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A B S T R A C T

Multi-label classification is concerned with the assignment of sets of labels to individual data points. Due
to its diverse real-world applications, e.g., the annotation of text documents with topics, it has become a
well-established field of machine learning research. Compared to traditional classification, where classes are
mutually exclusive, multi-label classification comes with interesting challenges, most prominently the require-
ment to take dependencies between labels into account. In this work, we present a modular and customizable
implementation of BOOMER – an algorithm for learning gradient boosted multi-label classification rules – that
can flexibly be adjusted to different use cases and requirements.
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1. Introduction

The goal of multi-label classification (MLC) is to predict a subset
of relevant labels out of a predefined set of available labels. Real-
world applications of MLC include the assignment of keywords to text
documents, the annotation of multimedia data, such as images, videos
or audio recordings, as well as applications in the field of biology. For
a more extensive overview, we refer to survey articles on the topic,
such as the one by Gibaja and Ventura [1]. MLC is often tackled as a
supervised learning problem, where a predictive model is derived from
labeled training data provided to the learning algorithm. To assess the
predictive performance of a multi-label classifier by comparing the set
of predicted labels to the true labels, a variety of evaluation measures
with different characteristics have been proposed in the literature. As
these measures may conflict with each other, optimizing for one partic-
ular measure often leads to deterioration with respect to another [2].
As a consequence, a single model is usually not able to achieve optimal
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results with regard to all commonly used measures. This motivates the
need for MLC methods that offer means to be tailored to a particular
target measure at hand and are therefore flexible enough to be used for
different use cases and applications.

Among the many machine learning methods available, approaches
based on gradient boosting have received great attention in recent
years and have been shown to achieve state-of-the-art performance
when dealing with classification tasks. Moreover, the widespread use
of publicly available gradient boosting algorithms, such as XGBoost [3]
or LightGBM [4], shows the demand for highly efficient and scalable
implementations. Unfortunately, many algorithms, including the afore-
mentioned ones, are limited to binary and multi-class classification
and cannot deal with multi-label data out-of-the-box. Nevertheless, due
to its ability to tailor models to different target functions, gradient
boosting appears to be an appealing approach for solving multi-label
problems. In fact, several boosting-based algorithms, specifically aimed
https://doi.org/10.1016/j.simpa.2021.100137
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at MLC, have been proposed in the past (e.g., [5,6], or [7]). However,
they are mostly restricted to the optimization of label-wise decompos-
able evaluation functions, which neglect dependencies between labels
that may be hidden in the data, and often lack a publicly available
implementation, which impedes to use them in scientific studies or
commercial applications.

In the following, we introduce an open source implementation
of the BOOMER [8] algorithm, which has specifically been designed
to meet the requirements of MLC problems. It utilizes the gradient
boosting framework to learn ensembles of multi-label classification
rules. Each of the rules included in such a model applies to a pattern
encountered in the training data and provides a prediction for one
or several labels. Combining the predictions of multiple rules enables
the algorithm to achieve high predictive accuracy. For benchmarks
that compare the predictive performance of the algorithm to those of
competing approaches, we refer to preliminary work, such as [8,9].
Unlike decision trees, which are most commonly used in boosting-
based approaches, individual rules do not provide predictions for all
possible data points. This allows to focus the training effort on those
parts of the data that are more difficult to predict. In contrast to
competing approaches, BOOMER allows to optimize decomposable, as
well as non-decomposable, loss functions. This flexibility, together with
the ability to use different types of rules, depending on whether label
dependencies should be taken into account, makes it a versatile tool for
dealing with different kinds of MLC tasks.

2. Technical overview

The BOOMER software package includes the following components:

(a) An implementation of the algorithmic aspects in C++. It pro-
vides a programmatic API for configuring the algorithm and re-
lies on OpenMP [10] for the implementation of multi-threading
functionality, as well as on BLAS [11] and LAPACK [12] for
linear algebra computations.

(b) A Python API that integrates with the popular scikit-learn [13]
machine learning framework. It uses Cython [14] to interact
with the underlying C++ implementation.

(c) Additional Python modules that help to carry out experiments
using tabular datasets in the Mulan [15] format1. Experiments
can be started via a command-line API that allows to assess
the quality of predictions in terms of commonly used evaluation
measures, offers means for parameter tuning and can be used to
write experimental results and trained models into output files.

