Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

Multi-Label Classification Using
Conditional Dependency Networks

Yuhong Guo and Suicheng Gu
Department of Computer and Information Sciences
Temple University
Philadelphia, PA 19122, USA
yuhong @temple.edu

Abstract

In this paper, we tackle the challenges of multi-
label classification by developing a general condi-
tional dependency network model. The proposed
model is a cyclic directed graphical model, which
provides an intuitive representation for the depen-
dencies among multiple label variables, and a well
integrated framework for efficient model training
using binary classifiers and label predictions using
Gibbs sampling inference. Our experiments show
the proposed conditional model can effectively ex-
ploit the label dependency to improve multi-label
classification performance.

1 Introduction

Multi-label classification is a challenging problem in many
real-world application domains, where each instance can be
assigned simultaneously into multiple classes. Typical appli-
cation problems include text categorization where one doc-
ument can belong to multiple categories, bio-informatics
where one protein may have multiple functions, etc.
Traditional two-class and multi-class problems can be
viewed as special cases of multi-label classification, where
each instance has only one label. A multi-label problem can
also be cast as a multi-class problem by considering all pos-
sible combinations of the original classes. However, this will
substantially increase the class number and increase the com-
putational complexity of the problem. Many proposed meth-
ods tackle multi-label problems by first transforming a multi-
label problem into a set of independent binary classification
problems, then employing ranking or thresholding schemes
for the overall multi-label classification. An obvious draw-
back of such methods is that they completely ignore the inter-
dependencies among multiple labels. In many applications,
strong co-occurrences and interdependencies exist among
multiple class labels. For example, an article on the topic of
religion is likely to talk about culture as well, but unlikely
to talk about foorball. Capturing the dependencies among
class labels during classification is thus expected to lead to
improved classification performance. Many methods with
this motivation have been proposed in the literature, some of
which exploit graphical models to capture the label depen-
dencies and conduct structured classification, including those
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using Bayesian networks [de Waal and van der Gaag, 2007;
Rodriguez and Lozano, 2008; Bielza et al., 2011] and condi-
tional random fields [Ghamrawi and McCallum, 2005]. How-
ever, these approaches require much more complicated learn-
ing and prediction phases than binary classification models.
In this paper, we propose a novel multi-label classifica-
tion approach based on a conditional cyclic directed graph-
ical model, which we name as conditional dependency net-
works. In particular, we construct a fully connected depen-
dency network on the class label variables, where each vari-
able is dependent on all the other class variables and the input
feature variables. By doing so, we circumvent the challenging
structure learning issue associated with the Bayesian network
based methods. The conditional distribution associated with
each label node in our model corresponds to one binary clas-
sification model. Thus our model parameters can be learned
by training k binary classifiers, where k is the number of
classes. The conditional dependency network model we em-
ploy is a more natural representation of label co-occurrence
dependencies than acyclic Bayesian networks, while its learn-
ing process is much simpler than those used in conditional
random fields, where inferences are typically involved. Our
empirical results suggest that the proposed model is effective
in exploiting label dependencies to improve classification per-
formance, and demonstrates superior performance over a few
multi-label classification methods developed in the literature.

2 Dependency Networks

Graphical models have been used in many domains to repre-
sent a joint distribution over a set of random variables. They
are natural ways to model the independencies/dependencies
among variables. Two types of commonly used graphi-
cal models are Bayesian networks and Markov networks
(Markov random fields). A Bayesian network is a directed
acyclic graphical model, where each node represents one
variable and the directed edges usually represent the ordered
probabilistic dependencies between variables. The parame-
ters in a Bayesian network typically encode the local con-
ditional probability distributions on each variable given its
parents. It is NP-hard to identify the optimal Bayesian net-
work structure [Chickering ef al., 1994], but allows a closed-
form maximum likelihood solution for the parameters given
the structure. A Markov network is an undirected graph-
ical model, where the undirected edges encode the depen-
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Figure 1: Conditional dependency network model.

dencies among the variables. Markov networks are more
suitable to capture undirected correlations and interactions
among variables. However, the learning problem associated
with a Markov network is much more challenging than their
counterparts in a Bayesian network: inference is usually re-
quired for parameter learning, and the general structure learn-
ing remains to be an NP-hard problem due to the difficulty of
parameter estimations of the network (c.f. [Srebro, 2001]).

