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Abstract

Boosting is a set of methods for the construction of classifier ensembles. The differential feature of these methods is that they allow to
obtain a strong classifier from the combination of weak classifiers. Therefore, it is possible to use boosting methods with very simple base
classifiers. One of the most simple classifiers are decision stumps, decision trees with only one decision node.

This work proposes a variant of the most well-known boosting method, AdaBoost. It is based on considering, as the base classifiers
for boosting, not only the last weak classifier, but a classifier formed by the last r selected weak classifiers (r is a parameter of the method).
If the weak classifiers are decision stumps, the combination of r weak classifiers is a decision tree.

The ensembles obtained with the variant are formed by the same number of decision stumps than the original AdaBoost. Hence, the
original version and the variant produce classifiers with very similar sizes and computational complexities (for training and classifica-
tion). The experimental study shows that the variant is clearly beneficial.

© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Given one or more classification methods, one of the
most natural ways of obtaining more accurate classifiers
is the use of ensembles (Kuncheva, 2004). There are meth-
ods that combine classifiers obtained with different meth-
ods. This is the case for Stacking (Wolpert, 1992).
Nevertheless, it is also possible to combine classifiers
obtained from the same method. Combining identical clas-
sifiers is useless. Hence, it is necessary to use some
approach that allows to obtain different classifiers from
the same method.

In Bagging (Breiman, 1996), each classifier is obtained
from a different data set. Each data set is a sample, with
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replacement, from the original training data. Normally,
the size of the sample is the same than the size of the origi-
nal data set. The sets are different because in a sample some
training examples will be selected several times, while other
examples will not appear in that sample.

In the Random Subspaces method (Ho, 1998), each clas-
sifier is built using all the training examples, but with a ran-
dom subset of the attributes.

There are some ensemble methods that have been
designed specifically for combining classifiers obtained with
methods from a certain kind, normally decision trees. Ran-
dom Forests (Breiman, 2001) are a variant of Bagging,
using Random Trees as base classifiers. In this type of ran-
dom trees, the selection of the attribute for a decision node
is done using only a random subset of the attributes.
Another type of random trees is presented in (Dietterich,
2000).

Other ensemble methods designed specifically for com-
bining decision trees are (Li and Liu, 2003; Rodriguez
et al., 2006; Rodriguez and Maudes, 2006). There are
methods that extend the concept of decision trees, using a
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unique structure that is equivalent to several decision trees.
Among these methods are Option Trees (Buntine, 1993;
Kohavi and Kunz, 1997) and Multitrees (Estruch et al.,
2003).

One of the most successful ensembles methods is Boost-
ing (Schapire, 1999, 2002). There are several variants, Ada-
Boost is the most well-known. These methods assign a
weight to each example. Initially, all the examples have
the same weight. In each iteration a new classifier, named
base or weak, is constructed using the base learning
method. The construction of the base classifier must take
into account the weights distribution. Then, the weight of
each example is adjusted, depending on the correctness of
the prediction of the base classifier for that example. The
final classification is obtained from a weighted vote of the
base classifiers.

In order to say that an ensemble method is a boosting
method, it must have the ability of generating a strong clas-
sifier from a weak method. It is said that a method is weak
if it can guarantee that for a two classes data set the
obtained classifier will have a training error smaller than
50% (Schapire, 1990).

One of the weakest classifiers are decision stumps, deci-
sion trees with only one decision. They are commonly used
as base classifiers for Boosting (Schapire and Singer, 1998;
Friedman et al., 2000; Reyzin and Schapire, 2006). A recent
exhaustive comparison of several classification methods
(Caruana and Niculescu-Mizil, 2006) includes results for
boosted decision stumps.

This paper presents an approach for improving the
results obtained with boosting and decision stumps. The
idea is to combine several decision stumps in a not so weak
tree.

The rest of the paper is organised as follows. The pro-
posed variant of AdaBoost is presented in Section 2. Sec-
tions 3 and 4 are dedicated to the experimental
validation. Finally, Section 5 concludes.

2. Combination of weak classifiers
2.1. AdaBoost

For the sake of self-containment, Fig. 1 shows the Ada-
Boost algorithm. Each example x; is from a domain Z and
has an associated binary label y;. In this method the binary
labels are codified as +1 y —1.

AdaBoost associates a weight for each example. D,(x;) is
the weight for x; in iteration ¢. The method generates a base
classifier /4, taking into account the weights distribution. A
real value, a, is selected. It is the weight associated to 7,
and it depends on the training error of that classifier. Then,
weights are readjusted.

