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A B S T R A C T

Feature selection ensemble methods are a recent approach aiming at adding diversity in sets of selected features,
improving performance and obtaining more robust and stable results. However, using an ensemble introduces
the need for an aggregation step to combine all the output methods that confirm the ensemble. Besides, when
trying to improve computational efficiency, ranking methods that order all initial features are preferred, and so
an additional thresholding step is also mandatory. In this work two different ensemble designs based on ranking
methods are described. The main difference between them is the order in which the combination and thresh-
olding steps are performed. In addition, a new automatic threshold based on the combination of three data
complexity measures is proposed and compared with traditional thresholding approaches based on retaining a
fixed percentage of features. The behavior of these methods was tested, according to the SVM classification
accuracy, with satisfactory results, for three different scenarios: synthetic datasets and two types of real datasets
(where sample size is much higher than feature size, and where feature size is much higher than sample size).

1. Introduction

In recent years the size of the datasets used for machine learning has
increased considerably, with the result that feature selection (FS) has
become an essential preprocessing step for many data mining applica-
tions. Since FS reduces storage needs and removes irrelevant and re-
dundant information, it improves the computational time needed for
the machine learning algorithms. Several studies have demonstrated
that FS can greatly improve the performance of subsequent classifica-
tion [1–3]. Many approaches and algorithms [1,4,5] have been em-
ployed for this task, in the quest for more robust, compact and high-
quality feature subsets.

To evaluate the features of a dataset, two different general ap-
proaches may be used: (i) individual evaluation and (ii) subset eva-
luation [6]. Individual evaluation methods, also known as rankers, as-
sign a level of relevance to each feature and return an ordered ranking
of all the features. Although this approach is not capable of eliminating
redundant features, it notably improves computational performance
over the subset evaluation approach. Subset evaluation generates suc-
cessive subsets of features that are iteratively evaluated, using an op-
timality criterion, until the final subset of selected features is obtained.
Although this approach has the advantage of detecting feature re-
dundancy, it is computationally less efficient.

Although machine learning methods traditionally have used a single

learning model to solve a particular problem, recently it has been
shown that combining multiple different models can improve results.
This approach, called ensemble learning, is based on the supposition
that combining the output of multiple experts is better than using the
output of any single expert [7–9]. Analogously, while FS is more fre-
quently based on using a single algorithm, lately a few works have
adopted the idea of ensemble learning for this task [10–12]. An en-
semble for FS works by combining the outputs of several FS methods,
aggregating partial results to obtain more robust and stable features for
subsequent learning tasks. Two general strategies can be used to in-
troduce the key concept of diversity in the ensembles. In the hetero-
geneous approach several different FS algorithms are used, whereas the
traditional homogeneous approach uses different partitions of the
training dataset fed to the same algorithm and producing different re-
sults that are also combined. This second strategy is the one exploited
by the well-known bagging and boosting algorithms [13,14]. Diversity
and robustness are thus achieved through the use of multiple feature
evaluation criteria [15]. Although both approaches—in which diversity
is the key concept—are of interest, the heterogeneous strategy is of
most interest when the user does not have the technical knowledge
necessary to select the most suitable algorithm for their problem. En-
sembles of filters have previously been used for different scenarios and
also for different classifiers, with outputs combined by means of
common simple voting [16,17]. Ensembles of feature rankers have also

https://doi.org/10.1016/j.inffus.2018.02.007
Received 12 June 2017; Received in revised form 14 February 2018; Accepted 18 February 2018

⁎ Corresponding author.
E-mail address: ciamparo@udc.es (A. Alonso-Betanzos).

Information Fusion 45 (2019) 227–245

Available online 19 February 2018
1566-2535/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/15662535
https://www.elsevier.com/locate/inffus
https://doi.org/10.1016/j.inffus.2018.02.007
https://doi.org/10.1016/j.inffus.2018.02.007
mailto:ciamparo@udc.es
https://doi.org/10.1016/j.inffus.2018.02.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.inffus.2018.02.007&domain=pdf


been used for different applications [18,19], with the single ranked
features combined in a global ranking using different approaches. Other
works propose a feature ranking scheme for an ensemble of multilayer
perceptrons (MLPs) [20], applied with a stopping criterion based on the
Out-of-Bootstrap (OOB) estimate [21].

In this study, the ensemble learning idea was applied to the FS
process and different ensemble configurations and designs were exe-
cuted and compared. An heterogeneous ensemble approach was im-
plemented, aimed at reducing the variability induced by using in-
dividual FS methods and taking advantage of the strengths and
overcoming the weaknesses of the individual methods. In addition,
ranker methods were used to configure the FS ensemble, since rankers
can reduce the size of data without compromising the time and memory
requirements of machine learning algorithms.

Since we were working with rankings, at some point we needed to
establish a threshold to retain only the relevant features and to combine
the rankings obtained by the different methods configuring the en-
semble. In this respect, the main novelty of our proposal herein is the
use of two different models, depending on whether thresholding was
performed before or after combination (Design TC and Design CT). The
performance of each model is analyzed and compared to the other ac-
cording to the SVM classification accuracy. Since establishing an ade-
quate threshold is not trivial, we also propose a methodology for es-
tablishing automatic thresholds based on measurements of data
complexity [22] for feature rankings, both in Design TC and Design CT.

To sum up, the main contributions of our proposal are: (i) to free the
user from having to select a specific FS method that works well with
their dataset, given that most methods produce variable results de-
pending on application characteristics; and (ii) to free the user from
having to select a specific threshold and having to experiment with
different percentages of retained features. The outcome is completely
automatic FS methods that are independent of the nature of the dataset
in that they obtain a generic threshold that runs smoothly in different
scenarios and extracts the best subset of features from each dataset
without having to pre-set threshold in feature percentages.

We experimented with a large and assorted suite of datasets, in-

cluding artificial datasets, classical real datasets and microarray data-
sets. Based on our results, we state conclusions and propose guidelines
of possible interest for future applications of ensembles for FS purposes.

The remainder of this paper is organized as follows. Section 2 de-
scribes the rationale under the design of the two ensemble approaches
proposed; Section 3 is an introduction to the proposed method and its
different components: ranker methods, combination (also called ag-
gregation) methods, threshold values and classifier method used;
Section 4 describes the proposed scenarios, experimental design and
experimental results; and finally, Section 5 summarizes our conclusions
and recommendations and proposes new lines of future work.

2. Information fusion design

In this study an ensemble of FS methods was used with the aim of
obtaining more consistent, efficient and robust solutions than those
yielded by individual methods. Using an ensemble means that the
performance variance of obtaining a single result is reduced; in addi-
tion, the combination of multiple subsets might help to remove less
relevant features [10–12]. The approach also has the advantage of not
requiring the user to understand the technical details of individual al-
gorithms and their suitability for certain datasets. We tested different
ensemble methods and different numbers of ranking techniques to
configure an ensemble (described in [11,23]), formed of six different FS
methods—the combination that produced the best results.

There are several ways to design an ensemble [24] and the first
decision is to select the FS methods. In our proposal, rankers were used
since computational efficiency was our priority. The different FS ran-
kers were individually applied to a particular dataset and the single
final subset was obtained by combining the obtained outputs, for which
reason a combination method was chosen. The use of rankers made it
mandatory to apply a threshold to limit the number of selected features
and so ensure efficiency in the subsequent learning methods. Different
designs were obtained depending on the order of the combination and
thresholding operations. Finally, of other possibilities for the ensemble
[11,24], we opted for an ensemble of n different ranker methods ap-
plied to the same training data, with two different designs: (i) rankings
combined before thresholding; and (ii) a threshold cutoff applied before
combining rankings.

2.1. Design CT: combination followed by thresholding

The generic design of an ensemble of feature rankers is based on
obtaining the result of each ranker method—an ordered ranking—
using an aggregator to fuse the rankings into a single final ranking and
subsequently applying a threshold cutoff to obtain a final practical
subset of features [7]. The pseudo-code for this approach is given in
Algorithm 1.