Dependency networks [Heckerman et al., 2000] are cyclic
directed graphical models, where the parents of each vari-
able are its Markov blanket. Similar to Bayesian networks,
the edges in a dependency network are directed. However,
unlike Bayesian networks, the directed edges of dependency
networks encode not ordered relationships but directed de-
pendencies among variables. Actually, the independencies in
a dependency network are exact to those of a Markov net-
work with the same adjacencies. Moreover, the primary dif-
ference between dependency networks, Bayesian networks,
and Markov networks is that dependency networks approx-
imate the joint distribution over a set of random variables
with a set of local conditional probability distributions that
are learned independently. Thus a dependency network has
the advantage of Markov networks in encoding flexible cor-
relational interdependence relationships, while possessing the
simple independent parameterization of Bayesian networks
in terms of local conditional probability distributions. De-
pendency networks are not guaranteed to specify a consis-
tent joint distribution, and thus exact inference techniques are
not applicable. Nevertheless, Gibbs sampling inference tech-
niques [Neal, 1993] can still be used to efficiently recover a
reasonable full joint distribution.

Given a set of random variables X = {X7,--- , X,,} with
a joint distribution p(x), a dependency network is a directed
graph G = (V, E') with a set of conditional probability distri-
butions P = {p(z;|pa;), Vi}. Each variable X; corresponds
to one node v; € V. The parents of X;, denoted as Pa;,
are the set of nodes v; such that (v;,v;) € E, where E de-
notes the set of directed edges. Due to their natural corre-
lational dependency representations, independent parameter
estimates on each variable, and simple inference procedures,
dependency networks can be applied in many tasks such as
probabilistic inference, collaborative filtering, data visualiza-
tion and relational learning.

In this paper, we extend dependency networks into general
conditional dependency networks to tackle multi-label classi-
fication problems. In the proposed network, the discrete class
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label variables Y are interdependent on each other in a de-
pendency network, conditioning on the observation features
X. The conditional probability distributions associated with
each variable Y; are general probabilistic prediction func-
tions. Comparing to conditional Markov networks, the pro-
posed model maintains the same advantages of dependency
networks over Markov networks in the non-conditional case.

3 Multi-label Classification Model

Given a set of multi-label training instances D
{(x% .-+ ,yb)}i_,, where each y¢ is a {—1,+1}-valued
class label, we aim to learn a multi-label predictor f : x —
[y1, - ,yk] to produce good classifications on incoming test
instances D’ = {x!,--- ,x™}. Our intuition is to exploit
interdependencies among label variables using natural graph-
ical model representations. In particular, we present a con-
ditional dependency network to model the interdependencies
among multiple label variables. The proposed model allows
a simple learning procedure by training & binary classifiers,
where k is the number of classes, and a Gibbs sampling infer-
ence technique to predict labels for test instances.

3.1 Conditional Dependency Networks

Given observation features x, we propose to model the
conditional joint distribution over label variables Y
{Y1, -+, Yy} using dependency networks, where each Y; is
a binary variable with values from {—1,1}. We aim to cap-
ture the label interdependency with such a model to improve
classification performance. Since there are usually no partic-
ular influence directions among the label variables, we build
a fully connected dependency network over the Y variables.
That is, there is a bidirectional edge between each pair of
variables, (Y;,Y;). Figure 1 shows an example of condi-
tional dependency networks with four class variables. As-
suming a fully connected structure, we can avoid the com-
putational expensive step of identifying conditional optimal
structures while still maintaining a simple parameter learn-
ing phase and an approximated inference procedure for non-
singly connected structures. In this conditional dependency
network, the strength of label interdependency and the power
of prediction from the features to the labels are encoded in
the model parameters, i.e., the conditional probability distri-
butions (CPDs) associated with each variable node Y;, given
all its parents and the observation X.