2.2. Classifier example

Fig. 2 shows the classifier obtained with AdaBoost,
using decision stumps as base classifiers. This classifier is
for the Sonar data set (Blake and Merz, 1998). It has two
classes, “rock” and “mine”’, and 60 numeric attributes.

The number of decision stumps in that classifier is five.
Given that AdaBoost is an iterative method, these five deci-
sion stumps are also the five first weak classifiers con-
structed when using AdaBoost with more iterations.

The classifier is used in the following way. The example
is classified by the five trees. Each tree has a numerical vote.
The absolute value of the vote is given by the weight of the
tree. The sign of the vote depends of the class predicted by
the tree. The prediction of the ensemble is the sign of the
sum of the votes of the trees.

2.3. Proposed method
In order to improve the accuracy of a classifier obtained

with AdaBoost and a learning method, there are two direct
approaches:

Initialize Dy (7)) = 1/(m)
Fort=1,...,T:

o Get base classifier hy : X — R
e Choose oy € R

e Update:

Given (z1,y1), .-, (Tm, ym) where z; € X, y; € {—1,+1}

e Train base learner using distribution Dy

_ Dy(i) exp(—asyihe(2:))

D (i) =

Output the final classifier:

where Z; is a normalization factor (chosen so that Dy will be a distribution).

T
H(z) = sign (Z atht(x)>
=1

Z

Fig. 1. AdaBoost (Schapire, 1999, 2002).
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Fig. 2. Example of a classifier ensemble obtained with AdaBoost. The weight of each decision stump appears above the tree.

e To add more weak classifiers.
e To use more complex base classifiers.

These approaches have the following drawbacks: the
construction of the classifier is slower, the use of the classi-
fier is also slower, the classifier needs more memory.

Therefore, it would be interesting to have the possibility
of obtaining more accurate classifiers without increasing
neither the computational complexity nor the memory
requirements.

The method proposed in this work is based on combin-
ing several weak classifiers in a not so weak classifier. For
instance, if the first three classifiers from Fig. 2 are com-
bined, the result is the tree from Fig. 3. In order to deter-
mine the class associated to each leaf of the tree, it is
necessary to pass each training example through the tree.
The class associated to a leaf is the class of the majority
of the examples in the leaf.

In the proposed variant, each time a new decision
stump is constructed, a tree is obtained from that decision
stump and the decision stumps from previous iterations.
The method has a parameter, r, the level of reuse. It is
the number of classifiers from the former iterations that
are going to be used. For instance, if r = 2 and the number
of boosting iterations is five, the ensemble would be
formed by five trees. The first one would have only one
decision (and two leaves), the second would have two
decisions (and four leaves) and the rest would have three
decisions (and eight leaves).

Fig. 4 shows the proposed variant of AdaBoost. The
only difference is that instead of using directly the classifier

<=0.50\> 0.50

rock ‘ rock ‘ ’ mine

rock ‘ ’ mine rock ‘ ’ mine rock ‘

Fig. 3. A decision tree obtained from the combination of three decision
stumps.

h,, it is combined with the r previous classifiers. The result-
ing classifier is called 4.

2.4. Some implementation details

It is not necessary to store explicitly the combined trees,
because they can be obtained from the decision stumps and
the reuse level r. For each tree, it is only necessary to asso-
ciate which class is predicted in each leaf. For two classes
problems, a bit per leaf is enough. Given a reuse level r,
the number of leaves in each tree will be 2""!. For instance,
if r=2 only a byte per tree is necessary. For the tree in
Fig. 3 the byte is 00101010 (or 11010101 if the correspon-
dence between classes and digits were the opposite).

The computational cost of the classification of an exam-
ple is nearly the same for the original version and the reuse
version. In both cases, the example is classified by the same
number of decision stumps. In the reuse version it is neces-
sary to determine which leaf of the current tree is associ-
ated to the example. It is only necessary to keep in
memory the binary classifications given by the r + 1 deci-
sion stumps, thus an integer variable with r+ 1 bits is
enough. This variable will be initialized to 0. Each time a
decision stump classifies the instance, the value of the var-
iable is shifted one bit to the left (that is, it is multiplied by
2). With the shift, the most significant bit is lost (if the var-
iable has more than r + 1 bits, it is necessary to put this bit
to 0). Then, the least significant bit is set to the classifica-
tion given by the last decision stump (that is, the variable
is incremented by the binary output of the decision stump).

For instance, if »r = 2, the value of the variable with the
outputs of the previous decision stumps is 110 and the cur-
rent decision stump classifies the instance as 1, the new
value of the variable would be 101. The leaf associated to
the instance would be the number 5 (the leaves are numer-
ated from 0 to 7).