2.2. Design TC: thresholding followed by combination

We redesigned the generic ensemble (i.e. Design TC) by reversing the
order of the combination and thresholding steps. Therefore, the result
of each ranker method was obtained as a first step, as in the generic
design. A threshold cutoff was selected and applied to each single
output to obtain individual partial subsets of features. Finally, these
subsets were joined to achieve a single final subset of features. The
pseudo-code for this approach is given in Algorithm 2.

Data: N — number of ranker methods
Data: T — number of features to be selected

Result: P — classification prediction

1 for each n from 1 to N do
2 Obtain ranking Rn using ranker method rn

3 end
4 R = Obtain the final ranking by joining all Rn rankings using the Min combination method.
5 T = Select a threshold value cutoff t from those available and apply.
6 S = Select the T top attributes from R.
7 Build the classifier with the selected attributes S .
8 Obtain prediction P.

Algorithm 1. Pseudo-code for Design CT: combination followed by thresholding.
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3. Proposed methodology

As with most learning algorithms, each FS method has its strengths
and weaknesses and performance depends on the characteristics of the
datasets to which the method is applied. To optimize performance,
some knowledge of existing algorithms is required to be able to select
an appropriate method for a particular dataset. One possible solution to
this problem is to use an ensemble of FS methods that performs ac-
ceptably well, regardless of the nature of the problem. Several FS
methods can be used, with their partial results combined as a single
result. Several decisions need to be made, however, regarding the
specific FS and combination methods to be used. Below we first de-
scribe rankers, combination methods, thresholds and classification
methods and then we describe the ensemble designs derived from the
two different combination and thresholding sequences.

3.1. Feature selection methods

Of the many FS methods described in the literature, four filter
methods and two embedded methods were chosen. This set of ranker
methods was selected because (i) they are amply used by researchers
for FS purposes; and (ii) the fact that they are based on different metrics
ensures diversity in the final ensemble:

• Chi-Square [25] (filter). This univariate filter, based on the χ2 sta-
tistic, independently evaluates each feature with respect to the
classes. The higher the chi square value, the more relevant the
feature with respect to the class.

• Information Gain (InfoGain) [26] (filter). One of the most common
univariate methods for attribute evaluation, this filter assesses fea-
tures according to their information gain considering a single fea-
ture at a time.

• Minimum Redundancy Maximum Relevance (mRMR) [27] (filter). This
filter uses mutual information to select the most relevant features for
the target class that are also minimally redundant, i.e., it selects
features that are maximally dissimilar.

• ReliefF [28] (filter). The original Relief filter [29] works by randomly
sampling an instance from the dataset and then locating its nearest
neighbor from the same and opposite class. The values of the nearest
neighbor attributes are compared to the sampled instance so as to
update relevance scores for each attribute. The rationale is that a
useful attribute should differentiate between instances from dif-
ferent classes and should have the same value for instances from the
same class. ReliefF has the added ability of dealing with multiclass
problems and is also more robust in dealing with incomplete and
noisy data. This method can be applied in all situations, has low
bias, includes interaction between features, and may capture local
dependencies that other methods miss.

• Recursive Feature Elimination for Support Vector Machines (SVM-RFE)
[30] (embedded). This embedded method trains an SVM classifier
iteratively with the current set of features. The least important
features are then removed by an RFE process using weight as the
ranking criterion.

• Feature Selection-Perceptron (FS-P) [31] (embedded). This embedded
method is based on a perceptron, a type of artificial neural network
that can be viewed as a linear classifier, i.e., as the simplest kind of
feedforward neural network. It consists of training a perceptron in a
supervised learning context. Interconnection weights are used as
indicators of the most relevant features for ranking.

In a previous publication [11,12], a preliminary diversity study was
carried out on two classical datasets called SpamBase and Isolet (de-
scribed in Section 4.1 below). This study, aimed at checking whether
the rankings obtained by the different methods were substantially dif-
ferent, consisted of comparing the rankings obtained by the FS methods
forming the ensemble using Spearman’s rank correlation coefficient
[32].

The results obtained (with Spearman ρ values far from 1 reflecting
equality in the rankings) pointed to a considerable difference between
the partial rankings, indicating that the FS rankers chosen for the en-
semble would be sufficiently diverse in their behavior.

3.2. Threshold values

As previously mentioned, the FS methods used in this study are all
rankers (they sort all features) and so it was necessary to establish a
threshold cutoff to obtain a practical subset of features. Most studies in
the literature use thresholds that retain different percentages of features
[1,33]. Since threshold values are dependent on the particular dataset
being studied, several attempts have been made to develop a general
automatic threshold [12,34,35]. The idea of establishing an automatic
threshold [12,23] is based on using dataset complexity measures to
obtain an optimal number of features to be used for subsequent clas-
sification purposes. That idea is taken up and expanded in this study for
new scenarios and new designs. Note that the time required to calculate
automatic thresholds is almost negligible, especially for datasets with
few classes (see Section 4.2).

We carried out an exhaustive study that compared traditional fixed
thresholds—taken as our baseline—with our proposed automatic ap-
proaches, both for Design CT and Design TC. The automatic approach for
the thresholding step (which was already described for Design CT
elsewhere [23]) can be applied similarly on Design TC. The approach
individually calculates the complexity measure for each feature of the
dataset and, finally, it establishes the final subset of features according
to the following formula:

Data: N — number of ranker methods
Data: Tn — number of features to be selected

Result: P — classification prediction

1 for each n from 1 to N do
2 Obtain ranking Rn using ranker method rn

3 Tn = Select a threshold cutoff t from those available and apply to each Rn.
4 S n = Select the Tn top attributes from each Rn.
5 end
6 C = Select a combination method.
7 S = Obtain the final subset by combining all S n subsets using C.
8 Build the classifier with the selected attributes S .
9 Obtain prediction P.

Algorithm 2. Pseudo-code for Design TC: thresholding followed by combination.
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= × + − ×e α CM α ρ(1 ) (1)

where α is a parameter with a value in the interval [0, 1] that balances
the importance of both the error obtained and the number of features
retained, ( =α 0.75 empirically for this work), CM is one of the com-
plexity measures described below (F1, F2, F3 or CF) and ρ is the per-
centage of features retained with a value in the interval [0, 1]. In this
work, the feature percentages were calculated for batches of log2(n)
features. That is, we calculated e using only the first batch of log2(n)
features, and then calculated e for the batch of 2× log2(n), selecting the
best result for both. A smaller complexity value e represents an easier
problem.

Tested to delimit data dimensionality were seven different threshold
values, four of which are automatic thresholds based on complexity
measures:

• Fixed thresholds. 50%, 25% and 10% fixed thresholds were used to
select the top 50%, 25% and 10% of the features of the ordered
ranking respectively.

• Maximum Fisher’s discriminant ratio (F1). This measure is defined for
a multidimensional problem as:
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class c, respectively. In this work the inverse of the Fisher ratio (1/
F1) has been used, such that a small complexity value represents an
easy problem.

• Volume of overlap region (F2). Let the maximum and minimum va-
lues of each feature fi in class cj be max(fi, cj) and min(fi, cj). The
overlap measure F2 is thus defined as:
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For multiclass problems, F2 is computed for each pair of classes, the
absolute value is obtained for all of the classes and, finally, the
product of all these values is returned as output. A low value for this
measure means that the features can discriminate between the in-
stances of different classes.

• Maximum (individual) feature efficiency (F3). In a procedure that
removes unambiguous points falling outside the overlapping region
in each dimension, the efficiency of each feature is defined as the
fraction of all remaining points separable by that feature. The
maximum feature efficiency F3 is defined for a d-dimensional pro-
blem as:
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where xj is each of the examples in the training set D, xji the value of
example xj for feature i, and s the total number of examples in the
training set D.
For multiclass problems, F3 is computed for each pair of classes, the
absolute value for each is obtained and, finally, the maximum of all
these values is returned. In this work the inverse of this measure (1/
F3) has been used, such that a smaller complexity value represents
an easier problem.

