▴ 0.76870.051 1.83870.176 0.19870.048 ▴ 0.31470.056 4.35170.187
CLR 0.25770.039 ▴ 0.77270.035 1.82070.205 0.17870.030 0.32770.068 ▴ 2.19270.218
MLkNN 0.20970.028 0.76270.049 ▴ 1.80570.198 0.17370.041 0.28970.101 0.93070.069
BPMLL 0.21470.019 0.75470.034 ▴ 1.96770.210 ▴ 0.16670.047 0.30970.075 2.24870.171
RAkEL 0.22070.023 0.75970.035 ▴ 2.04270.223 ▴ 0.20670.033 ▴ 0.34170.069 ▴ 1.30570.102
RankSVM 0.22870.036 0.77370.042 1.97770.257 ▴ 0.15870.041 0.33270.078 ▴ 2.42970.230
MLTSVM 0.20670.025 0.78170.029 1.79470.317 0.16370.029 0.30470.065 0.89370.073
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learning results of MLTSVM with various threshold Δ in terms of
five multi-label metrics, where the best performance is high-
lighted by black circle. It can be seen that MLTSVM arrives at the
best performance on most of the metrics when the threshold value
is near or equal to Δsel, expect for the “Avepre” metric on the
Table 9
Relative performance between MLTSVM and other five compared classifiers on
real-world multi-label datasets, according to pairwise t-test 5% significance level.

Dataset W–T–L (Win–Tie–Loss)

BoosTexter CLR MLkNN BPMLL RAkEL RankSVM

Emotions 2–3–0 2–3–0 1–4–0 2–3–0 4–1–0 2–3–0
Birds 3–2–0 1–4–0 2–2–1 4–1–0 2–3–0 3–2–0
Flags 2–3–0 1–3–1 2–3–0 3–2–0 2–3–0 3–2–0
Yeast 3–2–0 3–2–0 0–5–0 3–2–0 4–1–0 2–3–0
Plant 4–1–0 2–3–0 1–4–0 4–1–0 3–2–0 2–2–1

Average 2.8–2.2–0 1.8–3–
0.2

1.2–3.6–0.2 3.2–1.8–0 3–2–0 2.4–2.4–0.2

Fig. 4. Learning results of the MLTSVM classifier with various threshold Δ¼ 2m � Δsel on
where Δsel denotes the threshold value chosen by our strategy.
“Emotions” dataset. It also can be seen that MLTSVM presents the
similar trend on the most datasets, but with slight differences. For
example, for the “Bird” dataset, MLTSVM owns three best metrics
when Δ is equal to Δsel. In general, although the threshold value
Δsel is not global optimal, the performance is acceptable. By further
considering the tuning of the optimal threshold Δ requires lots of
time, in practice, we recommend setting Δ¼Δsel unless there is a
special request on the performance.
4.4. Application to semantic scene recognition

Semantic scene recognition is the task of automatically
acquiring semantic information of images, and has wide applica-
tions in many real-world information systems [35,4]. However,
many scene images may have several labels simultaneously, which
is a severe challenge to many machine learning methods. Thus, in
this subsection, we will further apply our MLTSVM to this multi-
label learning task.
five real-world datasets, in terms of Hloss↓, Avepre↑, Cov↓, Rloss↓ and Oerr↓ metric,



Table 10
Characteristics of the multi-label semantic scene dataset.

Label set #Images Label set #Images

tree 543 peopleþmountain 16
people 523 grassþbuildings 3
grass 318 grassþmountain 13
buildings 264 buildingsþmountain 3
mountain 179 treeþpeopleþgrass 1
treeþpeople 53 treeþpeopleþbuildings 4
treeþgrass 88 treeþpeopleþmountain 1
treeþbuildings 64 treeþgrassþbuildings 5
treeþmountain 85 treeþgrassþmountain 8
peopleþgrass 9 treeþbuildingsþmountain 2
peopleþbuildings 62 peopleþgrassþbuildings 1

Fig. 5. The conversion procedure of pixel scene image to feature vector.

Table 11
Learning results of each multi-label classifier (mean 7std) on scene dataset.

