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Abstract The widely known binary relevance method for multi-label classification, which
considers each label as an independent binary problem, has often been overlooked in the
literature due to the perceived inadequacy of not directly modelling label correlations. Most
current methods invest considerable complexity to model interdependencies between labels.
This paper shows that binary relevance-based methods have much to offer, and that high
predictive performance can be obtained without impeding scalability to large datasets. We
exemplify this with a novel classifier chains method that can model label correlations while
maintaining acceptable computational complexity. We extend this approach further in an
ensemble framework. An extensive empirical evaluation covers a broad range of multi-label
datasets with a variety of evaluation metrics. The results illustrate the competitiveness of
the chaining method against related and state-of-the-art methods, both in terms of predictive
performance and time complexity.
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1 Introduction

Multi-label classification is the supervised learning problem where an instance may be as-
sociated with multiple labels. This is opposed to the traditional task of single-label classifi-
cation (i.e. multi-class, or binary) where each instance is only associated with a single class
label. The multi-label context is receiving increased attention and is applicable to a wide
variety of domains, including text classification (Schapire and Singer 2000; Godbole and
Sarawagi 2004; Fürnkranz et al. 2008), scene and video classification (Boutell et al. 2004;
Dimou et al. 2009), and bioinformatics (Elisseeff and Weston 2001; Vens et al. 2008).

A common approach to multi-label classification is to perform problem transformation,
whereby a multi-label problem is transformed into one or more single-label (i.e. binary, or
multi-class) problems. In this way, single-label classifiers are employed; and their single-
label predictions are transformed into multi-label predictions. Problem transformation is at-
tractive on account of both scalability and flexibility: any off-the-shelf single-label classifier
can be used to suit requirements. Previous work has used Support Vector Machines (Godbole
and Sarawagi 2004), Naive Bayes (McCallum 1999), k Nearest Neighbor methods (Spy-
romitros et al. 2008), and Perceptrons (Fürnkranz et al. 2008).

The alternative to problem transformation is to modify an algorithm directly to make
multi-label predictions. Well-known approaches include AdaBoost (Schapire and Singer
2000), decision trees (Vens et al. 2008), and lazy methods (Zhang and Zhou 2007). Such
methods are usually chosen to work specifically in certain domains. Decision trees are espe-
cially popular in bioinformatics, for example. Some adaptations involve problem transfor-
mations internally which may be generalisable.

There are several families of problem transformation methods in the multi-label lit-
erature. These methods arise from one or more fundamental problem transformation ap-
proaches that either form the core of more complex methods or are used in algorithm adap-
tations. Here we review these fundamental methods.

The most common problem transformation method is the binary relevance method (BR)
(Tsoumakas and Katakis 2007; Godbole and Sarawagi 2004; Zhang and Zhou 2005). BR
transforms a multi-label problem into multiple binary problems; one problem for each label,
such that each binary model is trained to predict the relevance of one of the labels.

Although BR is mentioned throughout the literature, it has often been overlooked on the
grounds that it does not directly model correlations which exist between labels in the training
data. The argument is that, due to this loss of information, BR’s predictive performance
suffers.

A binary pairwise classification approach (PW) can also be applied to multi-label classifi-
cation as a problem transformation method, where a binary model is trained for each pair of
labels. The predictions of these models result more naturally in a set of pairwise preferences
than a multi-label prediction (thus becoming popular in ranking schemes), but this method
has been adapted in Fürnkranz et al. (2008) to make multi-label predictions. Although PW
performs well in several domains, it faces quadratic complexity in terms of the number of
labels and, for this reason, is usually intractable for large problems.

Another well-known problem transformation method is the label combination or label
power-set method (LC), which has formed the basis for methods in several publications,
for example (Boutell et al. 2004; Tsoumakas and Vlahavas 2007; Read et al. 2008). LC
transforms a multi-label problem into a single-label (multi-class) problem by treating all
label sets as atomic labels, i.e. each label set is treated as a single label in a single-label
multi-class problem. Although able to model label correlations in the training data, cited
disadvantages of LC include its worst-case computational complexity (exponential with the
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number of labels) and tendency to over-fit the training data because it can only model label
sets observed in the training data (Tsoumakas and Vlahavas 2007; Read et al. 2008).

The consensus view in the literature is that it is crucial to take into account label cor-
relations during the classification process (Ji et al. 2008; Godbole and Sarawagi 2004;
Tsoumakas and Vlahavas 2007; Read et al. 2008; Sun et al. 2008; Yan et al. 2007;
Loza Mencía and Fürnkranz 2008), and most work has turned away from BR to more com-
plex methods. However, as the size of multi-label datasets grows, many methods are chal-
lenged by the growth in the number of possible correlations; even methods that only try to
model a subset of possible label correlations can become intractable. Consequently, although
these methods can be very accurate on small datasets, they are very slow or even intractable
on larger datasets, like Fürnkranz et al. (2008) and Cheng et al. (2010). This necessarily
restricts their usefulness, as many multi-label contexts involve large numbers of examples
and labels.

In this paper we extend our work on classifier chains for multi-label classification, which
we introduced in Read et al. (2009b). Our classifier chains method (CC), which is based on
the BR method, overcomes the disadvantages of BR and achieves higher predictive perfor-
mance, but still retains important advantages of BR, most importantly low time complexity.
CC offers a general problem transformation method that inherits the efficiency of BR and
competes with the high accuracy of more computationally complex methods. In Read et
al. (2009b) we applied classifier chains in an ensemble framework (ECC) and empirically
demonstrated high predictive performance as compared with other modern multi-label meth-
ods.

Further to the presentation in Read et al. (2009b), this work investigates, develops, and
evaluates the classifier chains framework along various lines. Specifically, it provides:

– a deeper discussion of the performance of the CC framework, where we look at the prob-
abilistic interpretation of classifier chains presented in Cheng et al. (2010)

– a new, more competitive ensemble scheme
– a new, more scalable ensemble variation for larger datasets
– a thorough discussion of the time complexity of different multi-label methods
– a more extensive empirical evaluation, extended across several dimensions: new datasets,

additional measures of multi-label evaluation, a discussion on threshold selection, and
comparison with additional methods from the multi-label literature

– a more in-depth discussion of results, showing how the above provides additional contri-
butions to multi-label classification.

2 Preliminaries

In this section, we present the formal notation that we use throughout.
In all that follows, Xd ⊂ R is the input domain of all possible attribute values. An instance

is represented as a vector of d attribute values x = [x1, . . . , xd ]. The set L = {1, . . . ,L} is
the output domain of possible labels. Each instance x is associated with a subset of these
labels. This set is represented by an L-vector y = [y1, . . . , yL], where y1 = 1 if and only if
label j is associated with instance x, and 0 otherwise.

We assume a set of training data D of N labelled examples D = {(xi ,yi )|i = 1, . . . ,N}.
We use superscripts here to avoid ambiguity with the label dimension, such that yi

j represents
the binary relevance of the j th label pertaining to the ith example.

Hence, in the BR-context, a classifier h is comprised of L binary classifiers h1, . . . , hL,
where each hj learns from D to predict the relevance of ŷj ∈ {0,1}, i.e. whether an example
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Table 1 Worst case
computational complexity for
common methods

Method #models Class labels/model Examples/model

BR L 2 N

PW L(L−1)
2 2 ≤ N

LC 1 min(N,2L − 1) N

x belongs to the j th label (1) or not (0). Thus, the output of h, i.e. the prediction, is a vector
ŷ ∈ {0,1}L for any instance x.

3 In defence of the binary relevance method

Although BR’s disadvantages are widely acknowledged, its advantages have rarely been
mentioned. BR is theoretically simple and intuitive. It is highly resistant to overfitting label
combinations, since it does not expect examples to be associated with previously-observed
combinations of labels (as LC methods do). It can therefore handle very irregular labelling.
Since labels have a one-to-one relationship with binary models, labels can be added and
removed without affecting the rest of the model (making it applicable to a variety of contexts
such as evolving data and other dynamic scenarios).

However the most important advantage of BR is arguably its low computational complex-
ity as compared with other methods. Let us consider the worst case computational complex-
ity of the fundamental problem transformation methods. In Table 1, complexity is displayed
in terms of the number of single-label models involved in the transformation, and the class
labels and examples associated with these models.