• Complexity fusion (CF). This automatic threshold selects an optimal
number of features according to a combination of 1/F1, F2 and 1/F3
complexity measures, using an average of the three as the

complexity value:
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According to definition of complexity measures used in this calcu-
lation, a small complexity CF value represents an easy problem. In
addition, due to F1 measure can achieve any positive real value and
F2 and F3 take values in the range [0, 1], CF measure can obtain any
real positive value, where F1 measure value may dominate over the
other two measures in the final result.

3.3. Combination methods

The different ranker methods had to be combined in order to pro-
duce a single final output. Therefore, according to when the union
occurs—before or after thresholding—two different kind of combina-
tion stages were implemented:

• Aggregation or ranking combination: This approach was used on the
Design CT ensemble, i.e. when the FS method outputs are combined
before applying thresholding. This kind of combination method
performs a fusion of several rankings using some reduction function.
A single final ranking is thus the output of the union method that
combines all the input rankings. For this study, we used the
Minimum union method (Min) to combine the different input rank-
ings. This method, based on simple arithmetic operations, selects the
minimum of the relevance values yielded by each ranking in the FS
ensemble [36]. Despite its simplicity, this approach achieved the
best results for DNA microarray datasets in a previous work [37].
The behavior of this method can be illustrated with a simple ex-
ample. Imagine that we apply an ensemble of four different ranker
methods to a dataset with five features {a, b, c, d, e}. As can be seen
in Table 1, we obtain four different rankings of features {R1, R2, R3,
R4}, one for each ranker method in the ensemble. The last column in
the table shows the calculations made by the Min method, which
computes the best value achieved by each ranking along the dif-
ferent rankings (where best means the highest position). Note that
using this method can result in ties between features, so elements
that are tied are returned to their original position. Thus, in this
example, the Min method returns the ranking {a, b, e, c, d}.

• Subset combination: This was used for the Design TC ensemble, i.e.
when FS method outputs are thresholded before combination. In this
case, subsets are fused and the ranking order is therefore not taken
into account. Seven different combination methods were used,
grouped into two categories: (i) methods that fuse all subsets (U1-
U6); and (ii) methods that fuse the least complex subsets (L3). These
methods are described as follows:
1. Fusion of six subsets (U1–U6). The fusion of six subsets (a subset

for each FS method) merges the features of as many subsets as the
number of fusion methods (1–6). The fusion method U1 obtains a
final subset by fusing all the subsets, while U6 obtains a final
subset through the intersection of six subsets. Fusion methods U2,
U3, U4 and U5 select the features that appear simultaneously in
at least 2, 3, 4 and 5 subsets, respectively. So, Ui⊆Uj, ∀i≥ j
where = …i j, 1 6 and ≠ ∅ = …U i{ }, 1 6i provided that the subset

Table 1
Example of how the Min ‘aggregator’ works with multiple rankings.

Element R1 R2 R3 R4 RMin

a 1 3 1 1 1
b 2 1 2 5 1
c 3 5 3 4 3
d 4 4 5 3 3
e 5 2 4 2 2
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was selected at least by ReliefF. The rationale for this decision to
use the ReliefF method as a base for the ensemble is that its use is
recommended when the nature of the dataset is unknown [1].
The behavior of this method is illustrated with a simple example.
Imagine that we apply an ensemble of six different ranker
methods and an automatic threshold to a dataset with five fea-
tures {a, b, c, d, e}. As can be seen in Table 2, we obtain six
different subsets of features {S1, S2, S3, S4, S5, S6}, one for each
method in the ensemble. Notice that S4 corresponds to results
obtained by ReliefF method and therefore they will be used as a
base in the final results with the aim of avoiding empty subsets
and improving the final results. The six columns in the right of
the table illustrate the calculations made by the different U1-U6
methods.

2. Fusion of the three least complex subsets (L3). This combination
method is based on selecting the three least complex sub-
sets—according to CF complexity measure (see Section 3.2)—and
joining them to select all their features.
A simple example explains this method. Imagine that we apply an
ensemble of six different ranker methods and a automatic
threshold to a dataset with five features {a, b, c, d, e}. Each
feature has a complexity value assigned according to CF com-
plexity measure, and this value is used to calculate subset com-
plexity. For this example the following values were set: =a 0.5,

=b 0.3, =c 0.7, =d 0.2 and =e 0.9. Final subset complexity is
obtained by adding the individual complexity value for each
feature in the subset and dividing this value by the number of
features in the subset (last row in Table 3). As can be seen in
Table 3, we obtain six different subsets of features {S1, S2, S3, S4,
S5, S6} with six different subset complexity values, one for each
method in the ensemble. Finally, the subsets with the three
lowest complexity values (the shaded columns in the table) are
joined to obtain a unique single subset, as illustrated in the last
column of Table 3.

3.4. Final ensemble configuration

As indicated in Section 2, we developed two different ensemble
designs, depending on the order of the combination and thresholding
steps. Design CT, indicating the specific ranker methods, “aggregators”
or combination methods and threshold values used in this study is de-
picted in Fig. 1, while Design TC is depicted in Fig. 2.

3.5. Classification method

To compare the accuracy results obtained by our proposed methods,
we used a Support Vector Machine (SVM) [4] algorithm. The SVM
classifier is based on the idea of Structural Risk Minimization (SRM)
[38], which has received much attention in recent years [39,40], given
that, in a large number of applications, it performs better than tradi-
tional learning techniques such as neural networks [39]. In a compar-
ison of the performance of different classifiers for ensemble results [12],
SVM showed the best outcomes, which is why it was used in this study.
Note that the goal of this study was not to test the influence of the
classifier, but to determine a suitable automatic threshold for rankings
of features obtained by the ensemble.

3.6. Statistical tests

Statistical tests were conducted with the aim of comparing the re-
sults obtained by the different methods. We first generated the fitness
measure F [41] that combines both classification test error (ϵ) percen-
tages and proportions of selected features (ρ). The fitness of an in-
dividual method m, Fm, is given by:

= − + − × −F α α ρ(1 ϵ) (1 ) (1 ),m (6)

where α (0≤ α≤ 1) is a parameter that balances the influence of both
the above factors. In this study α was set to =α 5/6, so as to give greater
importance to classification error results than to the number of features.

The fitness measure F was used to obtain average ranking tables
(Tables 13 and 14) for the FS methods [42], based on statistical results
from Friedman [43,44], Dunn [45], Holm [46], Hochberg [47] and
Hommel [48].

We also used graphical representations of the Nemenyi test for post-
hoc testing (critical difference diagrams [49]) so as to obtain a visual
representation of the results (Figs. 8 and 16). In these diagrams, the top
line represents the axis on which the average rankings of methods are
drawn, with those appearing on the right hand side (lowest rankings)
performing better. On comparing all the FS methods, the groups of
methods that were not significantly different were connected. We also
show the critical difference (CD) above the graph.

4. Experimental study

An exhaustive experimental study was carried out to test the
threshold approaches in different scenarios.

4.1. Scenarios

Three different types of datasets were tested (synthetic, classical and
microarray), so as to cover different scenarios in terms of, for instance,
the presence of noise, correlation between features and ratios between
sample and feature sizes. All these datasets have numerical attributes:

1. Synthetic datasets (Type 1), for which feature relevance was
known in advance. The correct output was used as a reference
baseline and all samples were used as training data. Three different
feature relevance categories were considered:

• Relevant: A feature is relevant if its value varies systematically
with category membership [50].

• Redundant: A feature is redundant if it is highly correlated with
one or more of the other features [51].

• Irrelevant: A feature is irrelevant if it is not correlated with or
predictive of the class; otherwise it is useful [51].
There are several reasons for initially testing new FS methods on
synthetic datasets [52]:

• Controlled studies can be developed by systematically varying
chosen experimentalconditions, e.g. adding more redundant fea-
tures in the input, as this tests the strengths and weaknesses of the

Table 2
Example of how Fusion of subsets (U1-U6) works with multiple subsets.