When ignoring the observations X, the CPDs on each Y;
variable can be determined by closed-form solutions based
on the sufficient statistics among the Y variables, same as
in Bayesian networks. Since Y variables are discrete, the
CPDs on variable Y; in the network can be represented as a
conditional probability distribution table (CPT), with entries
p(Y; = yi|Pa; = Ypa,). For a fully connected network,
where Pa; = {Y1,---,Yi—1,Yit1, -+, Yy}, the conditional
distribution tables could be very large, in the size of 2*, since
each variable has all the other variables as its parents. This
can easily cause overfitting and produce spurious dependence
relationships among the label variables. Thus simply model-
ing the label dependencies in a separate complete network
and then combining it with the prediction model is problem-
atic. However, if we take the observations X, which are either



continuous or discrete or a mixture of both, into the networks,
the CPT style parameterization is not tractable anymore. Nev-
ertheless, in the conditional scenario we can actually simplify
and generalize the CPD representations by using probabilistic
prediction functions. That is, we associate a binary predic-
tion model with each variable Y;. These prediction models
are then used to define the conditional probability distribu-
tions on each label variable, and can be viewed as generalized
conditional probability tables. These generalized conditional
probability tables can substantially reduce the representation
complexity and mitigate the overfitting problem.

Given the training set D introduced before, the training
process for the proposed conditional dependency network
model is very straightforward and simple. We directly train
k binary probabilistic predictors, and each of them defines
a conditional probabilistic distribution on one label variable
given all the other label variables and the input features x. For
the conditional dependency network in Figure 1, it is shown
one conditional distribution function is associated with each
Y. Many existing standard binary probabilistic classifiers can
be used in our model to parameterize the conditional distribu-
tions. In our experiments, we in particular used the regular-
ized binary logistic regression classifier.

Logistic regression is a well known statistical model for
probabilistic classification. For the parameter learning of our
conditional dependency networks, we train k logistic regres-
sion classifiers, and each, p(y; = *1|x,y-i,0;), is associ-
ated with one label variable Y;, where @; denotes the model
parameters. The model parameters can be trained by maxi-
mizing the regularized likelihood of the training data

t

max Y logp(yf|x‘,y’,, 0:) — %(9191')’
o=l

where %(0: 6;) is a L, regularization term introduced to re-
duce overfitting, and A is a trade-off parameter. Logistic re-
gression is a robust linear classifier that can be trained ef-
ficiently using convex optimization techniques. Nonlinear
classifications can be achieved by simply introducing kernels.

3.2 Gibbs Sampling for Approximate Inference

After training k logistic regression models, we obtain a pa-
rameterized conditional dependency network, which has a
fully connected graph structure with bidirectional edges, and
has k sets of parameters {61, --- ,0;} associated with the
label variables to define generalized conditional probability
distributions. Given the trained conditional dependence net-
work, the next step is using it to predict the label vector
y ={y1, -,y } fora test instance x. This multi-label clas-
sification problem is equivalent to computing a type of max-
imum a posteriori (MAP) explanation, also known as most
probable explanation (MPE):

y* = arg manp(yIX)

It has been shown this problem is NP-hard even for acyclic
directed graphical models, i.e. Bayesian networks [Shimony,
1999]. When there are undirected cycles in a Bayesian net-
work, many approximate inference algorithms have been de-
veloped to address the problem [Guo and Hsu, 2002]. Itis a
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straightforward corollary that the inference problem we have
for conditional dependency networks is also NP-hard, since
our model is a cyclic variant of Bayesian networks. Given
the fully connected structure and the generalized conditional
probability tables we have, Gibbs sampling, which samples
one variable given all others fixed, is a more suitable infer-
ence technique for our model than other alternatives.