Given a constant number of examples, BR scales linearly with the number of labels:
there are L binary problems. A PW approach on the other hand scales quadratically with L

in terms of the number of models. Although in the pairwise single-label case models may
be much smaller than a BR-like one-vs rest scheme (as explained by Fürnkranz 2002), this
does not necessarily apply to the same extent in the multi-label domain where multiple labels
can be associated with each example. Thus, we find that PW methods are very sensitive to
large L. LC involves only a single model, but the worst case number of class labels scales
exponentially with L (limited by N ). All methods that model all label sets will necessarily
suffer this complexity.

We note that in typical multi-label settings, the label set is limited in scope, such that
the number of labels can be expected to be fewer than the number of attributes in the input
space (we discuss this further in Sect. 8.1). This is the setting we consider. Scenarios where
the number of labels is very large, or not defined prior to classification, are beyond the
scope of this paper. However, note that the number of examples N may be large, and this
is the limiting factor for LC: depending on the dataset, an LC transformation may result in
thousands or even tens of thousands of class labels. This is particularly problematic where
base classifiers imply greater than linear complexity with respect to the number of class
labels, and the complexity of multi-class models like LC can be even greater.

Because BR’s L binary problems are separate, under demanding circumstances it is con-
ceivable (and desirable) to run each label problem separately, in either parallel or serial
fashion (over L processors, or L iterations), thus requiring only a single binary problem in
memory at any point in time.

Nevertheless, despite its advantages, it is clear that not modelling label correlations can
cause problems for the BR method in terms of predictive performance. In the next section
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(a) BR’s transformation
h : x → y
h1: [0,1,0,1,0,0,1,1,0] 1
h2: [0,1,0,1,0,0,1,1,0] 0
h3: [0,1,0,1,0,0,1,1,0] 0
h4: [0,1,0,1,0,0,1,1,0] 1
h5: [0,1,0,1,0,0,1,1,0] 0

(b) CC’s transformation
h : x′ → y
h1: [0,1,0,1,0,0,1,1,0] 1
h2: [0,1,0,1,0,0,1,1,0,1] 0
h3: [0,1,0,1,0,0,1,1,0,1,0] 0
h4: [0,1,0,1,0,0,1,1,0,1,0,0] 1
h5: [0,1,0,1,0,0,1,1,0,1,0,0,1] 0

Fig. 1 Transformation under BR and CC for (x,y) where y = [1,0,0,1,0] and x = [0,1,0,1,0,0,1,1,0]
(assuming, for simplicity, a binary attribute space). Each classifier hj is trained to predict ŷj ∈ {0,1}

we present a novel binary relevance method, CC, which can model label correlations, while
maintaining acceptable computational complexity similar to BR.

4 The classifier chains model (CC)

The Classifier Chains model (CC) involves L binary transformations—one for each label—
as in BR. In this sense, CC is also a binary relevance method, but it is different from BR in
that the attribute space for each binary model is extended with the 0/1 label relevances of
all previous classifiers; thus forming a classifier chain. The training procedure is outlined in
Algorithm 1. Figure 1 illustrates the process with an example, contrasting it with BR.

Algorithm 1 CC’s training phase for training set D and label set L of L labels

TRAINING(D = {(x1,y1), . . . , (xN,yN)})
1 for j = 1, . . . ,L

2 do � the j th binary transformation and training
3 D′

j ← {}
4 for (x,y) ∈ D

5 do x′ ← [x1, . . . , xd, y1, . . . , yj−1]
6 D′

j ← D′
j ∪ (x′, yj )

7 � train hj to predict binary relevance of yj

8 hj : D′
j → {0,1}

Hence a chain h = (h1, . . . , hL) of binary classifiers is formed. Each classifier hj in the
chain is responsible for learning and predicting the binary association of the j th label given
the attribute space, augmented by all prior binary relevance predictions in the chain. Note
that, although Fig. 1 shows binary attributes in the original x, it may also be composed
of other types of attributes such as numerical values. The chained attributes, however, are
always binary.

It is straightforward to obtain classifications from this chain. The classification process
begins at h1 and propagates along the chain: the j th binary classifier predicts the relevance
of the j th label, given the attribute space augmented by the predictions of all previous binary
classifiers in the chain. This classification procedure is outlined in Algorithm 2.

This chaining method passes label information between classifiers, allowing CC to take
into account correlations in the label space, and thus overcoming the problem associated
with BR of ignoring this information. Although the additional attributes make up a small
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Algorithm 2 CC’s prediction phase for a test instance x

CLASSIFY(x)

1 � global h = (h1, . . . , hL)

2 y ← [ŷ1, . . . , ŷL]
3 for j = 1, . . . ,L

4 do x′ ← [x1, . . . , xd, ŷ1, . . . , ŷj−1]
5 ŷj ← hj (x′)
6 return ŷ

part of the total attribute space, if strong correlations exist then these attributes give any
base classifier relatively more predictive power.

The advantage of using the 0/1 label relevance predictions instead of probabilistic predic-
tions, which some classifiers may be able to provide, is that no internal validation procedure
is necessary: at training time each classifier can train directly on the 0/1 relevance values
available in the training data. This is also why we use a chain model, since combining all
0/1 relevance values at once using a stacking approach would require a meta process with
internal validation (we refer to such a method in Sect. 6). In later sections we compare em-
pirically with such a meta classifier and show that it always requires more than twice the
running time of our chain model.

Although an average of L/2 attributes are added to each instance, the size of the label
space L is limited in practice and therefore the computational complexity of CC can be very
close to that of BR. BR’s complexity is O(L × f (d,N)), where f (d,N) is the complexity
of the underlying learner for d attributes and N examples. CC’s complexity is O(L×f (d +
L,N)), i.e. a penalty is incurred for having up to L additional attributes. Assuming a linear
base learner (with respect to the number of attributes d), CC’s complexity becomes O(L ×
d × f (1,N) + L × L × f (1,N)), where the first term dominates as long as L < d , which
we normally expect (see Sect. 8), and therefore the effective complexity of CC is O(L×d ×
f (1,N)), which is identical to BR’s complexity. Indeed, we will see empirically in Sect. 8
that the difference in running time between BR and CC tends to be small in practice.

Like those of BR, CC’s models can both be parallelized (at least in the training procedure)
and serialized, such that only a single binary problem is required in memory at any point in
time—a clear advantage over methods based on a single large model.

The order of the chain itself (determined by the order of the label variables in each y
vector) will normally have an effect on accuracy. This has also been noticed by the authors
of Cheng et al. (2010), who expand the work on CC (from Read et al. 2009b) by formulating
a probabilistic interpretation. In their analysis of the classifier chains problem, they explain
how Bayes-optimal probabilistic classifier chains (PCC) can be formed based on probability
theory. Under the product rule, the conditional probability of y for an instance x (where
Px(y) ≡ P (y|x)) is:

Px(y) = Px(y1) ·
L∏

j=2

Px(yj |y1, . . . , yj−1)

When hj (·) is a probabilistic classifier, this can be rewritten as:

Px(y) = h1(x) ·
L∏

j=2

hj (x, y1, . . . , yj−1)
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Given Px and a loss function to be minimised, (we will review and present several in
Sect. 8.3), an optimum prediction can be obtained by minimising the risk of using different
variable orderings in the vectors y.

By employing different loss functions PCC can be tailored to a specific multi-label eval-
uation measure. In contrast, CC, as we present it, does not optimise a particular loss function
and is thus not tailored towards a specific evaluation measure. When labels are independent,
CC will tend to function similarly to BR. However, given the presence of label correlations,
as explained in Cheng et al. (2010), CC will approximate the mode of the joint distribution,
that is to say, that it will tend to function more like LC.

CC is neither theoretically optimal nor is it tailored to a specific evaluation measure.
There is a reason for this: an optimal classifier like PCC comes at an intractable computa-
tional cost in practice. While PCC must look at each of 2L possible combinations, CC needs
only consider a single (default or random) order of the L label variables in y. For PCC,
this implies an upper limit for L of around 10–15 (Cheng et al. 2010). For example, this
is nearly two orders of magnitude less than the number of labels in the Delicious dataset
(where L = 917) which we consider in our experimental evaluation in Sect. 8. Furthermore,
we claim that by not being tailored towards a specific evaluation measure, the methods
we present provide all-round good performance—a desirable quality in practice, especially
where “off-the-shelf” methods are sought after.