S1 S2 S3 S4 S5 S6 U1 U2 U3 U4 U5 U6

a a a a a a a a a a a a
c c b d d d b c d d d d
e d d e c d e e

e e d e
e

Table 3
Example of how Fusion of the three least complex subsets (L3)
works with multiple subsets.
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algorithms.

• Previous knowledge of optimal dataset features allows full control
of the experimental conditions, meaning that the closeness to any
solution can be assessed automatically and with confidence.
In this study, eleven different synthetic datasets were analyzed,

covering a large suite of problems (data nonlinearity, noise in the
inputs and in the target, increasing number of irrelevant and re-
dundant features, etc). Additionally, the fact that some of the
datasets had a significantly higher number of features than sam-
ples implied an added difficulty for the FS methods. Parts of these

Fig. 1. Design CT: combination followed by thresholding.

Fig. 2. Design TC: thresholding followed by combination.
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datasets have been used previously [1,53] to test methods and
algorithms, which has the added advantage that evaluation can be
performed regardless of the classifier used. Table 4 shows the
different problems covered by each dataset, as well as the number
of features and samples and the relevant attributes which should
be selected by the FS methods (for further details see [1]). These
datasets were used first in our experimental study to identify si-
milar performances between methods and so reduce the number
of subsequent experiments with real datasets.

2. Classical datasets (Type 2), for which the number of samples is
higher than the number of features. Five popular datasets were
chosen (Table 5). The numbers of samples and features range from
1484 to 67,557 and from 8 to 617, respectively, and the datasets
represent both binary and multiclass problems. These datasets also
reflect issues that may arise in real problems, such as missing values
or nonlinearity (as happens in Spambase and in Madelon, respec-
tively). Ten-fold cross validation was applied to these datasets and
the average error across all ten trials was computed.

3. Microarray datasets (Type 3), for which the number of features is
much higher than the number of samples. Seven different DNA
microarray datasets (Table 6) were tested. This kind of dataset is
based on classifications of healthy and unhealthy patients when
different tumor types are annotated as the output class. They re-
present a particular challenge for FS researchers due to the small
sample size and the large number of gene expressions.
The datasets are available at http://datam.i2r.a-star.edu.sg/
datasets/krbd/. K-fold was not performed on this dataset type due
to the small number of samples. Datasets in the repository that were
originally divided into training and test sets were maintained as
such, while datasets with just a single training set were randomly
divided for comparative purposes (using the common rule of thumb
of 2/3 training and 1/3 testing data) and holdout validation was
applied. Both binary and multiclass DNA microarray datasets were
selected. Table 6 shows the number of features, samples and classes.

4.2. Experimental procedure

The experimental procedure was divided into two main steps ac-
cording to the ensemble design employed (Design CT or Design TC). In
both designs default parameters ( =C 1 and =γ 0.01) were used for the
SVM classifier with a radial basis function kernel (RBFK), given that the
goal was not to obtain the lowest possible error, but to determine the
combinations that behaved best for each dataset type and to compare
different ensemble approaches. Using automatic thresholds (for which
computation time is negligible) both frees the user from the highly
time-consuming operations of selecting and calculating percentages for
different fixed thresholds (see Table 7 for an example) and also elim-
inates classifier dependency.

4.2.1. Design CT
The experimental procedure in this case was as follows:

1. Individually implement the six FS methods (see Section 3.1).
2. Apply the six FS methods to obtain the six different rankings.
3. Merge the rankings using the Min combination method (see

Section 3.3) to obtain a final practical ranking.
4. Obtain a final ranking of the practical features subset according to a

threshold cutoff (see Section 3.2).
5. Use the SVM classifier (see Section 3.5) and estimate the test error to

check the suitability of the approach.
6. Perform statistical tests to better understand the classification re-

sults.

For the analysis of the synthetic (Type 1) datasets, only steps −1 4
of the experimental procedure were implemented, with the aim of
comparing the different ordered rankings of features. The procedure

was fully implemented for Type 2 (classical) and Type 3 (microarray)
datasets, using the corresponding validation scheme (i.e., ten-fold for
Type 2 and train/test for Type 3).

Table 8 summarizes the ranking methods, combination methods and
threshold cutoffs used in this study for each step of the Design CT en-
semble.

4.2.2. Design TC
The experimental procedure used was as follows:

1. Individually implement the six FS methods (see Section 3.1).
2. Apply the six FS methods to obtain the six different rankings.
3. Obtain a practical subset of features for each ranking according to a

threshold cutoff (see Section 3.2).
4. Merge the subsets using the different combination methods (see

Section 3.3) to obtain a final practical subset.
5. Apply the SVM classifier (see Section 3.5) and estimate the test error

to check the suitability of the approach.
6. Perform statistical tests to better understand the classification re-

sults.

As in Section 4.2.1, the procedure was applied to Type 2 and 3
datasets using the corresponding validation scheme (i.e., ten-fold for
Type 2 and train/test for Type 3). To analyze Type 1 datasets, only steps

Table 4
Synthetic datasets used in the experimental study.

Dataset Samples Features Relevant Microarray
features

Corral-100 500 100 1–4
Led-100a 500 100 1–7
Monk1 500 100 1,2,5
Monk2 500 100 1–6
Monk3 500 100 2,4,5
XOR-100 500 100 1,2
Parity3+3 500 100 1–3
SD1b 300 4000 G1, G2 ✓
SD2b 300 4000 −G G1 4 ✓
SD3b 300 4000 −G G1 6 ✓

a Led-100 was used without noise in the inputs ( =N 0) and with 15% noise ( =N 15).
b Gi means that the FS method must select only one feature within the ith group of

features.

Table 5
Classical datasets used in the experimental study.

Dataset Samples Features Classes Download

Spambase 4 601 57 2 UCI repository [54]
Madelon 2 400 500 2 UCI repository [54]
Connect4 67 557 42 3 UCI repository [54]
Isolet 7 797 617 26 UCI repository [54]
USPS 9 298 256 10 FS repository [55]

Table 6
DNA binary microarray datasets used in the experimental study.

Dataset Samples Features Classes

Train Test

Colon 42 20 2 000 2
DLBCL 32 15 4 026 2
Leukemia 38 34 7 129 2
Lung 32 149 12 533 2
Ovarian 169 84 15 154 2
11 Tumors 116 58 12 533 11
Leukemia 2 48 24 11 225 3
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−1 4 of the experimental procedure were implemented, with the aim of
comparing the different subsets of features.

Table 9 summarizes the methods used in this study for each step of
the Design TC ensemble.

4.3. Synthetic dataset results

The results obtained for synthetic datasets are shown in Tables 10
and 11. The columns under each dataset show the number of relevant
features (R) and irrelevant features (I) selected. Also included for each
method as an evaluator of FS effectiveness is an index of success [1],
labeled Suc:

=⎡
⎣⎢

− ⎤
⎦⎥

×suc R
R

α I
I

. 100,s

t

s

t (7)

where Rs is the number of relevant features selected, Rt is the total
number of relevant features, Is is the number of irrelevant features se-
lected and It is the total number of irrelevant features. The term α, in-
troduced to weight the choice of an irrelevant feature over the exclu-

sion of a relevant feature, is defined as = ⎧
⎨⎩

⎫
⎬⎭

α avg , R
I

1
2

t
t
. The index of

success (maximum 100, with higher values indicating better methods)
attempts to reward the selection of relevant features and to penalize the
selection of irrelevant ones, penalizing two situations in particular:

• An incomplete solution: relevant features are excluded.

• An erroneous solution: irrelevant features are included.