In the construction of a classifier with AdaBoost, it is
necessary to classify the training examples with the current
classifiers. The weights of each training example are read-
justed depending on the correctness of the classification
of the last classifiers. Hence, in the reuse variant of Ada-
Boost, it is necessary to classify each training instance with
every base classifier. This classification can be done with
the method described above. Each training instance will
have an associated integer of r + 1 bits with the outputs
of the last decision stumps. The value of this integer indi-
cates the leaf associated to the instance in the current tree.
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Initialize D1(i) = 1/(m)
Fort=1,...,T:

e Get base classifier hy : X — R

e Choose a; € R

e Update

Given (z1,91), .-, (Tm, Ym) where z; € X, y; € {—1,+1}

e Train base learner using distribution D,

e Get combined classifier hy from h¢, hi—1, ... Pyax(t—r,1)

Dy (i) exp(—auyihy (z:))

Dy (i) =

Output the final classifier:

where Z; is a normalization factor (chosen so that Dy, will be a distribution).

T
H(z) = sign (Z athf(:c)>
t=1

Zt

Fig. 4. AdaBoost variant with classifiers reuse.

For each tree, the class and r + 1 bits of each training
example are used to determine the label of each leaf. A fre-
quency matrix is used, its dimensions are 2" x 2. The ele-
ment (,/) of the matrix stores the sum of the weights of the
examples in the leaf i that are from the class j. This matrix
can be updated while classifying by the last decision stump
each training example. The class assigned to the leaf i is the
value of j that maximizes the value of the matrix at (i,).

3. Experimental validation

The description of the used data sets appears in Table 1.
They are from the UCI Repository (Blake and Merz, 1998).
For each data set and considered method, 10-fold cross val-
idation was done 10 times.

In AdaBoost, the base learner must take into account
the distribution of weights of the examples. This can be
done in two ways (Freund and Scapire, 1997). In the
reweighting version, the base learner is trained with the
weighted training data. In the resampling version, the base
learner is trained with a sample of the training data. The
latter is necessary when the base learner is not able to han-
dle weighted examples. In this work, the two versions are
considered.

For the number of iterations of the boosting algorithm,
three values were considered: 10, 25 and 100. With the
respect to the reuse level, three variants were considered:
AdaBoost (the version without reuse), AdaBoost-r1 (reuse
version with » = 1) and AdaBoost-r2. There is a reason for
not considering higher reuse levels. Successful ensembles
are obtained from accurate but diverse classifiers (Kun-
cheva, 2005). Clearly, augmenting the reuse level reduces
the diversity of the classifiers.

Other methods, such as AdaBoost with full trees, were
not considered because it was desired to compare methods
with a similar computational complexity. In the reuse

Table 1
Data sets
Data set Classes Examples Attributes
Discrete  Continuous
Anneal 6 898 32 6
Audiology 24 226 69 0
Autos 7 205 10 16
Balance-scale 3 625 0 4
Breast-cancer 2 286 10 0
Cleveland-14-heart 2 303 7 6
Credit-rating 2 690 9 6
German-credit 2 1000 13 7
Glass 7 214 0 9
Heart-statlog 2 270 0 13
Hepatitis 2 155 13 6
Horse-colic 2 368 16 7
Hungarian-14-heart 2 294 7 6
Hypothyroid 4 3772 22 7
Ionosphere 2 351 0 34
Iris 3 150 0 4
Labor 2 57 8 8
Letter 26 20,000 0 16
Lymphography 4 148 15 3
Mushroom 2 8124 22 0
Pendigits 10 10,992 0 16
Pima-diabetes 2 768 0 8
Primary-tumor 22 239 17 0
Segment 7 2310 0 19
Sonar 2 208 0 60
Soybean 19 683 35 0
Splice 3 3190 60 0
Vehicle 4 846 0 18
Vote 2 435 16 0
Vowel-context 11 990 2 10
Vowel-nocontext 11 990 0 10
Waveform 3 5000 0 40
Wisconsin-breast-cancer 2 699 0 9
Zoo 7 101 16 2

variant of AdaBoost the number of classifiers and their
complexity is the same than for the variant without reuse.
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Given a number of iterations, the number of decision nodes
is the same for the 3 considered variants. The number of
decision nodes is an indicator of the complexity of the clas-
sifier because in the training phase it is necessary to select
that number of decision nodes and in the classification
phase it is necessary to evaluate all the decision nodes.

The presented method is for two classes data sets. For
multiclass problem the method named “one vs. all”’ (Rifkin
and Klautau, 2004), also named ““one vs the rest”, was used.
For each class a classifier is constructed, it discriminates
between the examples of that class and the examples of the
other classes. For data sets with more than two classes, the
number of decision stumps in the classifier will be the number
of classes multiplied by the number of boosting iterations.