It is true that a randomly arranged chain can be poorly ordered. We overcome this issue
with a different strategy; by employing ensembles of CC, with a random chain order for each
iteration. This limits complexity to be linear with respect to the number of iterations and
provides reliably high predictive performance, as we show empirically. In the next section,
we present this ensemble framework.

5 Ensembles of classifier chains (ECC)

In this section we present Ensembles of Classifier Chains (ECC). As indicated in the previous
section, a single standalone CC model can be poorly ordered. Moreover there is the possible
effect of error propagation along the chain at classification time, when one (or more) of the
first classifiers predict poorly. Using an ensemble of chains, each with a random label order,
greatly reduces the risk of these events having an overall negative effect on classification
accuracy, and at only a linear time cost with respect to the number of iterations. An ensemble
framework will not interfere with the ability to build CC’s binary models in a parallel or serial
fashion where memory space is a priority. Moreover a common advantage of ensembles is
their well-known effect of generally increasing overall predictive performance.

Note that binary methods are occasionally referred to as ensemble methods because they
employ multiple binary models. However, none of these models is multi-label capable and
therefore we use the term ensemble strictly in the sense of an ensemble of multi-label meth-
ods.

In Read et al. (2009b) we used an ensemble taking simple subsets of the examples in
the training set, for each ensemble member, sampled without replacement. Subsequently
we discovered that a bagging scheme (Breiman 1996) can achieve higher predictive perfor-
mance. This comes at a marginal cost in terms of time complexity, which can be justified by
the gains in predictive performance. Moreover, in Sect. 7 we present new variations of ECC
which give much improved efficiency, and provide scalability for large datasets.

ECC trains m CC classifiers h1, . . . ,hm; each classifier is given a random chain ordering,
and is trained on a random selection of N training instances sampled with replacement.



340 Mach Learn (2011) 85:333–359

[ y1 y2 y3 y4 y5 y6 ]
ŷ1 = [ 0 0 1 1 0 0 ]
ŷ2 = [ 1 0 0 1 0 0 ]
ŷ3 = [ 0 0 1 1 0 0 ]
ŷ4 = [ 0 0 1 1 0 0 ]
ŷ5 = [ 1 0 1 0 0 0 ]
ŵ = [ 2

5 0 4
5

4
5 0 0 ]

ŵ = [ 0.4 0.0 0.8 0.8 0.0 0.0 ]
ŷ = ft=0.5(ŵ) = [ 0 0 1 1 0 0 ]

Fig. 2 An example of ECC’s voting procedure, where L = 6, m = 5 and ft (·) is a simple threshold function
as in Sect. 8.4 under a threshold of t = 0.5

ECC initially produces a vector of confidence outputs ŵ = [ŵ1, . . . , ŵL] ∈ R
L where

ŵj represents the confidence for the j th label. Given prediction vectors ŷ1, . . . , ŷm from
iterations 1, . . . ,m, this confidence is calculated as:

ŵj = 1

m

m∑

k=1

ŷj,k

A threshold function can be applied to ŵ to create a bipartition of relevant and irrelevant
labels:

ŷ = ft (ŵ)

for some threshold function f . Threshold functions are discussed in Sect. 8.4.
The ensemble voting scheme is demonstrated with an example in Fig. 2. This ensemble

scheme is generic and thus straightforward to apply to any multi-label method. We can there-
fore apply this scheme to BR to create an ensemble of binary relevance classifiers (EBR). The
ensemble process is carried out identically to ECC, except that chain ordering has no effect
on BR.

6 Related work

Before embarking on an empirical evaluation of the methods presented in this paper, let us
review existing work on multi-label learning.

6.1 Related methods

Adding label information to the attribute space as we have done in CC is not a new idea.
Godbole and Sarawagi (2004) stacked BR classification outputs along with the full original
attribute space, creating a two-stage classification process. We refer to this method as Meta-
BR (MBR). Similarly to CC, MBR can take into account label correlations. However, using
a meta classifier implies an extra iteration on both training and test data as well as internal
classifications on the training data to acquire the label outputs for the meta training step. In
contrast, CC only requires a single training iteration like BR, and uses labels directly from
the training data without any internal classification.
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Another multi-label method, described in Schapire and Singer (1999), uses a meta
scheme with a Hamming distance metric to map the confidence predictions of a single-
label classifier to label combinations that have been observed in the training data. The label
vector from the training set with the shortest Hamming distance to the predicted vector is
chosen as the prediction. When applied to the binary outputs of BR we refer to this method
as Subset-Mapped BR (SMBR). Thus, this method also involves a meta step; one which is
related to LC in terms of mapping label combinations from the training data.

A BR-based boosting algorithm was introduced in Yan et al. (2007). Binary models are
trained on subsets of the example and attribute spaces. By sharing binary models between la-
bels, redundancy in the learning space is exploited, and thereby complexity is reduced. This
is a good example of how the complexity of a binary relevance approach can be significantly
reduced, and supports our message that binary methods have been underrated.

In Ráez et al. (2004), the issue of class-label imbalance is identified with respect to large
text categorisation problems tackled with BR, caused by the inevitable label sparsity, which
yields a relatively small number of positive examples in the transformed problems. This
work addresses this issue by overweighting positive examples in each of the BR models.
The authors also report that classification speed can be improved with marginal effect on
predictive performance by ignoring rare class labels altogether and consider pruning BR
based on performance. Results are positive with respect to their text data corpus, although
applying these strategies to other domains (where class skew is not as prevalent) may be less
effective.

The work in Ji et al. (2008) presents a general framework for extracting shared subspaces
in a BR approach, which adds a second part to the BR method. This addition models label
correlations. However, despite using an approximation algorithm, it is computationally ex-
pensive, which is reflected in the experimental setup used in Yan et al. (2007) where only
relatively small samples of 1000 training instances are used. Sun et al. (2008) uses a com-
putationally complex hypergraph method to model label correlations that also, despite a
proposed approximate formulation, induces high computational complexity.

6.2 Alternative methods

In Sect. 1 we mentioned pairwise (PW) problem transformation methods. CLR (Fürnkranz
et al. 2008) is a well-known example (many other pairwise methods are specific to the la-
bel ranking problem, which is beyond the scope of this paper). In Petrovskiy (2006), each
pairwise classifier is accompanied by two probabilistic models to isolate the overlapping at-
tribute space. This adds further complexity, and causes a computational bottleneck on large
datasets.

Several multi-label methods have been developed around the LC problem transformation
paradigm; improving its performance as well as reducing its time complexity. A well-known
example is the RAkEL system (Tsoumakas and Vlahavas 2007), which trains m LC models
using random subsets of k labels. A simple ensemble-based voting process determines the
final classification set over the m sub-models. Using appropriate values of m and k, RAkEL
has been shown to be more accurate than BR and LC. In more recent work, we presented
EPS (Read et al. 2008), an ensemble method that uses pruning to reduce the computational
complexity of LC in practice by up to an order of magnitude, and a label-set subsampling
method to preserve high predictive performance. This method proved to be competitive in
terms of efficiency. EPS uses a similar voting scheme to ECC for producing multi-label pre-
dictions from the ensemble, but takes simple subsets of the training set without replacement,
rather than the bagging scheme we present here.
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There are also several notable algorithm adaptation methods in the literature. The Boos-
Texter system (Schapire and Singer 2000) was an important milestone in multi-label clas-
sification and ranking. BoosTexter provides multi-label adaptations of the well-known Ad-
aBoost boosting paradigm. Improving these algorithms, including threshold selection, was
a focus of the work in Kiritchenko (2005). AdaBoost-based methods have mainly been
used in bioinformatics applications (where boosting and decision trees are particularly pop-
ular (Kiritchenko 2005)). Although they can work with textual datasets, they scale poorly
with the number of labels and can fail to perform well on sparse data (Freund and Schapire
1999). This family of methods has been recognised as having high computational complex-
ity (Petrovskiy 2006).