A key functionality of the BOOMER algorithm is its ability to
optimize different loss functions. The implementation presented in this
paper comes with several decomposable and non-decomposable loss
functions that serve as surrogates for commonly used multi-label evalu-
ation measures. Whereas decomposable loss functions can be optimized
for each label individually, non-decomposable losses require depen-
dencies between labels to be taken into account [2]. Depending on
whether the loss function is decomposable or not and unless specified
by the user, the algorithm automatically decides for the most suitable
type of rules to be used, as well as a strategy for the aggregation of
their predictions. As argued by Loza Mencía et al. [16] and empirically
testified by Rapp et al. [8], multi-label rules that predict for several
labels at the same time are well suited for the optimization of non-
decomposable evaluation measures, due to their ability to capture local
label dependencies, whereas single-label rules are a reasonable choice
when using decomposable measures. To be able to control the charac-
teristics of the models that are produced by the BOOMER algorithm, a
variety of regularization parameters are provided, including the ability
to use 𝐿2 regularization to prevent overfitting.

1 For example, a large collection of benchmark datasets is provided at
ttps://www.uco.es/kdis/mllresources.

To be able to deal with large datasets, BOOMER implements the
following techniques that speed up training or reduce the algorithm’s
memory footprint.

• The training algorithm is able to exploit sparsity in the training
data, if the data points supplied for training can efficiently be
stored using a sparse matrix format. For example, this require-
ment is often met when dealing with datasets for text classifica-
tion, resulting in a significant reduction of training time.

• The algorithm allows to deal natively with both, categorical and
numerical features. Therefore there is no need for pre-processing
techniques, such as one-hot-encoding, which increase the dimen-
sionality of the data and induce a computational overhead.

• The true labels, which are provided as part of the training data,
can be supplied in the form of a sparse matrix. As most multi-label
datasets come with sparse labels, i.e., individual data points are
associated with a small fraction of the available labels, this often
reduces the amount of memory required for training. Accordingly,
sparse matrix formats can also be used for prediction.

• Multiple CPU cores can be utilized for training and prediction.
The multi-threading implementation is based on OpenMP and the
means for parallelization offered by BLAS and LAPACK, respec-
tively.

The BOOMER algorithms is implemented in a modular fashion. This
enables to use different implementations for the algorithmic aspects
that are involved in the induction of rules and which are outlined
by Hüllermeier et al. [17]. In the following, we provide a list of the
most prominent features that can optionally be used.

• Gradient-based label binning (GBLB) [18] forms groups of la-
bels, for which a rule should predict similarly. The use of GBLB
has been found to speed up training significantly when optimiz-
ing non-decomposable loss functions and may even result in an
improvement of predictive accuracy.

• Different sampling methods can be used to learn from subsets of
the available training data. Among others, this includes stratifica-
tion methods proposed by Sechidis et al. [19].

• Similar data points can be assigned to groups using different
binning methods. Similar to the histogram-based construction of
gradient boosted decision trees employed by XGBOOST [3] and
LightGBM [4], this may help to process datasets with a very large
number of data points.

• Early stopping strategies can be used to terminate training as soon
as a model cannot further be improved in terms of the target
function, according to an estimate obtained from an otherwise
unused fraction of the training data.

3. Impact

By making the source code of the BOOMER algorithm publicly
available, we adhere to the principles of reproducible research and
enable members of the scientific community to use our approach for
their own work. Since its publication, it has already been used as a
baseline in empirical studies [9,20] and in the future it could further
serve as a basis for developing novel machine learning algorithms.
Unlike existing methods, the algorithm is not restricted to the use of
label-wise decomposable evaluation functions, but can also be used for
the optimization of non-decomposable measures. Due to this ability,
the algorithm could lay the foundation for the development of novel
machine learning algorithms, specifically tailored to the family of non-
decomposable evaluation measures, as well as the investigation of
corresponding surrogate losses. Besides the use for scientific purposes,
the choice for a permissive free software license (MIT) allows for an
integration of the algorithm with proprietary software, which is an
important requirement for usage in commercial applications.
2
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In recent years, research on multi-label classification has increas-
ingly been motivated by the need to process large amounts of data.
To account for this requirement, computational efficiency has always
been a major focus of our efforts, including the investigation of opti-
mizations and approximation techniques that may help to overcome
the computational demands that result from large datasets. Despite
improvements that have already been achieved in this regard (cf. [18]),
the optimization of non-decomposable measures remains computation-
ally challenging. By making the source code publicly available, we hope
to contribute to the solutions of these problems.
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