Table 2 shows the accuracies obtained for the different
reuse variants in every data set when using the reweighting
version of AdaBoost. The results for the resampling ver-
sion are in Table 3.

Tables 4 and 5 indicate how many times one method is
better than the others. For all the number of iterations con-
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sidered AdaBoost-r2 is clearly better than AdaBoost and
AdaBoost-r1.

Figs. 5 and 6 show the relationship between the results
from AdaBoost-r2 and AdaBoost. Two relations are con-
sidered, the accuracy difference and the accuracy rate. In
these graphs, the relations from the different data sets are
plotted in ascending order. As in the previous tables, the
figures show that AdaBoost-r2 is better than AdaBoost
more times than the opposite. Moreover, the graphs also
show that when AdaBoost-r2 is better than AdaBoost,
the differences are more important than when AdaBoost-
r2 is worse than AdaBoost.

Tables 6 and 7 also show comparisons of the different
methods. Nevertheless, these tables do not compare
directly the averages of the accuracies. Instead, they show
the results of the corrected resampled t-test statistic
(Nadeau and Bengio, 2003) from the 100 results (from
10-fold cross validation, 10 times) for each method and
data set (significance level: 0.05). There is a clear advantage
for the versions with reuse.

Table 2
Accuracies for the different methods and data sets, for the reweighting version of AdaBoost
Size: 10 Size: 25 Size: 100
AdaBoost AdaBoost-rl  AdaBoost-r2 AdaBoost AdaBoost-rl AdaBoost-r2 AdaBoost AdaBoost-rl  AdaBoost-r2

Anneal 96.49 97.10 98.25 98.25 98.90 99.22 99.12 99.39 99.51
Audiology 75.05 73.74 74.09 77.08 77.33 77.43 80.15 78.87 78.07
Autos 70.50 69.25 73.04 73.80 75.27 77.70 81.08 81.69 81.84
Balance-scale 86.19 86.54 86.28 91.35 91.43 91.65 92.14 92.69 92.80
Breast-cancer 71.93 71.44 75.13 72.57 71.87 73.48 72.25 71.70 73.13
Cleveland-14 83.28 82.68 82.31 82.85 81.82 81.39 82.35 81.02 79.73
Credit-rating 84.80 84.80 85.42 85.71 85.58 86.38 86.14 85.97 85.84
German-credit 71.27 71.25 71.27 72.60 72.69 72.35 74.63 74.30 74.51
Glass 69.60 69.00 69.50 71.63 72.95 73.08 73.70 74.40 75.68
Heart-statlog 81.59 81.52 81.22 81.81 80.70 80.67 81.56 80.56 79.26
Hepatitis 80.10 81.66 81.13 81.63 81.33 83.03 82.49 82.48 81.88
Horse-colic 81.92 81.93 80.81 82.12 81.39 80.81 81.98 81.55 82.26
Hungarian-14 80.71 81.06 79.97 81.10 81.36 80.47 81.44 80.71 79.73
Hypothyroid 99.10 99.08 99.33 99.20 99.44 99.57 99.58 99.62 99.63
Tonosphere 90.89 91.05 91.45 92.34 92.34 92.34 92.63 92.37 92.82
Iris 94.67 94.00 94.67 94.67 94.33 94.53 94.00 93.80 94.20
Labor 84.30 83.33 81.70 86.43 83.17 85.17 87.43 83.70 84.80
Letter 62.65 66.12 67.15 69.21 72.86 75.96 76.22 79.86 83.72
Lymphography 80.42 80.09 81.43 82.62 82.37 83.37 83.37 83.33 83.92
Mushroom 96.29 97.87 97.95 98.73 99.79 99.93 99.90 100.00 100.00
Pendigits 85.82 88.46 90.43 92.05 94.24 95.86 95.89 97.49 98.40
Pima-diabetes 74.93 74.37 74.59 75.37 75.22 75.57 75.45 75.27 75.54
Primary-tumor 46.38 46.10 43.89 46.70 46.00 45.52 45.52 45.96 45.64
Segment 93.50 93.87 94.17 94.66 95.66 96.24 96.52 97.31 97.62
Sonar 75.65 77.31 77.71 81.20 81.15 81.46 84.86 84.42 84.29
Soybean 88.22 89.87 89.00 92.19 92.49 90.83 93.75 92.86 90.45
Splice 92.26 93.56 94.03 94.97 94.91 95.16 95.66 95.63 95.83
Vehicle 66.93 68.50 69.01 71.24 72.53 73.49 75.19 76.06 77.07
Vote 95.68 95.30 95.24 95.65 95.51 95.61 95.65 95.60 95.42
Vowel-context 58.78 62.40 65.11 69.15 74.55 79.00 80.83 85.03 88.81
Vowel-nocontext  58.98 62.35 64.95 68.95 74.42 78.58 80.36 84.24 87.44
Waveform 80.27 80.69 80.82 83.59 83.69 84.00 84.92 84.89 84.82
Wisconsin-breast ~ 95.08 95.19 95.15 95.22 95.40 95.59 95.72 95.85 95.91
Zoo 96.34 97.63 96.63 96.42 96.73 96.25 96.22 95.14 94.45