The authors of Cheng and Hüllermeier (2009) expanded on the work on lazy classifi-
cation and introduced the IBLR algorithm: a combination of instance-based learning and
logistic regression. IBLR takes label correlations into account by using the labels of neigh-
boring examples as extra attributes in a logistic regression scheme. This secondary step is,
in effect, a specialisation of the stacking procedure of the MBR paradigm.

In Clare and King (2001) decision trees were modified to allow for multi-label prediction
at the leaves. A further example of a decision tree model is Vens et al. (2008). This method
has been shown to work very well on hierarchical bioinformatics problems.

7 Scaling up ECC

A notable potential drawback of ECC is that, as an ensemble of binary transformations, a
potentially very large number of instances must be processed. In terms of the number of in-
stances, each label induces m × N instances; one for each of m iterations from the original
N instances. The binary context as used in ECC usually entails considerable redundancy in
the learning space, as also noticed in the case of the multi-label binary approach in Yan et al.
(2007). Some other methods have also been used in the literature for reducing the complex-
ity of binary relevance problems by taking advantage of label sparsity using compressive
sensing techniques (Tai and Lin 2010; Hsu et al. 2009).

In this section we investigate a simple strategy for reducing redundancy in the learning
space of ECC; and thus further reducing its time and memory complexity, without signifi-
cant loss of predictive performance. More specifically, we investigate taking random subsets
of both the attribute and the instance space to generate each ensemble member and also
consider the effect of the number of iterations.

Figures 3, 4 and 5 illustrate the reductions that can be made in the learning space, and the
reward (in terms of reduced time complexity) and the cost (in terms of accuracy) incurred.
To obtain these results, we ran ECC in different scenarios where each binary model takes
random subsets of the attribute space, instance space, and different numbers of iterations. We
use the J48 decision tree learner (the WEKA software’s implementation of C4.5 (Quinlan
1986)) as the base classifier, the TMC2007 dataset, and the multi-label accuracy evaluation
measure as reviewed in Sect. 8.

The results show that similar results in predictive performance can be obtained for sig-
nificantly less complexity. For example, with a subset of 75% of the training instances, 50%
of the attribute space, and only 10 iterations, accuracy is negligibly less than when using the
full spectrum. Similar results can be obtained on other datasets. Such a configuration can be
used on both EBR and ECC to make these methods more efficient on larger datasets without
significant losses in predictive performance. We also show empirical evidence for this in the
following, Sect. 8.
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Fig. 3 ECC: subsets of attribute space and effect on running time (a) and accuracy (b) for 10 ensemble
iterations

Fig. 4 ECC: subsets of instance space and effect on running time (a) and accuracy (b) for 10 ensemble
iterations

Fig. 5 ECC: number of ensemble iterations and the effect on running time (a) and accuracy (b) for full
example and attribute spaces
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8 Experiments

We performed an experimental evaluation of multi-label methods to test a variety of methods
in different contexts and in comparison with our classifier chains method.

Initially we carry out experiments to justify CC by comparing it to BR and BR-related
methods. Following that, we compare ECC to well-known methods with proven success in
multi-label classification. Finally we test scalability on large datasets.

Our set-up yields one of the most extensive evaluations in the multi-label literature. To the
best of our knowledge, our collection of multi-label datasets represents the largest assembled
so far in multi-label evaluation. We also employ a variety of evaluation methods all of which
are supplemented by statistical significance tests.

Next we introduce the datasets and relevant statistics, evaluation measures and tech-
niques, and following this, we review our experimental method. Then, we present and dis-
cuss the results.

8.1 Datasets

Table 2 displays multi-label datasets from a variety of domains, and their associated statis-
tics. Here, Label Cardinality (LCARD) is a standard measure of “multi-labelled-ness”, intro-
duced in Tsoumakas and Katakis (2007). It is simply the average number of labels associated
with each example; defined for N examples as:

LCARD = 1

N

N∑

i=1

L∑

j=1

yi
j

This measure gives a good idea of label frequency, but gives no indication of the regular-
ity or uniformity of the labelling scheme.

In Read et al. (2009b) we introduced the Proportion of Unique label combinations
(PUNIQ): the proportion of label sets which are unique across all examples. For a set of
N examples D:

PUNIQ = |{y|∃!x : (x,y) ∈ D}|
N

Let us further introduce another useful measure: the Proportion of label sets with the
Maximum frequency (PMAX). Assuming COUNT(y,D) is the frequency that label combi-
nation y is found in the dataset D, we define:

PMAX = max
y

COUNT(y,D)

N

This represents the proportion of examples associated with the most frequently occurring
label sets and, in combination with PUNIQ, gives an indication of regularity and uniformity
of the labelling scheme, where high values indicate a skewed or irregular distribution.

We strove to include a considerable variety and scale of multi-label datasets. In total we
use 15 datasets, with dimensions ranging from 6 to 983 labels, and up to over 120,000 ex-
amples. The datasets are roughly ordered by complexity (N × L × d) and divided between
regular and large sizes. Note that Delicious could be considered a tag assignment problem
outside the scope of multi-label classification. We include it here to help demonstrate the
scalability of the algorithms we present and compare. We also introduce three new real-
world multi-label text collections: Slashdot, which we collected from http://slashdot.org,

http://slashdot.org


Mach Learn (2011) 85:333–359 345

Table 2 A collection of multi-label datasets and associated statistics; n indicates numeric attributes; b indi-
cates binary attributes

N L d LCARD PUNIQ PMAX Type

Music 593 6 72n 1.87 0.046 0.137 media

Scene 2407 6 294n 1.07 0.006 0.168 media

Yeast 2417 14 103n 4.24 0.082 0.098 biology

Genbase 661 27 1185b 1.25 0.048 0.257 biology

Medical 978 45 1449b 1.25 0.096 0.158 text

Slashdot 3782 22 1079b 1.18 0.041 0.139 text

Enron 1702 53 1001b 3.38 0.442 0.096 text

LangLog 1460 75 1004b 1.18 0.208 0.142 text

Reuters 6000 103 500n 1.46 0.147 0.064 text

OHSUMED 13929 23 1002b 1.66 0.082 0.084 text

TMC2007 28596 22 500b 2.16 0.047 0.087 text

IMDB 120919 28 1001b 2.00 0.037 0.109 text

Bibtex 7395 159 1836b 2.40 0.386 0.064 text

MediaMill 43907 101 120n 4.38 0.149 0.054 media

Delicious 16105 983 500b 19.02 0.981 0.001 text

LanguageLog from http://languagelog.ldc.upenn.edu/nll/, and IMDB from http://imdb.org
(data obtained from http://www.imdb.com/interfaces#plain). All datasets and further infor-
mation about them can be found online.1

8.2 Methods

We have selected well-known modern high-performing methods from the literature (which
were discussed in Sect. 6) for our benchmark comparison. For easy reference, Table 3 lists
all the algorithms used in the experiments, their corresponding abbreviation, some default
parameters, and citation.

The parameter values given are those recommended by the authors of the relevant pub-
lications. In the case of RAkEL, we use two recommendations: RAkEL(1) which models
relatively larger label sets, and RAkEL(2) which runs relatively more iterations. For other en-
semble methods we use m = 50 iterations for regular datasets and m = 10 for large datasets.
EPS selects randomly from the given range for p at each iteration.

8.3 Evaluation measures

In any multi-label experiment, it is essential to include multiple and contrasting measures
of evaluation because of the additional degrees of freedom that the multi-label setting intro-
duces, as discussed recently in Dembczyński et al. (2010). Thus a more complete picture of
the capabilities of an algorithm is provided. This helps identifying algorithms which perform
well across a range of evaluation measures.