Metrics Algorithms

BoosTexter CLR MLkNN BPMLL RAkEL RankSVM MLTSVM

Hloss↓ 0.15870.024 ▴ 0.14870.018 ▴ 0.09870.026 0.23470.057 ▴ 0.12270.026 0.13870.072 ▴ 0.09170.015
Avepre↑ 0.82770.036 0.80570.028 ▴ 0.81770.017 ▴ 0.73170.045 ▴ 0.83870.021 0.80770.037 ▴ 0.84970.021
Cov↓ 0.58370.060 ▴ 0.60870.074 ▴ 0.48270.070 0.49570.167 0.57370.052 ▴ 0.49470.074 0.47870.049
Rloss↓ 0.13370.019 ▴ 0.11570.014 ▴ 0.11970.023 ▴ 0.08870.032 0.12770.029 ▴ 0.08270.034 0.09470.021
Oerr↓ 0.27470.067 0.27170.054 0.25970.025 0.35770.066 ▴ 0.28670.042 ▴ 0.29470.036 ▴ 0.25570.028
W–L–T 3–2–0 4–1–0 2–3–0 3–2–0 3–2–0 3–2–0 –

Times (s) 175.60577.359 73.15974.174 24.36270.811 59.48773.493 146.20479.24 93.48278.290 21.51371.268
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In our experiment, we select 2245 images from the popular
semantic scene Corel dataset9 with five possible categories/classes,
namely “tree”, “people”, “grass”, “buildings” and “mountain”. They
are artificially used to label the images, and details are given in
Table 10. It can be seen that each image is associated with an
average of 1.2 class labels. Further, the number of images
belonging to more than one class comprises over 18.6% of the
dataset, and multiple combined classes (more than three) are
extremely rare.

In the following, we adopt the similar strategy used in [35,25]
to convert each pixel image into a feature vector. The main process
is illustrated in Fig. 5, for which we give the following explanation:
firstly, we convert the color space of each image from RGB to Luv,
9 Dataset is available at https://sites.google.com/site/dctresearch/Home/con
tent-based-image-retrieval
which will result in a better approximate perceptual uniformity
such that perceived color differences correspond closely to Eucli-
dean distances in this color space. Then, we divide each Luv space
image into 49 blocks using a 7�7 grid. Afterwards, the first and
second moments (mean and variance) of L, u, v band are computed
in each block, corresponding to a low-resolution image and to
computationally inexpensive texture features, respectively. Finally,
each image is transformed into a 294-dimensional feature
vector.10

The 10-fold cross-validation results (mean7std) of each clas-
sifier on semantic scene dataset are reported in Table 11. We have
highlighted the best result. We can see that MLTSVM gets the best
performance on four out of five metrics except Rloss, and
10 294-dimensional feature vector consists of 49 blocks, and each block has the
mean and the variance of L, u, v band features, i.e., 3�2 features.

https://sites.google.com/site/dctresearch/Home/content-based-image-retrieval
https://sites.google.com/site/dctresearch/Home/content-based-image-retrieval
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Fig. 6. Some image classification results. The first-line labels below each image are the groundtruth. The remaining-line labels are sequentially generated by BoosTexter, CLR,
MLkNN, BPMLL, RAkEL, RankSVM and MLTSVM, respectively.
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outperforms BoosTexter, CLR, BPMLL and RankSVM on most
metrics. It is not surprising that both BPMLL and RankSVM out-
perform all the other classifiers with respect to Rloss. The possible
explanation is that the objectives of them are to minimize the
ranking loss criterion. Fig. 6 shows some images that MLTSVM
performs better than other classifiers. As for computation time,
our MLTSVM performs comparable to MLkNN, and is much less
than the others. Furthermore, “W–L–T” summarization based on t-
test is also listed in Table 11. It can be clearly seen that our
approach obtains the better performance than the others.

In terms of generalization, the above experiments on both
synthetic and real-world multi-label datasets have indicated that
the proposed MLTSVM achieves the comparable or better classi-
fication results and faster learning speed, as compared with the
other six existing state-of-the-art multi-label methods. It is worth
pointing out that our MLTSVM could capture the underlying multi-
label information by constructing optimal multi-nonparallel
hyperplanes for each class.
5. Conclusions

The issue of learning from multi-label data has attracted sig-
nificant attention in recent years. However, such classification
tasks pose challenges to the traditional nonparallel hyperplane
classifiers, which assumes that each instance is only associated
with a single label from a set of disjoint labels. To address the
above issues, a novel nonparallel hyperplane classifier termed as
MLTSVM is proposed in this paper. MLTSVM exploits the potential
multi-label information embedded in data by constructing multi-
ple nonparallel hyperplanes, while an efficient SOR algorithm is
applied to solve the involved QPPs. Furthermore, its decision
function based on distances from instances to hyperplanes over-
comes the ambiguity in testing procedure. The feasibility of our
MLTSVM is supported by a series of experiments on synthetic
datasets as well as on real-world datasets.

In the future, we will conduct a more efficient parameters
selection strategy for our MLTSVM. Moreover, modifying MLTSVM
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to feature selection and semi-supervised learning would also be
interesting.
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