Three ensemble sizes are considered: 10, 25 and 100 decision stumps. For each data set and ensemble size, the best result is marked in bold.
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Table 3
Accuracies for the different methods and data sets, for the resampling version of AdaBoost
Size: 10 Size: 25 Size: 100
AdaBoost AdaBoost-rl AdaBoost-r2 AdaBoost AdaBoost-rl AdaBoost-r2 AdaBoost AdaBoost-rl  AdaBoost-r2

Anneal 96.68 97.03 97.97 98.24 98.63 99.11 99.09 99.32 99.47
Audiology 75.67 73.68 74.23 77.42 77.19 77.86 78.56 78.88 79.09
Autos 68.93 71.35 72.82 73.39 75.20 77.51 78.50 80.79 81.98
Balance-scale 84.88 85.84 85.66 91.20 91.12 91.44 92.18 92.86 92.67
Breast-cancer 72.83 71.87 73.23 72.24 71.73 71.90 72.20 71.83 71.18
Cleveland-14 82.18 82.45 82.15 82.61 82.37 82.05 82.35 81.59 80.90
Credit-rating 85.04 84.91 85.23 85.46 85.62 85.70 85.54 85.83 85.52
German-credit 71.68 71.27 71.16 73.08 72.89 72.84 73.50 73.96 74.74
Glass 69.44 69.91 70.76 71.63 72.69 73.75 73.04 74.32 76.07
Heart-statlog 82.00 81.63 81.04 82.41 81.33 81.19 82.33 80.74 80.30
Hepatitis 81.45 81.25 81.64 82.41 82.33 82.01 82.59 81.31 81.97
Horse-colic 82.09 81.69 81.66 81.39 81.12 81.74 81.69 81.91 82.26
Hungarian-14 80.87 80.75 80.96 80.82 80.31 80.47 80.89 80.89 80.17
Hypothyroid 99.00 99.10 99.23 99.20 99.29 99.58 99.62 99.63 99.65
Tonosphere 89.80 90.46 91.09 91.55 91.63 91.69 92.97 92.68 93.14
Iris 94.87 94.73 94.47 94.73 94.60 94.13 94.60 94.33 94.27
Labor 85.50 85.80 84.17 85.90 86.93 86.93 87.00 87.10 87.40
Letter 62.67 65.13 66.23 69.44 71.67 75.00 76.42 78.25 82.94
Lymphography 81.80 81.98 80.84 82.97 83.11 83.31 82.96 83.54 84.05
Mushroom 96.83 97.66 98.51 98.91 99.71 99.93 99.91 100.00 100.00
Pendigits 85.79 87.54 89.49 91.86 93.59 95.44 95.94 97.21 98.22
Pima-diabetes 74.77 74.43 74.60 75.69 75.31 75.49 75.92 75.21 75.26
Primary-tumor 4591 45.93 45.17 46.70 46.14 45.96 46.43 46.02 46.05
Segment 93.26 93.68 94.38 94.50 95.21 96.19 96.52 97.31 97.81
Sonar 74.57 75.78 76.92 80.56 80.38 80.45 83.98 83.31 84.29
Soybean 89.08 88.70 89.02 92.58 92.05 90.76 93.76 92.90 91.10
Splice 92.25 93.44 93.74 94.88 94.88 94.99 95.57 95.71 95.75
Vehicle 67.17 68.17 69.14 70.70 72.65 73.25 73.45 75.87 77.05
Vote 95.47 95.03 94.80 95.42 95.47 95.31 95.42 95.86 95.90
Vowel-context 58.58 59.23 63.43 69.59 71.90 76.59 80.17 83.03 88.36
Vowel-nocontext  58.57 59.23 63.22 69.44 72.00 76.68 79.87 82.76 87.58
Waveform 80.13 80.09 80.30 83.34 83.39 83.80 84.48 84.54 84.88
Wisconsin-breast  95.01 95.15 95.07 95.21 95.47 95.52 95.52 95.74 95.92
Zoo 95.34 95.65 95.14 95.63 95.35 94.35 96.11 94.25 93.85

Three ensemble sizes are considered: 10, 25 and 100 decision stumps. For each data set and ensemble size, the best result is marked in bold.