1See http://meka.sourceforge.net/#datasets and http://mlkd.csd.auth.gr/multilabel.html#Datasets.

http://languagelog.ldc.upenn.edu/nll/
http://imdb.org
http://www.imdb.com/interfaces#plain
http://meka.sourceforge.net/#datasets
http://mlkd.csd.auth.gr/multilabel.html#Datasets
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Table 3 Algorithms used in the experiments, and associated citations

Key Algorithm Parameters Citation

BR Binary Relevance Tsoumakas and Katakis (2007)

CC Classifier Chains Read et al. (2009b)

SMBR Subset Mapped BR Schapire and Singer (1999)

MBR Meta-BR Godbole and Sarawagi (2004)

EBR Ensembles of Binary Relevance m = 50/10 Read et al. (2009b)

ECC Ensembles of Classifier Chains m = 50/10 Read et al. (2009b)

EPS Ensembles of Pruned Sets m = 50/10,p = 1–5, n = 1 Read et al. (2008)

IBLR Instance Based Logistic k = 10 Cheng and Hüllermeier (2009)

Regression

CLR Calibrated Label Ranking Fürnkranz et al. (2008)

RAkEL RAndom K labEL subsets (1): m = 10, k = L
2 Tsoumakas and Vlahavas (2007)

(2): m = 2L,k = 3

There is an important division between label-based evaluation, which is carried out on
a per-label basis, and label set-based evaluation, which evaluates label sets. We include
several of both types of measures in our experimental evaluation.

When any predicted set of labels ŷ must match the true set of labels y exactly (label-set
based evaluation), this is known as the exact match measure, or 0/1 loss as a loss measure,
as we use it:

0/1 LOSS = 1 − 1

N

N∑

i=1

1yi=ŷi

When each label assignment is a separate binary evaluation (label-based evaluation), we
have Hamming loss:

HAMMING LOSS = 1 − 1

NL

N∑

i=1

L∑

j=1

1yi
j
=yi

j

0/1 LOSS can be very harsh, since any label set not predicted perfectly is given a zero
score, whereas HAMMING LOSS tends to be very lenient due to the typical sparsity of multi-
labelling, and ignores the multi-label problem as a whole. This illustrates the importance of
multiple and contrasting measures.

The authors of Godbole and Sarawagi (2004) introduced a multi-label accuracy measure;
a label set-based measure; as follows, for a set of N test examples:

ACCURACY = 1

N

N∑

i=1

|yi ∧ ŷi |
|yi ∨ ŷi |

The F-measure is the harmonic mean between precision and recall, common to infor-
mation retrieval. It can be calculated from true positives, true negatives, false positives, and
false negatives, based on a bit vector of predictions (q̂) and corresponding actual values (q),
as F1(q̂,q). To contrast with ACCURACY (label set-based evaluation) we use the F-measure
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macro averaged over labels (i.e. label-based evaluation), for N test examples as:

F-MEASURE = 1

L

L∑

j=1

F1([ŷ1
j , . . . , ŷ

N
j ], [y1

j , . . . , y
N
j ])

An additional consideration is the (very common) case, where a multi-label classifier
initially outputs a vector ŵ ∈ R

L of confidence values for each label, for example the ECC
method (see Sect. 5), and a threshold function is applied to these outputs to produce a multi-
label prediction ŷ = ft (ŵ) (which can be evaluated under the above four measures, for
example). Threshold functions are discussed in Sect. 8.4 below. However, another possibility
is to use the confidence output vector itself for evaluation.

In Read et al. (2009b) we introduced log loss, distinct from other measures because it
evaluates confidence outputs directly and punishes over-confident errors more harshly, thus
rewarding conservative prediction. The error is graded by the confidence at which it is pre-
dicted: predicting false positives with low confidence induces logarithmically less penalty
than predicting with high confidence. This measure is important to contrast against other
measures where guessing correctly with relatively little confidence can be rewarded. Given
confidence outputs of i, . . . ,N test examples, we have:

LOG-LOSS = 1

NL

N∑

i=1

L∑

j=1

min(LOG-LOSS(ŵi
j , y

i
j ), ln(N))

where:

LOG-LOSS(ŵ, y) = −(ln(ŵ)y + ln(1 − ŵ)(1 − y))

We have used a dataset-dependent maximum of ln(N) to limit the magnitude of the
penalty. Such a limit, as explained in Schapire and Singer (1999), serves to smooth the values
and prevent a small subset of poorly predicted labels from greatly distorting the overall error.
Note that, as a loss metric, the best possible score for log loss is 0.0. This is a label-based
evaluation measure.

In the analysis of running time we measure train and test times in seconds.

8.4 Threshold selection

Given a vector ŵ ∈ R
L of real-valued confidence outputs, a multi-label prediction ŷ can be

obtained under a threshold function ft (ŵ) such that:

ŷj =
{

1 if ŵj ≥ t

0 if ŵj < t

In the context of text categorisation, Yang (2001) uses a threshold vector, i.e. a threshold
tj for each ŵj . This approach has also been reviewed by Fan and Lin (2007) in the general
multi-label context and is decidedly better that simply using an arbitrary threshold like 0.5.
Our experience is that calibrating a single threshold t to use across the entire evaluation is
just as effective and more efficient. We calibrate the threshold t as follows:

t = argmin
t

∥∥∥∥∥LCARD(D) −
(

1

N

N∑

i=1

L∑

j=1

1ŵj ≥t

)∥∥∥∥∥
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where N refers to the number of examples in the test set, so that the average observed label
cardinality is close to the average predicted label cardinality.

We have found this method of threshold calibration to be more effective than an arbitrary
threshold like 0.5, and robust across confidence vectors of different domains. Also, although
empty-set predictions are always possible, they are very unlikely under this method.

8.5 Setup and method

We evaluate all algorithms using our open-source WEKA-based (Hall et al. 2009) software,2

which also provides a wrapper around the MULAN software3 that contains additional meth-
ods. We use SMO (WEKA’s implementation of Support Vector Machines based on the SMO
algorithm (Platt 1999)) as the base-classifier for problem transformation methods, with de-
fault parameters, implying a linear machine. Note that for multi-class transformations (i.e.
LC-based methods) this implementation of SMO will compare each possible class label in a
pairwise fashion internally using pairwise classification.

All experiments were run on 64 bit machines, allowing up to 2 GB RAM and one week
of CPU time.

We apply the Nemenyi test (Demšar 2006) to indicate statistical significance. This test
is based on methods’ average rankings across datasets, and is appropriate for finding sig-
nificant differences among multiple classifiers. We compare the methods listed in Sect. 8.2
under the various evaluation measures from Sect. 8.3, using (where appropriate) the thresh-
old function described in Sect. 8.4. On the standard-sized datasets we carry out 5 × 2 fold
cross validation (CV) and use the average result to display and test for significance. On large
dataset we perform 60/40 train/test splits. Note that, in some cases, methods did not finish
under the specified time and memory limits, i.e. yielded a DNF, (which we indicate with a
missing result). In these cases, since a missing result affects all rankings, we do the Nemenyi
test considering both the methods which completed on all datasets and again considering all
the datasets upon which on methods completed. On large datasets, there were too many
instances of DNF to obtain informative significance results.

Thus, for each evaluation measure, we display the values achieved and the rank pertaining
to those values for each dataset; and we display the average rank for each method across all
datasets and the rank of that value; and statistical significance such that { a b } � { d e }
indicates that methods a and b are both significantly favourable over methods d and e.

8.6 Results

Initially, we compare standalone CC to BR and BR-related methods: a reproduction of the
MBR method, and the SMBR method (refer to Sect. 6 and Table 3). Results of 5 × 2 CV in
terms of ACCURACY and F-MEASURE are shown in Table 4. A selection of running times is
graphed in Fig. 6.

Secondly, we compare CC to ECC with both m = 50 and m = 10 iterations. Results of
5 × 2 CV in terms of ACCURACY and F-MEASURE are shown in Table 5.

As the main focus of our evaluation, we compare ECC to EBR and various state-of-the-art
multi-label algorithms. Results of 5 × 2 CV for various evaluation measures are displayed
in Table 6. Ensemble iterations (where relevant) are set to m = 50.