Gibbs sampling [Geman and Geman, 1984] is a
Metropolis-Hastings sampling algorithm that is especially ap-
propriate for inference in graphical models. The key to the
Gibbs sampling is that one only considers univariate condi-
tional distributions, i.e. the distribution when all of the vari-
ables but one are assigned fixed values. This property makes
Gibbs sampling a perfect fit on the fully connected condi-
tional dependency network we build above, where the uni-
variate conditional distributions needed for Gibbs sampling
are directly available from the conditional probabilistic pre-
dictors associated with each variable. The inference proce-
dure of Gibbs sampling is very simple. We first choose a
random ordering of the variables, r, and initialize each vari-
able Y; to a value y;. In each sampling iteration, we visit each
variable in the given order, {Y,.(1),- - - , Y;.x)}, where 7 maps
the new order index into the original variable index. The new
value of each variable Y,.(; is resampled according to the con-
ditional predictor associated with it, p(y[x, y (), Or())-

The idea behind Gibbs sampling is to approximate the joint
distribution from the samples obtained from the conditional
distributions. The sampler is expected to converge to a sta-
tionary distribution after some burn-in iterations. One then
can collect samples to recover the approximated joint distri-
bution and determine the MPE. There are a few different ways
to decide the MPE of the Y variables. One typical way is to
compute the marginal probabilities associated with each sin-
gle variable from the samples and make the prediction based
on the marginals. We however compute the MPE from sam-
ples that have high values over the product of the conditional
probabilities, [ [, p(yi|x, y-i, 0:), since this product can be
viewed as an approximation to the true conditional joint dis-
tribution p(y1, - - - , yx|x). In order to avoid the instability of
picking only one such sample with the highest product value,
we collect n instances that have the top product values over
the conditional probabilities. The final prediction is deter-
mined by the marginals computed from these n instances.
We used n = 100 in our experiments. The overall Gibbs
sampling procedure is described in Algorithm 1. In our ex-
periments, we set the burn-in time as 100 iterations and use
another 500 iterations to collect samples.

3.3 Extension to Non-probabilistic Models

The conditional dependency network model proposed above
can exploit any probabilistic binary classifier. However, non-
probabilistic binary classifiers, e.g. support vector machines,
often demonstrated superior classification performance than
probabilistic classifiers in many scenarios. We therefore ex-
tend our model to permit discrete conditional probability dis-
tributions over each label variable, i.e. p(y; = 1|x,y-:,0:)
is either 1 or 0. This extension allows nonprobabilistic bi-
nary classifiers to be exploited in our model. In particular, we
consider support vector machines in our experiments.



Algorithm 1 Gibbs Sampling Inference

Input: x: observed features; k: number of classes;
n: number of instances to pick;
{01, - ,0;}: model parameters;
tp: burn-in iteration number;
t.: instance collection iteration number;
Output: sampled instance set B
Procedure:
1. initialize y = (y1,...,9%), £ = 0;
choose a random ordering r over variables Y.
2.% burn-in and collection loops
for iter = 1totp + t. do
for i=1 to k do
q=p(y = 1%Y-r@i), Or5))s
sample u ~ uniform distribution of (0, 1)
if u < g then y, ;) = Lelse y,;) = —1
if iter > t; then
s =11, p(yjlx,y-;,65)
if / < n then
(=10+1,5) =s,B(,:)
else j « index of v = min(S)
if v < s then
S(j) = 5, B(j,;:) = y

y

The training process for the extended model is the same
as before; we only need to train k binary classifiers. How-
ever, the inference procedure has to be adjusted to fit non-
probabilistic models. The inference procedure is described in
Algorithm 2. This procedure simply iteratively updates each
variable until reaching convergence. It can be viewed as a
nonprobabilistic simplification of Gibbs sampling.