Table 4
Comparison of results for the reweighting version of AdaBoost

Size: 10 Size: 25 Size: 100

AdaBoost-rl AdaBoost-r2 AdaBoost-rl AdaBoost-r2 AdaBoost-rl AdaBoost-r2
AdaBoost 19/1/14 22/1/11 19/0/15 22/0/12 14/0/20 21/0/13
AdaBoost-rl - 22/0/12 - 26/0/8 - 21/1/12

Each item in the table shows the number of wins, ties and losses of the method of the column with respect to the method of the row.

Table 5
Comparison of results for the resampling version of AdaBoost

Size: 10 Size: 25 Size: 100

AdaBoost-rl AdaBoost-r2 AdaBoost-rl AdaBoost-r2 AdaBoost-rl AdaBoost-r2
AdaBoost 21/0/13 21/0/13 19/0/15 21/0/13 22/0/12 23/0/11
AdaBoost-rl - 22/0/12 - 24/0/10 - 25/0/9

Each item in the table shows the number of wins, ties and losses of the method of the column with respect to the method of the row.

Instead of comparing the average accuracies obtained
from the 10 x 10-fold cross validations, it is also possible
to compare two methods according to the number of folds

where one method is better than the other. Fig. 7 shows
graphs of the differences between the number of folds with
one method better than the other and the opposite. In this
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Fig. 5. Relationship, for the different data sets, between the accuracies of AdaBoost-r2 and AdaBoost (reweighting version). Top: difference of accuracies.
Bottom: rate between accuracies.

Size: 10 Size: 25 Size: 100
10 10 10
8 8 8 .
.
6 6 . 6 *
.
4 oo® 4 o* 4 o
2 . 2 * 2 .
.o’..... .o... .o
0 esslee® 0 BPYYTITITLL) 0 ensoo0ccccee
POTTII eoocoe’T eee®®
. . .
-2 2 2lqe
-4 -4 -4
5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30
1.15 1.15 1.15
1.1 1.1 . 1.4 .
. . .
1.05 o 1.05 ..° 1.05 .o®
..' 3 o
.
1 ceveososas ettt 4 eesvee cenalscccce®®® 1 . ansslsescese®®’
L Toet Leeeee
.
0.95 0.95 0.95
5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 &0

Fig. 6. Relationship, for the different data sets, between the accuracies of AdaBoost-r2 and AdaBoost (resampling version). Top: difference of accuracies.
Bottom: rate between accuracies.

Table 6
Comparison of the methods according to the corrected resampled #-test statistic, for the reweighting version

Size: 10 Size: 25 Size: 100

AdaBoost-r1 AdaBoost-r2 AdaBoost-r1 AdaBoost-r2 AdaBoost-rl AdaBoost-r2
AdaBoost 6/28/0 7/27/0 7/27/0 8/26/0 6/28/0 6/27/1
AdaBoost-rl - 4/30/0 - 5/29/0 - 4/29/1
Each item in the table shows the number of wins, ties and losses of the method of the column with respect to the method of the row.
Table 7
Comparison of the methods according to the corrected resampled #-test statistic, for the resampling version

Size: 10 Size: 25 Size: 100

AdaBoost-rl AdaBoost-r2 AdaBoost-rl AdaBoost-r2 AdaBoost-rl AdaBoost-r2
AdaBoost 3/31/0 8/26/0 3/0/31 9/25/0 6/28/0 7/26/1
AdaBoost-rl - 4/28/0 - 7/27/0 - 4/28/0

Each item in the table shows the number of wins, ties and losses of the method of the column with respect to the method of the row.
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Fig. 7. Sorted differences between the number of wins (number of folds where AdaBoost-r2 is better than AdaBoost) and losses, for the resampling

version. The dashed line marks the average value of the difference.