The results in each table are divided into rows according to the
thresholds and combination methods used. It can be observed that the
F1, F2 and F3 blocks contain the same seven methods, with the first
method corresponding to Design CT and the last six methods corre-
sponding to Design TC. Finally, the last block, called CFL3, is the new
approach applied to Design TC, based on combining the least complex
subsets.

One of the first conclusions that can be drawn is that F2 and F3
results are the same for all the synthetic datasets studied, indicating
that both complexity measures yield the same type of information. This
simplifies subsequent analysis of Type 2 and Type 3 datasets, for which
only the results for one of the complexity measures, F2 or F3, will be

shown.
Regarding the combination methods, it can be observed that theMin

method applied to Design CT obtained the best results for different
automatic thresholds. Also, when the more restrictive thresholds (U4,
U5 or U6) were applied to Design TC, better results were obtained for
the synthetic datasets. When a threshold such as U1 was used, it in-
cluded all the irrelevant features that the different methods selected
(usually not the same features), resulting in a relatively large number of
irrelevant features. However, when more restrictive thresholds were
used, features common to all the methods were usually selected as re-
levant, while irrelevant features were not selected. This would suggest
the advisability of using a threshold such as U3 or U4 to avoid extreme
cases.

The situation with the SD datasets is rather special. With the least
complex dataset, SD1, the trend was the same as with the remaining
synthetic datasets, so a good threshold option might be U3 or U4, as
these would reduce the number of irrelevant features without excluding
relevant features. However, as the complexity of the classification
problem increases (as happened with SD2 and SD3), using a restrictive
threshold would seem to lead to some relevant features being excluded.
In these cases, it would seem advisable to use a threshold such as U1 to
avoid excluding any relevant features.

As can be seen, the issue of selecting an appropriate threshold for all
the datasets is far from trivial. Focusing on Design CT, the Min combi-
nation method worked reasonably well for the different thresholds (it
always got the best result), but for Design TC, it was necessary to de-
velop new subset combination methods further. The new CFL3 measure
was investigated in terms of finding a threshold independent of any
particular dataset, so as to improve the stability and robustness of the
other combination approaches. This measure used the three complexity
measures (F1, F2 and F3) to implement the threshold cutoff and then
combined the three least complex subsets to achieve a final practical
subset. As can be seen in Table 10, the CFL3 method obtained a slightly
poorer index of success (Suc) than the best methods (U4, U5 and U6).
For complex datasets, such as SD1, SD2 and SD3 (see Table 11), the
CFL3 method achieved better results than U4, U5 and U6. The CFL3
method was studied for real datasets since it obtained stable results for
the different synthetic datasets, independently of their nature.

4.3.1. Redundant features
We also studied how redundant features were handled by the en-

semble approach compared to the individual ranking methods. The
behavior of each approach was illustrated using a small synthetic da-
taset with a total of 100 samples and 10 features: relevant, features 1–3;
redundant in relation to the previous features, features 4–6; and irre-
levant, features 7–10. Applied to this dataset, with the aim of obtaining
a final ranking or a final subset of features, was each ranking method
(Section 3.1) and each ensemble design (Section 2).

Table 12 shows the results achieved by each method, with re-
dundant features highlighted in boldface. Note that, since feature 1 was
redundant with feature 4, 2 with 5 and 3 with 6, it was irrelevant which
of the two features was selected. Redundancy only exists if two related
features are selected. For example, the F1U2 method selected features
2, 3, 4, 5, 6, 9 and 10. In this case feature 4 was relevant (since the

Table 7
Example computation times for automatic thresholds. Times are displayed in seconds (s.).
Tf indicates the time required to calculate the corresponding F measure, Tth represents the
time required to calculate the threshold cutoff and Ttot shows the total time required (sum
of the two previous times).

Dataset Method Tf (s.) Tth (s.) Ttot (s.)

Connect4 F1 0.077 0.023 0.100
F2 0.061 0.018 0.079
F3 0.067 0.015 0.082

Isolet F1 8.116 0.023 8.139
F2 2.216 0.018 2.234
F3 3.238 0.015 3.253

Table 8
Summary of FS methods for Design CT.

FS methods Combination methods Threshold cutoffs

Chi-Square Min 50%
InfoGain 25%
mRMR 10%
ReliefF F1
SVM-RFE F2
FS-P F3

CF

Table 9
Summary of the FS methods available for Design TC.

FS methods Threshold cutoffs Combination methods

Chi-Square F1 U1
InfoGain F2 U2
mRMR F3 U3
ReliefF CF U4
SVM-RFE U5
FS-P U6

L3
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method did not select feature 1) while 5 and 6 were redundant with
features 2 and 3. All the features were ordered according to their re-
levance in ranking-type methods, while the final set of selected features
were indicated in subset-type methods. As can be seen in Table 12,
although some individual ranking methods can deal with redundancy
(mRMR and SVM-RFE), this capacity is lost once these methods are
combined to configure the final ensemble. Thus, ensemble approaches
are better suited to capturing relevance rather than redundancy.

4.4. Classical dataset results

For experiments with classical datasets (datasets where sample size
is larger than feature size), average test error percentages and the
number of selected features were compared for Design CT and Design TC.
Results are shown in Figs. 3–7. Since the number of experimental re-
sults is very high, we only report graphical results (see http://www.
lidiagroup.org/index.php/en/materials-en.html for detailed tables).

Each figure shows the results achieved for a specific dataset; shown
on the left side is the average test error percentage obtained by the SVM

Table 10
Results for synthetic datasets. C indicates whether the correlated feature was selected (✓) or not selected (x), R is the relevant features selected, I is the number of irrelevant features
selected and Suc is the index of success.