2Available at http://meka.sourceforge.net.
3Available at http://mulan.sourceforge.net.

http://meka.sourceforge.net
http://mulan.sourceforge.net
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Table 4 CC vs. BR and related
methods; predictive performance
(with ranks)

0/1 LOSS↓:

Dataset BR CC MBR SMBR

Music 0.736 4 0.713 1 0.714 2 0.728 3

Scene 0.489 4 0.361 1 0.446 3 0.434 2

Yeast 0.856 4 0.788 1 0.854 3 0.836 2

Genbase 0.031 3 0.031 3 0.031 1 0.032 4

Medical 0.358 4 0.328 1 0.357 3 0.344 2

Slashdot 0.660 4 0.622 1 0.660 3 0.642 2

Enron 0.899 4 0.885 1 0.898 3 0.889 2

LangLog 0.784 4 0.781 2 0.784 4 0.781 1

Reuters 0.732 4 0.670 1 0.727 3 0.725 2

avg. rank 3.889 4 1.333 1 2.778 3 2.222 2

significance: CC � { MBR BR } ; SMBR � { BR }

HAMMING LOSS↓:

Dataset BR CC MBR SMBR

Music 0.201 2 0.223 4 0.198 1 0.204 3

Scene 0.110 3 0.107 2 0.106 1 0.130 4

Yeast 0.202 2 0.209 4 0.202 1 0.206 3

Genbase 0.001 3 0.001 3 0.001 3 0.002 4

Medical 0.011 3 0.011 1 0.011 3 0.013 4

Slashdot 0.049 1 0.051 3 0.050 2 0.057 4

Enron 0.060 3 0.060 4 0.060 2 0.060 1

LangLog 0.018 4 0.018 4 0.018 4 0.017 1

Reuters 0.011 2 0.011 3 0.011 2 0.016 4

avg. rank 2.556 2 3.111 3 2.111 1 3.111 3

significance: None

ACCURACY:

Dataset BR CC MBR SMBR

Music 0.506 4 0.525 3 0.529 2 0.530 1

Scene 0.587 4 0.685 1 0.614 3 0.622 2

Yeast 0.496 3 0.527 1 0.497 2 0.491 4

Genbase 0.983 2 0.983 2 0.983 1 0.981 4

Medical 0.730 2 0.752 1 0.730 2 0.730 4

Slashdot 0.435 4 0.464 1 0.437 3 0.447 2

Enron 0.387 4 0.393 1 0.388 3 0.390 2

LangLog 0.106 2 0.108 1 0.106 2 0.106 4

Reuters 0.319 4 0.387 1 0.324 3 0.324 2

avg. rank 3.222 4 1.333 1 2.333 2 2.778 3

significance: CC � { SMBR BR }
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Table 4 (Continued)

↓= loss measure (lower is better)

F-MEASURE:

Dataset BR CC MBR SMBR

Music 0.599 4 0.621 2 0.637 1 0.612 3

Scene 0.681 3 0.708 1 0.692 2 0.654 4

Yeast 0.326 4 0.354 1 0.330 2 0.326 3

Genbase 0.773 2 0.773 2 0.777 1 0.763 4

Medical 0.362 3 0.372 1 0.366 2 0.348 4

Slashdot 0.330 1 0.329 3 0.330 2 0.309 4

Enron 0.197 3 0.198 1 0.197 2 0.188 4

LangLog 0.046 2 0.047 1 0.046 2 0.044 4

Reuters 0.222 3 0.250 1 0.228 2 0.214 4

avg. rank 2.778 3 1.444 1 1.778 2 3.778 4

significance: CC � { SMBR } ; MBR � { SMBR }

Fig. 6 CC vs. BR and related
methods—average running times
(seconds) over a selection of
datasets (other datasets of similar
dimensions show similar results)

To consider scalability, we run the algorithms in a train-test scenario on large datasets.
We use the ECC variation we presented in Sect. 7 to reduce redundancy in the learning
space (75% and 50% random subsets of the example and attribute spaces, respectively).
This strategy is also applied to EBR. For all ensembles, iterations are set to m = 10, and
similarly we used RAkEL(2) because it scales better than RAkEL(1) and is thus more suited
to large datasets. Results are displayed in Table 7.

To analyse running times we use an artificial dataset to control the size of the dataset di-
mensions. We create two datasets, one dataset to vary L (with a constant N = 5000, d = 500
and LCARD(D) ≈ √

L —a rough approximation suitable for measuring time complexity);
and one dataset to vary N (with a constant L = 10, d = 20, and LCARD(D) as before). The
process for generating such data is outlined in Read et al. (2009a) (since we are only mea-
suring running time, we do not detail the data composition here). In both experiments with
artificial data, we consider methods without an ensemble, thus removing the variable m of
ensemble iterations. Running times are displayed in Figs. 7 and 8. We emphasise that some
lines in the plot end prematurely: some algorithms were unable to complete due to lack of
time or memory.



Mach Learn (2011) 85:333–359 351

Table 5 CC vs. ECC; predictive
performance (with ranks)

ACCURACY:

Dataset CC ECCm=50 ECCm=10

Music 0.525 3 0.564 1 0.560 2

Scene 0.685 3 0.706 1 0.695 2

Yeast 0.527 3 0.536 1 0.531 2

Genbase 0.983 1 0.978 3 0.981 2

Medical 0.752 3 0.772 1 0.763 2

Slashdot 0.464 3 0.495 1 0.485 2

Enron 0.393 3 0.452 1 0.446 2

LangLog 0.108 3 0.148 1 0.143 2

Reuters 0.387 3 0.460 1 0.450 2

avg. rank 2.778 3 1.222 1 2.000 2

significance: ECCm=50 � { CC }

F-MEASURE:

Dataset CC ECCm=50 ECCm=10

Music 0.621 3 0.665 1 0.665 2

Scene 0.708 3 0.746 1 0.734 2

Yeast 0.354 3 0.378 2 0.381 1

Genbase 0.773 1 0.749 3 0.766 2

Medical 0.372 2 0.374 1 0.372 3

Slashdot 0.329 3 0.357 1 0.352 2

Enron 0.198 3 0.210 2 0.215 1

LangLog 0.047 3 0.061 1 0.056 2

Reuters 0.250 3 0.304 1 0.291 2

avg. rank 2.667 3 1.444 1 1.889 2

significance: ECCm=50 � { CC }

9 Discussion

We first discuss the value of classifier chains as opposed to related binary approaches. Sec-
ondly, we look at the performance of ECC in comparison with some competitive methods
described in Sect. 6, both for standard-sized and large datasets. Finally we discuss running
times.

9.1 The value of classifier chains

The results in Table 4 show the value of CC’s chaining method compared with related classi-
fiers. Overall CC improves convincingly over both the default BR method and related meth-
ods MBR and SMBR. We see that SMBR performed poorest under HAMMING LOSS and F-
MEASURE. This is to be expected, since these are label-based evaluation measures, whereas
SMBR predicts label sets like LC and therefore performs better under label-set based evalu-
ation measures (0/1 LOSS and ACCURACY). The reverse is true for the performance of BR
and MBR. It is not surprising that CC under-performed on HAMMING LOSS, nor is it particu-
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Table 6 Methods on standard-sized datasets

0/1 LOSS↓:

Dataset CLR EBR ECC EPS IBLR RAkEL(1) RAkEL(2)

Music 0.740 7 0.729 6 0.695 4 0.676 1 0.704 5 0.690 3 0.689 2

Scene 0.391 4 0.477 7 0.367 2 0.316 1 0.371 3 0.400 5 0.403 6

Yeast 0.970 7 0.858 6 0.814 4 0.766 1 0.812 3 0.795 2 0.825 5

Genbase 0.116 7 0.048 3 0.048 4 0.106 6 0.097 5 0.036 1.5 0.036 1.5

Medical 0.347 3 0.328 1 0.362 5 0.632 6 0.345 2 0.354 4

Slashdot 0.652 4 0.620 3 0.577 1 0.887 6 0.614 2 0.668 5

Enron 0.881 4 0.873 3 0.857 1 0.922 6 0.872 2 0.896 5

LangLog 0.796 4 0.796 5 0.760 1 0.856 6 0.764 2 0.780 3

Reuters 0.737 6 0.687 3 0.622 1 0.731 5 0.643 2 0.719 4

avg. rank 6.000 7 4.667 5 3.111 3 1.889 1 4.889 6 2.389 2 3.944 4

significance: ECC � { CLR } ; EPS � { IBLR EBR CLR } ; RAkEL(1) � { CLR EBR }

HAMMING LOSS↓:

Dataset CLR EBR ECC EPS IBLR RAkEL(1) RAkEL(2)