Table 8
Average ranks

Reweighting Resampling

Size: 10 Size: 25 Size: 100 Size: 10 Size: 25 Size: 100
AdaBoost 2.25 2.21 2.03 2.24 2.18 2.32
AdaBoost-r1 2.07 2.21 222 2.03 2.16 2.09
AdaBoost-r2 1.68 1.59 1.75 1.74 1.66 1.59

Table 9
Accuracies for the different methods and data sets, for the resampling
version of AdaBoost

AdaBoost AdaBoost-rl AdaBoost-r2
Anneal 99.55 99.55 99.44
Audiology 76.96 77.81 78.66
Autos 79.45 83.33 82.86
Balance-scale 92.16 94.07 93.11
Breast-cancer 71.69 69.27 69.99
Cleveland-14 83.15 79.53 79.20
Credit-rating 85.80 85.07 85.22
German-credit 73.90 74.70 74.20
Glass 69.18 75.63 74.65
Heart-statlog 80.74 77.41 75.19
Hepeatitis 80.04 80.58 82.00
Horse-colic 83.15 82.33 83.69
Hungarian-14 81.70 80.63 79.28
Hypothyroid 99.55 99.63 99.71
Tonosphere 92.90 92.90 92.61
Iris 94.00 93.33 92.67
Labor 86.33 84.33 84.33
Letter 80.31 83.46 86.81
Lymphography 82.29 84.38 84.43
Mushroom 100.00 100.00 100.00
Pendigits 96.92 98.54 99.11
Pima-diabetes 75.66 75.27 74.10
Primary-tumor 46.60 46.31 43.07
Segment 97.32 98.14 98.31
Sonar 86.52 84.60 86.52
Soybean 93.99 93.41 90.62
Splice 95.58 95.71 95.80
Vehicle 75.29 79.44 78.97
Vote 95.64 96.32 95.64
Vowel-context 82.42 90.51 93.03
Vowel-nocontext 82.22 88.28 91.82
Waveform 84.48 84.76 84.68
Wisconsin-breast 95.28 96.57 95.85
Zoo 96.00 93.18 93.18

The number of iterations is 500. For each data set and ensemble size, the
best result is marked in bold.

case, the advantage of AdaBoost-r2 over AdaBoost grows
with the size of the ensemble.

Another way of comparing the results of different meth-
ods over different data sets is to use average ranks (Dem-
sar, 2006). For each data set, the methods are sorted
according to their performance. Each method will have a
position in this rank. If several methods have the same
result, they are assigned an average rank (e.g., if two meth-
ods have the best value, their position in the ranking will be
1.5). The average rank of a method is calculated from its
ranks in all the considered data sets. Table 8 shows these
average ranks for the six cases (two versions: reweighting
and resampling, three sizes: 10, 25 and 100). The average
rank of AdaBoost-r2 is always smaller than 1.8, while the
average ranks of the other two versions are always greater
than 2.

4. Additional experiments
4.1. Experiments with 500 iterations

In the previous section, the maximum number of consid-
ered iterations for the boosting algorithm was 100. It must
be noted that the number of base classifiers in the ensemble
is the number of iterations multiplied by the number of
classes. For instance, for the “letter”” data set, the ensemble
is formed by 26 x 100 = 2600 base classifiers. This value is
greater than the number of decision stumps combined in
other works. For instance, Eibl and Pfeiffer (2005) and Li
(2006) consider, respectively, ensembles of 2000 and 500
decision stumps.

Nevertheless, it could be possible that with more itera-
tions, the results for classical AdaBoost were as good as
the results of AdaBoost with reuse. Hence, this section
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Fig. 8. Relationship, for the different data sets, between the accuracies of
AdaBoost-r2 and AdaBoost (resampling version) when the ensemble size
is 500.

Table 10
Comparison of results for ensembles of 500 decision stumps

AdaBoost-rl

AdaBoost-r2

(a) Winsltiesllosses

AdaBoost 19/2/13 19/2/13
AdaBoost-r1 14/3/17
(b) Significant winsltiesllosses

AdaBoost 4/30/0 4/30/0
AdaBoost-r1 4/30/0

Each item in the table shows the number of wins, ties and losses of the
method of the column with respect to the method of the row.

includes results for 500 iterations. Only the resampling ver-
sion is considered, the results are for one 10-fold cross val-
idation. Table 9 shows the accuracies of the different
methods for each data set.

Fig. 8 shows the relationships between the accuracies of
AdaBoost and AdaBoost-r2. The latter has better results
than the former for the majority of the data sets. Table
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10 shows the number of wins, ties and losses for each pair
of methods. The direct comparison of accuracies indicates
that the versions with reuse are still better than the version
without reuse, although the differences are less important
than when using less iterations. For this number of itera-
tions, it is better to reuse only the previous classifier (Ada-
Boost-rl) than to reuse the two previous classifiers
(AdaBoost-r2). When using the considered statistical test,
the version without reuse is never better than the versions
with reuse, while the two versions with reuse are signifi-
cantly better than AdaBoost for four data sets.

The average ranks for AdaBoost, AdaBoost-rl and
AdaBoost-r2 are, respectively, 2.15, 1.88 and 1.97. With
these number of iterations, it is better the r1 version than
the 72 version, but both are better than the version without
reuse.