Method Corral100 Led100 - N0% Led100 - N20% Monk1 Monk2 Monk3 Xor100 Parity3+3

R C I Suc R I Suc R I Suc R I Suc R I Suc R I Suc R I Suc R I Suc

MINF1 1–4 ✓ 2 99.15 1–7 0 100 1–7 0 100 1,2,5 4 98.91 3,6 5 31.83 2,5 5 65.30 1,2 5 98.67 1,2 5 65.30
F1U1 1–4 ✓ 9 97.18 1–7 0 100 1–7 1 99.69 1,2,5 33 90.97 3,6 25 25.84 2,5 24 60.10 1,2 36 90.44 1,2 24 60.10
F1U2 1–4 ✓ 4 98.59 1–7 0 100 1–7 0 100 1,2,5 29 92.06 3,6 18 27.94 2,5 16 62.29 1,2 35 90.71 1,2 22 60.65
F1U3 1–4 ✓ 3 98.87 1–7 0 100 1–7 0 100 1,2,5 25 93.16 3,6 9 30.63 2,5 12 63.38 1,2 29 92.30 1,2 5 64.48
F1U4 1–4 ✓ 2 99.15 1–7 0 100 1–7 0 100 1,2,5 25 93.16 3,6 5 31.83 2,5 12 63.38 1,2 27 92.83 1,2 6 65.02
F1U5 1–4 ✓ 2 99.15 1–7 0 100 1–7 0 100 1,2,5 25 93.16 3,6 5 31.83 2,5 12 63.38 1,2 27 92.83 1,2 6 65.02
F1U6 1–4 ✓ 2 99.15 1–7 0 100 1–7 0 100 1,2,5 25 93.16 3,6 5 31.83 2,5 12 63.38 1,2 26 93.10 1,2 5 65.30
MINF2 1–4 ✓ 2 99.15 1–7 0 100 1–7 0 100 1,2,5 4 98.91 3,6 5 31.83 2,5 5 65.30 1,2 5 98.67 1,2 5 65.30
F2U1 1–4 ✓ 9 97.18 1–7 0 100 1–7 1 99.69 1,2,5 19 94.80 3,6 22 26.74 2,5 21 60.92 1,2 18 95.22 1,2 19 61.47
F2U2 1–4 ✓ 4 98.59 1–7 0 100 1–7 0 100 1,2,5 12 96.72 3,6 16 28.53 2,5 12 63.38 1,2 17 95.49 1,2 16 62.29
F2U3 1–4 ✓ 3 98.87 1–7 0 100 1–7 0 100 1,2,5 8 97.81 3,6 7 31.23 2,5 5 65.30 1,2 10 97.34 1,2 7 64.75
F2U4 1–4 ✓ 2 99.15 1–7 0 100 1–7 0 100 1,2,5 5 98.63 3,6 5 31.83 2,5 5 65.30 1,2 6 98.41 1,2 6 65.02
F2U5 1–4 ✓ 2 99.15 1–7 0 100 1–7 0 100 1,2,5 4 98.91 3,6 5 31.83 2,5 5 65.30 1,2 6 98.41 1,2 6 65.02
F2U6 1–4 ✓ 2 99.15 1–7 0 100 1–7 0 100 1,2,5 4 98.91 3,6 5 31.83 2,5 5 65.30 1,2 5 98.67 1,2 5 65.30
MINF3 1–4 ✓ 2 99.15 1–7 0 100 1–7 0 100 1,2,5 4 98.91 3,6 5 31.83 2,5 5 65.30 1,2 5 98.67 1,2 5 65.30
F3U1 1–4 ✓ 9 97.18 1–7 0 100 1–7 1 99.69 1,2,5 19 94.80 3,6 22 26.74 2,5 21 60.92 1,2 18 95.22 1,2 19 61.47
F3U2 1–4 ✓ 4 98.59 1–7 0 100 1–7 0 100 1,2,5 12 96.72 3,6 16 28.53 2,5 12 63.38 1,2 17 95.49 1,2 16 62.29
F3U3 1–4 ✓ 3 98.87 1–7 0 100 1–7 0 100 1,2,5 8 97.81 3,6 7 31.23 2,5 5 65.30 1,2 10 97.34 1,2 7 64.75
F3U4 1–4 ✓ 2 99.15 1–7 0 100 1–7 0 100 1,2,5 4 98.63 3,6 5 31.83 2,5 5 65.30 1,2 6 98.41 1,2 6 65.02
F3U5 1–4 ✓ 2 99.15 1–7 0 100 1–7 0 100 1,2,5 4 98.91 3,6 5 31.83 2,5 5 65.30 1,2 6 98.41 1,2 6 65.02
F3U6 1–4 ✓ 2 99.15 1–7 0 100 1–7 0 100 1,2,5 4 98.91 3,6 5 31.83 2,5 5 65.30 1,2 5 98.67 1,2 5 65.30
MINCF 1–4 ✓ 2 99.15 1–7 0 100 1–7 0 100 1,2,5 4 98.91 3,6 5 31.83 2,5 5 65.30 1,2 5 98.67 1,2 5 65.30
CFL3 1–4 ✓ 4 98.59 1–7 0 100 1–7 0 100 1,2,5 10 97.26 3,6 12 29.73 2,5 10 63.76 1,2 12 96.81 1,2 11 63.66

Table 11
Results for synthetic datasets. (#) is the number of features selected, OPT(x) is the number of selected features within the optimal subset, where x indicates the optimal number of
features, Rd is the number of redundant features, I is the number of irrelevant features and Suc is the index of success.

Method SD1 SD2 SD3

(#) OPT(2) Rd I Suc (#) OPT(4) Rd I Suc (#) OPT(6) Rd I Suc

MINF1 12 1 5 6 49.93 12 3 7 2 74.94 12 4 7 1 66.62
F1U1 32 1 9 22 49.81 40 3 18 19 74.77 61 4 35 22 66.31
F1U2 15 1 9 5 49.91 27 2 18 7 49.84 34 4 26 4 66.48
F1U3 12 1 9 2 49.93 24 2 18 4 49.86 18 4 13 1 66.58
F1U4 12 1 9 2 49.93 24 2 18 4 49.86 14 3 10 1 49.93
F1U5 12 1 9 2 49.93 24 2 18 4 49.86 12 2 9 1 33.27
F1U6 12 1 9 2 49.93 24 2 18 4 49.86 12 2 9 1 33.27
MINF2 12 1 5 6 49.93 12 3 7 2 74.94 12 4 7 1 66.62
F2U1 32 1 9 22 49.81 31 3 12 16 74.82 44 4 27 13 66.42
F2U2 15 1 9 5 49.91 16 2 10 4 49.91 29 4 21 4 66.51
F2U3 12 1 9 2 49.93 13 2 10 1 49.93 15 3 11 1 49.92
F2U4 12 1 9 2 49.93 13 2 10 1 49.93 13 2 10 1 33.26
F2U5 12 1 9 2 49.93 13 2 10 1 49.93 12 2 9 1 33.27
F2U6 12 1 9 2 49.93 13 2 10 1 49.93 12 2 9 1 33.27
MINF3 12 1 5 6 49.93 12 3 7 2 74.94 12 4 7 1 66.62
F3U1 32 1 9 22 49.81 31 3 12 16 74.82 44 4 27 13 66.42
F3U2 15 1 9 5 49.91 16 2 10 4 49.91 29 4 21 4 66.51
F3U3 12 1 9 2 49.93 13 2 10 1 49.93 15 3 11 1 49.92
F3U4 12 1 9 2 49.93 13 2 10 1 49.93 13 2 10 1 33.26
F3U5 12 1 9 2 49.93 13 2 10 1 49.93 12 2 9 1 33.27
F3U6 12 1 9 2 49.93 13 2 10 1 49.93 12 2 9 1 33.27
MINCF 12 1 5 6 49.93 12 3 7 2 74.94 12 4 7 1 66.62
CFL3 14 1 9 2 49.93 13 2 10 1 49.93 23 3 19 1 49.87
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classifier and on the right side, the number of features selected by each
ensemble configuration. Two different textures are reflected in each
figure: striped bars to represent Design CT methods and solid bars to
represent Design TC methods. Note that the log2(n) scale is used on the
right side to improve visualization of the figures. As F2 and F3 threshold
cutoffs obtained the same results as for synthetic datasets (see
Section 4.3), for the sake of brevity only the results achieved by F2 are
shown in this section. The best results are highlighted in orange in each
figure.

Fig. 3 shows the results obtained for the Spambase dataset. The best
result was achieved by the Design TC ensemble with the F1 threshold
cutoff, whereas the poorest results were achieved by F2U5 and F2U6.
This dataset did not show any substantial classification improvement
when FS was applied, although the dimensionality was reduced for
slightly better accuracy. Finally, for the CFL3 cutoff method, the re-
lationship between the number of features and percentage test error
obtained was better than when compared to not using FS; however,
when compared to the F1 threshold, and even though fewer features
were used, the error increased slightly.

Fig. 4 shows the results obtained for the Madelon dataset, where the
best result was achieved, again, by the Design TC ensemble, whereas the
poorest result was achieved by the 100% threshold, i.e. when there was
no previous FS. In contrast, both the F1 and F2 threshold cutoffs pro-
duced similar results, with the U2, U3 and U4 combination methods
obtaining the best results. Finally, the CFL3 method obtained the best
test error results too, although with slightly higher dimensionality.

Fig. 5 shows the results obtained for the Connect4 dataset. Accuracy
results improved as dimensionality was reduced, and Design TC im-
proved on the dimension-error relationship with respect to Design CT.
The best results were obtained by the U2 combination method, for both
the F1 and F2 thresholds. The U3 and U4 combination methods and the
CFL3 ensemble achieved very similar percentage test errors while
slightly reducing dimensionality. It can be observed, at this point, that
real datasets with a small number of classes appear to take advantage of
the automatic threshold for all designs, as they not only improve ac-
curacy but also significantly reduce the dimensionality of the problem.

Finally, two datasets with a large number of classes were included in
the study: Isolet and USPS. For Isolet (Fig. 6), with 26 different classes,
only Design CT using a fixed 50% threshold obtained better results than

if the complete dataset (without FS) were used.
Finally, the results for the USPS dataset, with 10 different classes,

are shown in Fig. 7. Clearly, FS worsens the results of the classification
for all the combinations tested. As in the preceding dataset, automatic
thresholds results were poorer than fixed threshold results in most
cases. This would suggest that, for datasets with a large number of
classes, the use of automatic thresholds based on complexity measures
is not recommended.