Music 0.214 7 0.205 6 0.200 1 0.203 5 0.202 3 0.202 4 0.200 2

Scene 0.101 6 0.110 7 0.095 3 0.088 1 0.091 2 0.100 5 0.100 4

Yeast 0.226 7 0.210 6 0.209 5 0.207 2 0.205 1 0.209 4 0.207 3

Genbase 0.004 5 0.002 3.5 0.002 3.5 0.007 7 0.005 6 0.002 2 0.001 1

Medical 0.011 2 0.010 1 0.013 5 0.025 6 0.011 4 0.011 3

Slashdot 0.050 2 0.049 1 0.051 3 0.073 6 0.051 4 0.053 5

Enron 0.056 2 0.056 1 0.059 4 0.067 6 0.057 3 0.061 5

LangLog 0.026 4 0.026 5 0.025 3 0.031 6 0.021 2 0.019 1

Reuters 0.016 5 0.014 3 0.014 4 0.017 6 0.012 2 0.011 1

avg. rank 6.250 7 4.167 5 2.611 1 3.778 4 4.667 6 3.333 3 2.778 2

significance: ECC � { CLR } ; RAkEL(1) � { CLR } ; RAkEL(2) � { CLR }

ACCURACY:

Dataset CLR EBR ECC EPS IBLR RAkEL(1) RAkEL(2)

Music 0.557 5 0.547 7 0.564 3 0.564 4 0.551 6 0.567 2 0.569 1

Scene 0.695 4 0.624 7 0.706 3 0.739 1 0.706 2 0.685 5 0.684 6

Yeast 0.514 7 0.525 6 0.536 4 0.545 1 0.538 3 0.544 2 0.536 5

Genbase 0.142 7 0.978 3 0.978 4 0.945 6 0.950 5 0.982 1 0.982 2

Medical 0.758 3 0.772 1 0.743 4 0.480 6 0.760 2 0.742 5

Slashdot 0.469 4 0.495 2 0.514 1 0.241 6 0.494 3 0.451 5

Enron 0.443 3 0.452 2 0.440 4 0.360 6 0.457 1 0.410 5

LangLog 0.147 4 0.148 3 0.174 1 0.008 6 0.151 2 0.119 5

Reuters 0.382 4 0.460 2 0.496 1 0.360 5 0.445 3 0.337 6

avg. rank 5.750 7 4.556 5 2.667 3 2.556 2 5.000 6 2.333 1 4.444 4

significance: EPS � { IBLR } ; RAkEL(1) � { IBLR }
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Table 6 (Continued)

LOG LOSS↓:

Dataset CLR EBR ECC EPS IBLR RAkEL(1) RAkEL(2)

Music 3.633 4 3.624 3 3.077 2 3.845 5 2.620 1 4.938 7 4.865 6

Scene 3.420 7 1.926 4 1.425 2 1.607 3 1.329 1 2.495 6 2.435 5

Yeast 8.772 2 12.560 5 9.280 3 10.097 4 6.196 1 14.866 6 15.685 7

Genbase 4.080 7 0.160 2 0.159 1 0.512 5 0.632 6 0.176 3 0.189 4

Medical 1.792 2 1.722 1 2.099 3 4.802 6 2.284 4 2.698 5

Slashdot 3.710 2 3.422 1 3.925 4 3.766 3 5.128 5 5.975 6

Enron 9.610 2 9.252 1 11.116 3 11.395 4 13.927 5 15.462 6

LangLog 6.397 3 6.394 2 6.182 1 14.063 6 7.271 4 8.091 5

Reuters 6.971 3 5.551 1 6.543 2 7.763 5 7.588 4 8.971 6

avg. rank 5.000 6 2.889 2 1.556 1 3.333 3 3.667 4 4.889 5 5.556 7

significance: ECC � { RAkEL(2) RAkEL(1) CLR } ; EBR � { RAkEL(2) }

F-MEASURE:

Dataset CLR EBR ECC EPS IBLR RAkEL(1) RAkEL(2)

Music 0.668 1 0.649 7 0.665 2 0.661 3 0.656 6 0.660 5 0.660 4

Scene 0.736 6 0.705 7 0.746 3 0.764 1 0.755 2 0.738 4 0.737 5

Yeast 0.405 4 0.372 7 0.378 6 0.420 2 0.415 3 0.424 1 0.390 5

Genbase 0.121 7 0.747 4 0.749 3 0.614 6 0.656 5 0.763 1 0.761 2

Medical 0.373 2 0.374 1 0.290 5 0.194 6 0.369 4 0.369 3

Slashdot 0.352 2 0.357 1 0.326 5 0.155 6 0.350 3 0.344 4

Enron 0.209 3 0.210 2 0.141 6 0.143 5 0.210 1 0.205 4

LangLog 0.061 1 0.061 2 0.053 4 0.014 6 0.057 3 0.051 5

Reuters 0.276 3 0.304 1 0.237 4 0.205 6 0.278 2 0.233 5

avg. rank 4.500 6 4.000 3 2.333 1 4.000 3 5.000 7 2.667 2 4.111 5

significance: ECC � { IBLR } ; RAkEL(1) � { IBLR }

↓= loss measure (lower is better)

larly discouraging: a method obtains good performance under HAMMING LOSS by ignoring
label dependencies, i.e. ignoring the multi-label dimension of the data.

The training times of BR and LC (Fig. 6) support the theory presented in Sect. 3. BR is
naturally the fastest. In practice the complexity added to BR by CC is not significant, except
in cases where L is particularly large relative to N or d (e.g. Medical). SMBR also involves
only minimal increases in running time over BR. MBR’s two-stage stacking process means
that its training times are about twice those of BR on the datasets we consider.

9.2 The value of ensembles of classifier chains

As we expect, using ensembles has a significant positive effect on predictive performance,
since they significantly reduce the chance of a poor chain-ordering or error propagation
negatively affecting overall predictive performance. In Table 5 we see that ECC, under both
10 and 50 iterations, performed better than CC in almost all cases (with the exception of
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Table 7 Methods on large datasets

0/1 LOSS↓:

Dataset BR CLR EBR ECC EPS IBLR RAkEL(2)

TMC2007 0.740 1 0.853 6 0.779 4 0.767 3 0.740 1 0.797 5 0.744 2

Ohsumed 0.828 4 0.914 6 0.781 1 0.784 2 0.797 3 0.937 7 0.830 5

MediaMill 0.928 3 0.958 5 0.938 4 0.922 2 0.920 1

Bibtex 0.846 3 0.852 4 0.846 1 0.846 2 0.942 6 0.867 5

IMDB 0.999 4 0.899 1 0.938 2 0.956 3

Delicious 0.998 2 1.000 4 1.000 3 0.996 1

avg. rank 2.833 3 6.000 7 3.167 4 2.500 2 1.750 1 4.600 6 3.250 5

HAMMING LOSS↓:

Dataset BR CLR EBR ECC EPS IBLR RAkEL(2)

TMC2007 0.064 1 0.078 7 0.069 4 0.068 3 0.069 5 0.078 6 0.068 2

Ohsumed 0.074 3 0.088 6 0.062 1 0.063 2 0.074 4 0.097 7 0.075 5

MediaMill 0.032 2 0.035 3 0.041 5 0.038 4 0.032 1

Bibtex 0.015 1 0.017 3 0.016 2 0.022 5 0.023 6 0.017 4

IMDB 0.072 1 0.082 2 0.095 3 0.097 4

Delicious 0.018 1 0.025 2 0.026 4 0.025 3

avg. rank 1.500 1 6.500 7 2.500 2 3.167 4 4.250 5 5.400 6 3.000 3

ACCURACY:

Dataset BR CLR EBR ECC EPS IBLR RAkEL(2)

TMC2007 0.541 3 0.506 6 0.510 5 0.517 4 0.549 1 0.479 7 0.549 2

Ohsumed 0.361 6 0.374 5 0.423 3 0.426 1 0.424 2 0.230 7 0.383 4

MediaMill 0.390 4 0.410 2 0.380 5 0.426 1 0.400 3

Bibtex 0.329 3 0.350 1 0.348 2 0.306 5 0.161 6 0.328 4

IMDB 0.005 4 0.211 3 0.221 2 0.236 1

Delicious 0.134 3 0.181 1 0.178 2 0.057 4

avg. rank 3.833 5 5.500 7 2.500 1 2.667 2 3.000 3 4.400 6 3.250 4

LOG LOSS↓:

Dataset BR CLR EBR ECC EPS IBLR RAkEL(2)

TMC2007 13.1 6 16.3 7 8.2 3 9.4 4 6.9 2 4.1 1 10.2 5

Ohsumed 14.6 4 17.4 5 29.0 6 30.8 7 6.8 2 5.0 1 8.3 3

MediaMill 31.5 5 24.1 2 25.0 3 10.1 1 30.4 4

Bibtex 19.3 4 55.3 6 54.8 5 14.2 1 14.6 2 15.7 3

IMDB 21.9 4 18.6 2 21.7 3 6.0 1

Delicious 158.9 4 130.5 2 110.9 1 155.7 3

avg. rank 4.5 6 6.0 7 3.5 3 3.8 5 2.0 2 1.2 1 3.8 4
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Table 7 (Continued)

F-MEASURE:

Dataset BR CLR EBR ECC EPS IBLR RAkEL(2)

TMC2007 0.547 4 0.577 1 0.476 6 0.496 5 0.573 3 0.434 7 0.577 2

Ohsumed 0.370 5 0.407 3 0.416 1 0.414 2 0.366 6 0.127 7 0.392 4

MediaMill 0.036 5 0.040 4 0.048 2 0.179 1 0.042 3

Bibtex 0.319 4 0.345 1 0.337 2 0.227 5 0.139 6 0.334 3

IMDB 0.011 4 0.037 3 0.055 1 0.049 2

Delicious 0.105 3 0.112 2 0.138 1 0.029 4

avg. rank 4.167 5 2.000 1 2.833 3 2.167 2 4.500 6 4.600 7 3.000 4

↓= loss measure (lower is better)

Fig. 7 Running times (seconds) on artificial datasets where L = 2,4, . . . ,256 (note the logarithmic scale)

Fig. 8 Running times (seconds) on artificial datasets where N = 100,200, . . . ,819200 (note the logarithmic
scale)
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Genbase), and often by a considerable margin, with more iterations clearly correlating to
better performance.

9.3 ECC as compared with other methods

In comparison with other methods from the literature, ECC yielded superior predictive per-
formance overall (see Table 6). It performed best on more evaluation measures than any
other method, and obtains the highest rankings overall, and no method performed statisti-
cally significantly better than ECC in any case.

In multi-label classification, it can not be expected that a method performs best over all
types of evaluation measures, except in cases where the method is tailored to each and run
separately. Therefore it comes as no surprise that different methods performed best under
different measures.

EPS and RAkEL(1) performed best under 0/1 LOSS. This is because these methods are
the most “LC-like” methods, and LC is tailored towards performance under this measure.
The case for ACCURACY is similar.

But the overall advantage of ECC is clear; it proved competitive not only under label
set-based measures but also label-based measures like LOG LOSS and HAMMING LOSS.

The nearest-neighbor-based methods IBLR performed well on LOG LOSS relative to
other measures: it votes relatively more conservatively than other methods and is rewarded
for it. CLR performed well in several situations but its complexity prohibited its completion
on anything but small-L datasets.

The performance benefit of classifier chains is further demonstrated in the comparison
between ECC and EBR: these methods only differ in that the latter does not use the classifier
chains model across its classifiers. ECC did better overall, and particularly so in the con-
text of, for example, the Reuters dataset, and—surprisingly—under the HAMMING LOSS

evaluation measure.
On the other hand, EBR often performed surprisingly well against the other methods, for

example on the Enron and Slashdot datasets. This is interesting, considering that this method
is simply an ensemble of baseline BR. This result adds further support to the case for binary
relevance methods.

9.4 Scaling up to large datasets

Table 7 shows that both binary methods (EBR and ECC) performed strongly on large
datasets. Most surprising is that EBR often achieves even higher predictive performance
than ECC—even on label-set based 0/1 LOSS—and, in some cases, even benchmark BR
performs best. This indicates that, where large numbers of training examples are involved,
efforts to model label correlations may become unnecessary or even detrimental. This is
also suggested by the comparison to other methods that invest complexity into modelling
label correlations (RAkEL, EPS) although there are cases where they perform better than
EBR, namely RAkEL on MediaMill and EPS on TMC07. BR’s occasional high performance
relative to EBR indicates that the ensemble voting and thresholding process could be im-
proved. We leave a thorough investigation for future work, but we speculate that, because
train/test splits are used on large datasets, any time-ordered structure would remain in place
(as opposed to multiple random cross validation splits as done on regular datasets), and the
train and test sets can therefore exhibit a much greater difference in label cardinality. This
difference creates a problem when choosing a threshold (which BR does not rely upon) so
that the label cardinality of the predicted data approximates that of the training data.
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Evaluation-measure specific performance is also apparent on large datasets: EPS per-
formed well on 0/1 LOSS, BR on HAMMING LOSS, IBLR on LOG LOSS, and ECC particu-
larly on F-MEASURE, but also on ACCURACY and 0/1 LOSS.

Overall, the combined best ranks of the binary relevance methods outnumber those of
the other methods combined. This may be partially due to the fact that other methods were
unable to complete on all datasets, but this is a point in itself: only binary relevance methods
were efficient enough to complete on all datasets within time and memory bounds.

9.5 Time complexity

In Fig. 7 we see how different methods scale with respect to the number of labels (L). CC
only diverges from BRwhen L > 128. Thus we see that under most multi-label contexts (see
our dataset collection), the complexity of CC is very close to BR. LC is unable to complete
when L > 128, and we see it scaling sharply at this point. LC-based RAkEL appears to scale
similarly to BR, but runs out of memory for L = 256. As expected, the space complexity of
the PW method (CLR) is very sensitive to L, and it is intractable when L > 64 (at L = 128
this method would need 16256 models). IBLR’s running times are initially high, but almost
constant with respect to L, although this changes abruptly and the method does not finish
when L = 256 due to lack of memory.

In Fig. 8 we see how different methods scale with respect to N . LC again does not com-
plete, nor does RAkEL. The kNN-based IBLR also does not scale to large N (greater than
204800), which is expected since kNN is N -sensitive where the number of training exam-
ples grows with N . Although we assume that L is inherently limited in scope and will not
grow without bounds, this does not apply to N , and, as N becomes large, kNN methods
will reach their natural limits of scalability. Only CC, BR, and the PW method CLR (which
needs in this case only L(L − 1)/2 = 45 models) complete when N = 819200. The time
complexity of CC does not vary greatly from BR. We note that the worst case theoretical
complexity of PS is equal to that of LC.

Overall, the binary relevance methods BR and CC are the best candidates for scaling to
very large problems. CLR scales well with respect to N but not with respect to L and vice
versa for kNN-based IBLR. Note that ECC is at most m×CC in terms of complexity for
m iterations; this can be reduced substantially by subsampling the learning space, as we
explained in Sect. 7.

10 Conclusions

This paper presented a novel chaining method for multi-label classification. We derived
this method from the binary relevance method, which we argued has many advantages over
more sophisticated methods currently in use, including reduced computational complexity.
By passing label correlation information along a chain of classifiers, our method counteracts
the disadvantages of the binary relevance method and obtains high predictive performance
compared to more complex methods while maintaining low computational complexity. We
used an ensemble of classifier chains to eliminate the chance of poorly ordered chains, and
thus further augment predictive performance. Since ensembles of binary relevance methods
give rise to considerable redundancy in the learning space, we took advantage of this to
create a more scalable ensemble classifier.

In an extensive empirical multi-label evaluation, we compared our classifier chains
method against a variety of other methods. The chaining method proved superior to related
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methods and, in an ensemble, proved highly competitive with state-of-the-art multi-label
methods. Unlike specialised algorithm-adaptations, ensembles of classifier chains can be
seen as a general ‘off-the-shelf’ approach, needing no parameter configuration, and having
robust performance across a range of data. As well as achieving high performance, they are
highly scalable, and were able to complete on the largest datasets that we considered.
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