4.2. More complex base classifiers

It is also possible to reuse more complex classifiers. This
section reports results using decision trees with three deci-
sion nodes and four leaves. The reuse idea can be used in
the same way. For two-classes data sets, the output of these
trees is binary. For a reuse level r, r + 1 classifiers are com-
bined. There are 2" possible output combinations. For
each combination the class is determined according to the
labels of the training examples that receive that classifica-
tions. Fig. 9 shows an example.

These results are for the resampling version of Ada-
Boost, from 10 x 10-fold cross validation. Table 11 shows
the number of wins, ties and losses for each pair of meth-

Fig. 9. Combination of two 4-leaves decision trees. Left and center: the trees T1 and T2. Right: the combined classifier. The leaves labels of the combined
classifier depend on the training data. For instance, the label of the leftmost leaf would be the most frequent class for the examples that are classified as 0

by Tl and T2.
Table 11
Comparison of results for ensembles of four-leaves trees

Size: 10 Size: 25 Size: 100

AdaBoost-rl AdaBoost-r2 AdaBoost-r1 AdaBoost-r2 AdaBoost-r1 AdaBoost-r2
AdaBoost 20/0/14 16/0/18 21/1/12 15/1/18 16/1/17 14/1/19
AdaBoost-rl - 16/0/18 - 14/1/19 - 12/1/21
AdaBoost 1/33/0 2/32/0 1/33/0 4/3010 1/33/0 4/30/0
AdaBoost-rl - 2/32/0 - 2/32/0 - 1/33/0

Each item in the table shows the number of wins, ties and losses of the method of the column with respect to the method of the row. In italics, the number

of significant wins, ties and losses.
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Table 12
Average ranks when using four-leaves trees as base classifiers

Size: 10 Size: 25 Size: 100
AdaBoost 2.06 2.09 1.91
AdaBoost-r1 1.90 1.79 1.88
AdaBoost-r2 2.04 2.12 2.21

ods. The direct comparison of the accuracies shows that a
reuse level of 2 is too much, AdaBoost-r2 is the worst
method. This can be caused by the excessive similarity
between classifiers (i.e., two consecutive classifiers share
six of the nine decision nodes, a classifier is formed by three
3-decision trees). AdaBoost-rl is better than AdaBoost
when the size is 10 and 25, but slightly worse for 100 (the
difference is only one data set).

On the other hand, according to the statistical test, Ada-
Boost-2 is the best method. The version without reuse is
never significantly better than the versions with reuse.

Table 12 shows the average ranks (Demsar, 2006) of
the three considered methods. For all the considered sizes,
AdaBoost-r1 is the best method.

5. Conclusion

Although it is possible to use boosting with strong base
classifiers (e.g., decision trees, neural networks, etc.) the
name of the method comes from is ability to obtain strong
classifiers from weak methods. A weak method commonly
used with boosting are decision stumps, decision trees with
only one decision node and two leaves. This work presents
a method that improves the results of AdaBoost when used
with decision stumps. It is based on combining several deci-
sion stumps in a tree.

The computational complexity is very similar for the ori-
ginal AdaBoost and the proposed method. The number of
decision stumps is the same in both versions. Although in
the proposed variant a decision node will appear in several
trees, it will be only evaluated once for each example.

The storage requirements of the two versions are the
same, with the only exception that in the proposed variant
2" bits are necessary for each decision stump (r is the
number of reused classifiers). The maximum value for r
considered in this work is 2, hence a byte for each decision
stump is enough.

The experimental validation, over 34 data sets from the
UCI repository shows the validity of the proposed method,
when using decision stumps as base classifiers. When using
four leaves decision trees as base classifiers, the advantage
for the reuse version is not so clear, but the results are gen-
erally favourable for the reuse version with r = 1.

The present work has only considered small decision
trees as base classifiers. The method could be used with
any other classification method, although it will only be
useful if the classification method does not generate strong
classifiers. In future works, other weak classification meth-
ods will be considered.

Currently, the proposed method only considers two clas-
ses data sets. The original version of AdaBoost had the
same limitation. In this work multiclass classifiers have
been obtained constructing as many classifiers as classes.
Nevertheless, it would be interesting to add the reuse abil-
ity to some of the multiclass variants of AdaBoost, such as
AdaBoost.M2 (Freund and Scapire, 1997), AdaBoost.OC
(Schapire, 1997), AdaBoost.ECC (Guruswami and Sahai,
1999), AdaBoost.ERP (Li, 2006) or BoostMA (Eibl and
Pfeiffer, 2005). This idea of reusing weak classifiers could
be also included in other versions of Boosting, such as
AdaBoosti (Nock and Nielsen, 2006).
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