To better understand the aforementioned results, the fitness mea-
sure F (explained in Section 3.6) was calculated for different FS
methods and datasets. This measure was used for two different post-hoc
tests:

• Table 13 shows a ranking of the FS methods, where a higher rank
reflects a better method.

• Fig. 8, constructed with the aim of obtaining a visual representation
of the results, shows the CD between FS methods (see explanation in
Section 3.6).

Table 12
Results for dealing with redundancy in a small synthetic dataset. Features 1–3 are re-
levant, 4–6 are redundant and 7–10 are irrelevant. Features are ordered according to their
relevance in ranking-type methods and the subset of final selected features is indicated for
subset-type methods. Redundant features are highlighted in boldface.

Method Type #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Chi-Square Ranking 10 3 2 9 4 5 6 7 8 1
InfoGain Ranking 10 3 2 9 4 5 6 7 8 1
mRMR Ranking 2 8 7 1 9 10 3 5 4 6
ReliefF Ranking 5 2 6 3 4 1 8 7 9 10
SVM-RFE Ranking 5 6 4 2 3 1 7 9 8 10
FS-P Ranking 2 5 1 4 3 6 7 8 9 10
MINF1 Ranking 2 5 10 3 6 8 1
F1U1 Subset 1 2 3 4 5 6 7 8 9 10
F1U2 Subset 2 3 4 5 6 9 10
F1U3 Subset 2 4 5 6
F1U4 Subset 2 5 6
F1U5 Subset 2 5 6
F1U6 Subset 2 5 6
MINF2 Ranking 2 5 10
F2U1 Subset 1 2 3 4 5 6 7 8 10
F2U2 Subset 2 3 5 6 10
F2U3 Subset 2 5 6
F2U4 Subset 2 5 6
F2U5 Subset 2 5 6
F2U6 Subset 2 5 6
MINCF ranking 2 5 10
CFL3 Subset 2 3 5 8 10

Table 13
Average rankings for FS methods applied to classical da-
tasets. A higher rank reflects a better method.

FS method Ranking value

CFL3 14.6
F2U2 14.0
25% 13.0
F1U2 12.2
F2U3 12.1
F1U3 11.9
F2U1 11.9
10% 11.6
MINF1 11.0
F2U4 10.9
F1U4 10.7
F1U1 9.7
F1U5 9.4
F1U6 9.4
50% 9.0
F2U5 8.4
F2U6 8.4
MINF2 7.7
MINCF 7.7
100% 6.4

Table 14
Average rankings of FS methods applied to micro-
array datasets. Higher ranks represents better
methods.

FS method Ranking

MINF1 14.6
MINF2 14.1
MINCF 14.1
F1U4 13.6
F2U4 13.6
F1U5 12.9
F1U6 12.9
F2U5 12.9
F2U6 12.9
F1U3 12.5
F2U3 12.5
CFL3 10.7
F1U2 10.6
F2U2 10.6
F2U1 9.8
F1U1 9.2
10% 5.1
25% 4.1
50% 2.0
100% 1.0
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Fig. 3. Results for the Spambase dataset. Left side: average test error percentage obtained by the SVM classifier. Right side: number of features selected by each ensemble configuration.
Striped bars represent Design CT methods and solid bars represent Design TC methods. The best results on each side are highlighted in orange.
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Fig. 4. Results for the Madelon dataset. Left side: average test error percentage obtained by the SVM classifier. Right side: number of features selected by each ensemble configuration.
Striped bars represent Design CT methods and solid bars represent Design TC methods. The best results on each side are highlighted in orange.
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Fig. 5. Results for the Connect4 dataset. Left side: average test error percentage obtained by the SVM classifier. Right side: number of features selected by each ensemble configuration.
Striped bars represent Design CT methods and solid bars represent Design TC methods. The best results on each side are highlighted in orange.
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Fig. 6. Results for the Isolet dataset. Left side: average test error percentage obtained by the SVM classifier. Right side: number of features selected by each ensemble configuration. Striped
bars represent Design CT methods and solid bars represent Design TC methods. The best results on each side are highlighted in orange.
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Table 13 and Fig. 8 illustrate the performance of different FS
methods and ensemble configurations for a classical dataset context. If
we focus only on Design CT methods, 25% and 10% thresholds obtain
higher ranking positions and better CD values than the automatic
thresholds, but always worse than Design TC performance. This is due to
the good error results obtained by the fixed thresholds for the Isolet and
USPS datasets, which have a large number of classes (26 and 10, re-
spectively). It should be noted that CFL3 method achieves the best
ranking value according to Table 13.

We draw a number of general conclusions as follows:

1. Design TC appears to be a better ensemble option than Design CT,
since the results obtained not only reduce the test error but also
result in a smaller number of features.

2. Automatic thresholds are a good option when the number of dif-
ferent classes in the dataset is small. In this study, the automatic
approach worked well for datasets with 2 or 3 classes, with per-
formance deteriorating as the number of classes increased.

3. The experiments would suggest the use of U2 or U3 as combination
methods when applying the Design TC ensemble.

4. Although the CFL3 threshold method obtained a poor result for the
USPS dataset, for the other four cases performance was good, robust
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Fig. 7. Results for the USPS dataset. Left side: average test error percentage obtained by the SVM classifier. Right side: number of features selected by each ensemble configuration.
Striped bars represent Design CT methods and solid bars represent Design TC methods. The best results on each side are highlighted in orange.
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Fig. 8. Critical differences between different FS methods applied to classical datasets. A lower value reflects a better method.
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and stable and always improved on or matched several configura-
tions of the Design TC ensemble with a remarkable dimensionality
reduction. As a result, CFL3 reaches the best fitness measure F value
and it ranks first in Table 13.

4.5. Microarray dataset results

The main characteristic of this type of dataset is that feature size is
greater than sample size. The different datasets selected range from
binary (Colon and Ovarian) to multiclass (Leukemia 2). As in the pre-
vious section, we compared average test error percentages and the
number of selected features for the different ensemble configurations
and designs (some of the results for Design CT ensemble have previously
been published in [23]). Since the number of experimental results is
very high, we only report graphical results (see http://www.lidiagroup.
org/index.php/en/materials-en.html for detailed tables).

Fig. 9 shows the results obtained for the Colon dataset. The best
results (both in terms of accuracy and dimensionality reduction and
using only 11 features out of the original 2000) were achieved by the
Design TC ensemble with the F1 and F2 threshold cutoffs and the U4, U5
and U6 combination methods. The poorest results were achieved when
we only used the classifier (no FS) and the fixed thresholding ap-
proaches. MINCF and CFL3 methods obtained better results than the
latter two approaches, but it was clearly outperformed by some auto-
matic thresholds for Design TC.

Fig. 10 shows the results obtained for the DLBCL dataset. Automatic
thresholding with the Design CT ensemble obtained lower errors and a
greater reduction in dimensionality than other thresholds. All Design TC
ensemble methods achieved same test error results, poorest than Design
CT, even though F1 and F2 automatic thresholds with U4, U5 and U6
combination methods perform a great dimensionality reduction, like
Design CT methods.

Figs. 11–13, for the Leukemia, Lung and Ovarian datasets, respec-
tively, confirm the trend evident in the two previously analyzed data-
sets.

Regarding the nature of the threshold cutoff, automatic thresh-
olding provided better results than fixed thresholding for those three
datasets. Of the automatic thresholds, the Design TC ensemble improved
or equaled the Design CT ensemble for the three datasets. If only a single
Design TC configuration that worked well on these datasets was to be
highlighted, CFL3 would be our choice, as it achieved the lowest per-
centage test error for the Leukemia dataset, and a percentage test error
very close to the best for the Lung and Ovarian datasets. In terms of
dimensionality reduction it should be noted that automatic thresholds
with Design CT and Design TC with U5 and U6 combination methods
achieve the best results in the five aforementioned datasets. Overall,
automatic thresholds proved the best choice for binary microarray da-
tasets since they not only improved the percentage error but also sig-
nificantly reduced the dimensionality of the problem.