4 Related Work

Multi-label classification has received increasing attention
from machine learning community in recent years, due to its
practical relevance, and its interesting aspects from a theoret-
ical point of view. A large number of multi-label classifica-
tion methods have been proposed, including simple methods
based on binary classifiers, and advanced methods that ex-
ploit label correlations. We review a set of methods that are
most related to our work in this section.

One simple way of addressing multi-label learning is to
transform the multi-label classification problem into a few
single-label classification problems, e.g., the most intuitive
one-vs-rest learning methods [Lewis ef al., 2004]. Further
improvements have been studied on finding proper thresh-
olds to determine multiple labels in a related way by con-
sidering ranking scores [Schapire and Singer, 2000], SVM
scores [Boutell ef al., 2004], etc. In [Schapire and Singer,
20001, a boosting algorithm gives rise to a multi-label rank-
ing system. By defining a special cost function based on a
ranking loss, [Elisseeff and Weston, 2001] proposed a kernel
method for ranking-based multi-label classification.

Many more sophisticated methods take the label co-
occurrence information directly into account to improve
classification accuracy. A multi-label k-nearest neighbor
(MLKNN) approach presented in [Zhang and Zhou, 2005]
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takes the correlations of different labels into account to extend
standard k-nearest neighbors. A combination of MLKNN and
logistic regression was presented in [Cheng and Hiillermeier,
2009], where the neighborhood label information was used as
features for logistic regression classifiers.

[Godbole and Sarawagi, 2004] proposed an SVM method
with heterogeneous feature kernels (SVM-HF). In this
method, one binary SVM, S;, was first trained for each la-
bel j, then each training instance x’ was augmented with k
additional label features produced by {51, - - -, Si}. Finally,

new SVMs {Sy,---,S,} can be trained on the augmented
instances. In the test process, a test instance x was first clas-
sified by {S1,- - , Sk} to produce the label features, and the

augmented instance was then provided to {Si,---, Sk} to
obtain the final prediction result. This approach shares some
similar intuition with our proposed approach, but lacks the
general and principled framework we have. Moreover, its pre-
diction procedure remains in a naive stage. In [Hariharan et
al., 2010], a max-margin multi-label classification approach
was proposed for large scale problems. However, it requires
prior label correlation information to be provided.

Graphical models have also been used for multi-label clas-
sifications. The methods developed in [de Waal and van der
Gaag, 2007; Rodriguez and Lozano, 2008; Bielza et al.,
2011] all employed Bayesian networks to address multi-label
classification problem. However, these approaches involve
directed structure learning, and their models are less flexi-
ble in handling different types of input features x. [Gham-
rawi and McCallum, 2005] proposed two undirected graphi-
cal models to exploit label co-occurrence information within
the framework of conditional random fields. Both their train-
ing and inference procedures are more complicated than ours
on dependency network models. Without pruning, their ap-
proaches cannot handle large number of classes.

It has been theoretically shown in [Streich and Buhmann,
2009] that inference schemes ignoring co-occurrence imply a
model mismatch and thus cause biased parameter estimators.
It suggests both co-occurrence statistics and collective classi-
fication over multiple labels should be considered. Our pro-
posed model nicely integrates these two aspects by training
k augmented binary classifiers and employing a Gibbs sam-
pling for the joint prediction of multiple labels. The training
phase for our model is very simple and straightforward, and
the complexity of the multi-label classification is mainly han-
dled in the approximate inference phase.

5 Experimental Results

In this section we conduct experiments to investigate the
empirical performance of the proposed conditional depen-
dency network model comparing with related works. The
experiments are conducted on six widely used real-world
multi-label data sets: yeast, scene, enron, emotion, med-
ical, rcvl and genbase. These data sets come from dif-
ferent problem domains including text, biology, and mu-
sic. All results reported in this section are averages over
10 times repeats using random training/test partitions. The
train/test sizes used for each data set are listed as follows:
yeast(1500/917), enron(1123/579), emotion(391/202), medi-



Algorithm 2 Discrete Inference

Input: x: observed features; k: number of classes;
{01, ,0;}: model parameters.

Output: the predicted label vector y.
Procedure:
initialize y = (y1,...,Yx);
choose a random ordering r over variables Y.
repeat

for i=1to k do

Yr(i) = 20(y = 1%, y—r(i), Ori) — 1

end for

until converge

cal(645/333), rcv1(3000/3000), and genebase(463/200).

First we used Lo regularized probabilistic logistic regres-
sion (LR) as the binary classifier in our model and name
the resulted algorithm as “conditional dependency network-
logistic regression” (CDN-LR). We compared the CDN-LR
algorithm with the following three multi-label classification
algorithms: (1) a one-vs-rest baseline Ly regularized logis-
tic regression method (LR), which conducts binary classifi-
cations for each class independently; (2) the MLKNN algo-
rithm proposed in [Zhang and Zhou, 2005]; and (3) the col-
lective multi-label classification (CML) algorithm proposed
in [Ghamrawi and McCallum, 2005], which is based on
Markov random fields. We used MLKNN and CML as com-
parison methods since they both directly exploit the label co-
occurrence information. For MLKNN, we adopted & = 7 as
suggested in [Zhang and Zhou, 2005].

We next investigated the nonprobabilistic extension of con-
ditional dependency networks presented in Section 3.3, us-
ing SVMs as binary classifiers. The resulted algorithm is
denoted as “conditional dependency network-SVM” (CDN-
SVM). We compared it with three SVM-based multi-label
classification algorithms: (1) the corresponding baseline al-
gorithm, one-vs-rest SVM, which conducts binary classifica-
tions for each class independently; (2) the SVM with het-
erogeneous feature kernels (SVM-HF) proposed in [Godbole
and Sarawagi, 2004]; and (3) the ranking-based kernel SVM
method proposed in [Elisseeff and Weston, 2001]. The hy-
perparameter C in SVMs were selected via cross-validation.

The results for the eight algorithms on the six data sets in-
troduced above are reported in Table 1, 2 and 3, using the
widely used exact match ratio, macro-F 1 measure and micro-
F1 measure respectively. The results in the three tables show
that the proposed CDN-LR algorithm overperformed all the
other three approaches, LR, MLKNN, and CML, almost on
all the six data sets regarding all three evaluation criteria. The
only exception is that MLKNN achieved a better macro-F1
than CDN-LR on enron data set. Regarding the nonproba-
bilistic extension, the CDN-SVM algorithm outperformed the
alternative SVM, SVM-HF and RankSVM on most data sets
for all three evaluation measures. It has only been slightly
overperformed by SVM-HF regarding micro-F1 on genbase
data set, and outperformed by RankSVM regarding macro-
F1 on yeast data set. The consistent superior performance of
the proposed model demonstrated in these experiments over
alternative multi-label classification methods suggests the de-
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pendency model we proposed is successfully effective in ex-
ploiting the label dependency information to improve multi-
label classification performance. We also noticed the differ-
ence between the performance of CDN-LR and CDN-SVM
are mostly due to the difference between the performance of
base LR and base SVM. This suggests the base classifier se-
lection is important as well. Nevertheless the conditional de-
pendency network model proposed in this paper can incorpo-
rate a wide range of classification algorithms.

6 Conclusions

In this paper, we propose a novel generalized conditional de-
pendency network model for multi-label classification. The
proposed conditional dependency network is a fully con-
nected bidirectional graph, whose conditional distributions
are defined using binary classifiers. This model allows a very
simple training procedure, while its representation naturally
facilitates a simple Gibbs sampling inference on the test in-
stances. The proposed model can incorporate a wide range
of simple classification algorithms, including both proba-
bilistic classifiers and nonprobabilistic classifiers. We tested
this model using two base classifiers, logistic regression and
SVMs, in our experiments. Our empirical results suggest the
proposed model is very effective in exploiting the dependen-
cies of multiple labels, and has demonstrated superior perfor-
mance over a few alternative multi-label classification meth-
ods that exploit the same label co-occurrence information.
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