As in the previous classical scenario, an analysis of two multiclass
microarray datasets was included in order to complete the study.
Figs. 14 and 15 show results for the 11 Tumors and Leukemia 2 datasets,
respectively. In both cases, one or more of the automatic thresholds
outperformed the fixed thresholds. For Leukemia 2, there was a re-
markable improvement in both accuracy and dimensionality reduction,
especially for the Design TC ensemble in Leukemia 2 dataset, which re-
turned an error of only 4% (contrasting with the 54% error returned by
the classifier without FS) and also considerably reduced the number of
features used (only 13, versus the original 11 225). The problem was
thus greatly simplified, was easier to interpret and visualize and was
computationally far less burdensome.

To summarize the aforementioned results, the fitness measure F
(explained in Section 3.6) was calculated for different FS methods and
datasets. This measure was used for two post-hoc tests:

• Table 14 shows a ranking of the FS methods, where a higher rank

represents a better method.

• Fig. 16, elaborated with the aim of obtaining a visual representation
of the results, shows the CD between FS methods (see Section 3.6).

Referring to Table 14 and Fig. 16, it would appear that MINF1 is the
best FS method for dealing with microarray datasets. According to
Table 14, F1U4 and F2U4 are the best Design TC methods, but according
to Fig. 16, F1U3 and F2U3 seem to work slightly better than the pre-
vious ones. In any case, the most notable conclusion is that the fixed
thresholds substantially underperformed the automatic thresholds.

We draw a number of general conclusions as follows:

1. Automatic thresholds would appear to be the best option for dealing
with microarray datasets, where feature size is much greater than
sample size. Compared to fixed thresholds, automatic thresholds are
not only more accurate but are also capable of reducing di-
mensionality.

2. The Design CT ensemble would seem to be a better option than the
Design TC ensemble, in view of its higher ranked results.

3. There are no significant differences in the results for the different
Design TC methods.

5. Conclusions and future work

5.1. Lessons learned

In this study of ranker ensemble methods, two steps were needed to
obtain a final result, namely, to combine partial results and to establish
a threshold that retained only relevant features. Regarding the order of
operations, we tested two designs: combination followed by thresh-
olding (Design CT), and thresholding followed by combination (Design
TC). Using different real datasets, we also tested fixed thresholds (es-
tablished percentages of retained features) and a novel automatic
threshold based on data complexity measures. Table 15 summarizes our
recommendations regarding designs and methods suitable for different
types of datasets, discussed as follows:

• On the basis of the study of a synthetic dataset (Section 4.3.1), even
though an individual FS method might detect redundancy, the final
aggregation step in the ensemble approach was not capable of re-
flecting this, indicating that ensemble approaches are better suited
for capturing relevance than redundancy.

• Focusing on synthetic datasets, Design CT and the Min combination
method achieved the best performance, both in the index of success
(suc.) measure and in the number of selected features. Moreover,
results were the same using the F1, F2 and F3 automatic thresholds.

• Regarding real datasets, the best option would appear to be the
novel Design TC ensemble, which first establishes the thresholds and
then combines subsets of features. In general, this design obtained
the lowest error rates and even used fewer features.

• The experimental results demonstrate that, in general, automatic
thresholds perform better than fixed thresholds. Automatic thresh-
olds also have the advantage of freeing the user from having to pre-
select and test fixed percentages for a given classifier. In the case of
datasets with a sample size greater than feature size (classical), this
conclusion only seems to hold for a small number of classes (2–3), as
performance seems to deteriorate as the number of classes increases.
This may be due to the fact that the complexity measures used to
establish automatic thresholds were developed specifically for
binary and not multiclass problems. Therefore, for classical datasets
with a large number of classes we would recommend using fixed
thresholds. Finally, CFL3 method is, generally speaking, robust and
stable and does not perform significantly worse than the other
methods.
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Fig. 9. Results for the Colon dataset. Left side: average test error percentage obtained by the SVM classifier. Right side: number of features selected by each ensemble configuration.
Striped bars represent Design CT methods and solid bars represent Design TC methods. The best results on each side are highlighted in orange.
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Fig. 10. Results for the DLBCL dataset. Left side: average test error percentage obtained by the SVM classifier. Right side: number of features selected by each ensemble configuration.
Striped bars represent Design CT methods and solid bars represent Design TC methods. The best results on each side are highlighted in orange.
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Fig. 11. Results for the Leukemia dataset. Left side: average test error percentage obtained by the SVM classifier. Right side: number of features selected by each ensemble configuration.
Striped bars represent Design CT methods and solid bars represent Design TC methods. The best results on each side are highlighted in orange.
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Fig. 12. Results for the Lung dataset. Left side: average test error percentage obtained by the SVM classifier. Right side: number of features selected by each ensemble configuration.
Striped bars represent Design CT methods and solid bars represent Design TC methods. The best results on each side are highlighted in orange.
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Fig. 13. Results for the Ovarian dataset. Left side: average test error percentage obtained by the SVM classifier. Right side: number of features selected by each ensemble configuration.
Striped bars represent Design CT methods and solid bars represent Design TC methods. The best results on each side are highlighted in orange.
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Fig. 14. Results for the 11 Tumors dataset. Left side: average test error percentage obtained by the SVM classifier. Right side: number of features selected by each ensemble configuration.
Striped bars represent Design CT methods and solid bars represent Design TC methods. The best results on each side are highlighted in orange.
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5.2. Concluding remarks and future work

FS ensembles emerged with the aim of freeing the user from having
to decide the best method for each particular problem, while also
adding diversity, robustness and stability to the process. Several studies
in the literature have already demonstrated the adequacy of using an FS
ensemble instead of a single FS method [11,16,17,37,56]. In this study
we propose an ensemble designed on ranker FS methods that requires
combination and thresholding to be performed in one or the other
order. We therefore tested two designs: combination before and after
thresholding. As for decisions regarding the threshold, this is a problem
that still has not been resolved by the research community. The typical
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Fig. 15. Results for the Leukemia 2 dataset. Left side: average test error percentage obtained by the SVM classifier. Right side: number of features selected by each ensemble configuration.
Striped bars represent Design CT methods and solid bars represent Design TC methods. The best results on each side are highlighted in orange.
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Fig. 16. Critical differences between different FS methods applied to microarray datasets. Lower values represent better methods.

Table 15
Summary recommendations for best designs and methods for different dataset types.

Scenario Number of Design Threshold Combination
classes (C) method method

Classical < =C 3 TC CF L3
C>3 CT 25% MIN

Microarray =C 2 CT CF MIN
C>2 TC F2 U1
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approach is to choose a fixed threshold percentage (e.g. selecting the
top 10% of ranked features), but the right percentage is very dependent
on the nature of data. A possible solution is to use classification accu-
racy to evaluate the quality of subsets of features obtained after ex-
perimenting with different thresholds; however, this approach implies a
significant computational burden, besides being highly dependent on
the learning algorithm used. We used automatic thresholds (these can
be adapted to the nature of the dataset without compromising the
computational cost) and complexity measures (instead of classification
accuracy) to evaluate the quality of the possible subsets of features
resulting from establishing the threshold. We tested our approach on
both classical datasets and microarray datasets, after first performing an
exhaustive analysis of synthetic datasets to identify similar perfor-
mances between methods and so reduce the number of subsequent
experiments.

As future work, we plan to develop new methods for application to
the combination phase of ensembles and also plan to apply more in-
formed criteria to solving the ties between some combiners. Another
potentially interesting new line of research would be to develop en-
semble methods that could ensure the elimination of redundancy
achieved by individual FS methods.
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