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The identification of molecular descriptors that contain compound class-specific information is of high
relevance in chemoinformatics. A generally applicable way to identify such descriptors is to determine and
compare their information content in a given compound activity class and in large databases where the vast
majority of compounds do not have the desired activity. For this purpose, the Shannon entropy concept
from information theory can in principle be employed. However, previous adaptations of this concept for
descriptor profiling are insufficient to select discriminatory descriptors for data sets that dramatically differ
in size. Therefore, we introduce a methodology to reliably select such descriptors by transforming the
previously introduced differential Shannon entropy formalism into mutual information analysis, another
concept from information theory. The newly introduced approach is evaluated by descriptor ranking and
correlation analysis on 168 compound activity classes.

1. INTRODUCTION

Numerical descriptors of chemical structure and properties
play a central role in chemoinformatics, and literally
thousands of different descriptors are currently available.1

Molecular descriptors are often classified as one-, two-, or
three-dimensional, depending on the molecular representation
from which they are calculated.2 Descriptors that capture
compound class-specific and biological activity-relevant
information are of high interest for the exploration of
structure-activity relationships. However, the identification
of such descriptors is far from being a trivial task. Thus,
feature selection approaches are highly desired that are
capable of finding descriptors that contain compound class-
specific information.3

Systematic descriptor selection is complicated by the fact
that different descriptors usually have different units and
value ranges. Therefore, a direct comparison of molecular
descriptors is often difficult, and methods are required that
can compare the descriptors and the information they contain
regardless of their value ranges. In the context of quantitative
structure-activity relationship (QSAR) analysis and database
profiling, descriptor selection approaches utilizing the Shan-
non entropy (SE) concept4 have previously been developed
that meet these basic requirements. The SE concept from
information theory provides a basis for the quantification of
the information content of data distributions that can be
represented as histograms.5 Thus, SE calculations make it
possible to quantify the information content of individual
descriptors. For example, it was previously shown that the SE
approach can be utilized to compare the variability of various
molecular descriptors in different compound databases.5,6 In
order to quantify differences in information content of

individual descriptors between different compound data sets,
an extension of the SE concept was introduced, the dif-
ferential SE (DSE) formalism.7 For example, DSE calcula-
tions were carried out to select descriptors distinguishing
drug-like molecules from natural products and synthetic
molecules.7 Furthermore, DSE-selected descriptors were
successfully utilized to develop binary QSAR models for
the prediction of aqueous solubility.8 In these DSE applica-
tions, data sets for descriptor comparison were always of
comparable size. However, the identification of descriptors
that contain compound class-specific information requires
the comparison of data sets that dramatically differ in size,
i.e., an activity class containing tens or hundreds of active
compounds and a screening database with hundreds of
thousands small molecules. We demonstrate that the DSE
approach is intrinsically limited in its ability to select
information-rich descriptors by comparing compound data
sets of very different size. However, by transforming the DSE
formalism into mutual information analysis, another concept
from information theory, these difficulties can be circum-
vented. Herein, we introduce the mutual information-DSE
(MI-DSE) method that makes it possible to select descriptors
that capture activity class-relevant information in an unbiased
manner.

2. METHODOLOGY

First we describe the SE concept and DSE, its previous
extension for descriptor profiling in databases, and then
introduce the MI-DSE method for identifying descriptors
containing compound class-specific information.

2.1. SE. Shannon entropy is a concept from information
theory introduced in a seminal paper by Claude Shannon.4

Originally developed for applications in digital communica-
tion, it quantifies the information contained in a “message”
distributed over different channels. For molecular descriptor
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analysis, this “message” is simply the value of a descriptor
calculated for a test compound. The SE concept is applicable
to both continuous and discrete value distributions. For
descriptor analysis, the focus is on discrete subsets of possible
descriptor values, because such subsets can be obtained from
any value distributions by discretization of values through a
defined binning scheme. Discretization is often facilitated
by applying equidistant binning, which partitions a complete
value range into a constant number of equally sized
subranges.

The SE of a descriptor is given by the average information
content of all possible values of the descriptor. The informa-
tion content of a certain descriptor value depends on the
frequency with which this value occurs in a set of com-
pounds. It is provided by the negative of the base 2 logarithm
of the frequency of its occurrence pi. Hence, the underlying
idea is that a rare descriptor value conveys more specific
information about a test compound than a frequently occur-
ring value.

The SE of a descriptor with n possible values is defined
as

Exemplary value distributions of two different descriptors
represented as histograms and the corresponding SE values
are shown in Figure 1. None of 100 000 randomly selected
ZINC9 compounds contains a boron atom. Consequently, the
corresponding histogram for the descriptor “number of boron
atoms” consists of only one bin, and the resulting SE is zero
(Figure 1A). By contrast, the values for the descriptor
“molecular weight” vary greatly among ZINC database
compounds, and therefore this descriptor value distribution
yields a high SE reflecting high information content (Figure
1B).

2.2. DSE. In order to compare descriptor value settings
for any two classes of compounds, e.g., two different
databases or active versus inactive compounds, the SE
concepts needs to be extended. If we consider the case that
value distributions for a given descriptor are very similar
for two classes of compounds, i.e., each value occurs with
roughly the same frequency in each class, we conclude that
this descriptor does not contain class-specific information.

By contrast, if the value distributions significantly differ
between the two classes, then the descriptor contains such
information. However, a descriptor with high SE values (and
hence high information content) for both classes might still
be nondiscriminatory, if the value distributions are similar.
Discriminatory and nondiscriminatory descriptors for com-
parison of an exemplary activity class and the ZINC database
are shown in Figure 2. Most active compounds are positively
charged, whereas ZINC molecules are predominantly un-
charged or negatively charged (Figure 2A). Thus, the
descriptor “formal charge” can be utilized to discriminate
between these compound classes. Of course, the discrimina-
tion is not perfect because the two histograms overlap.
Furthermore, more than 95% of all compounds in both
classes do not contain a triple bond. Therefore, histograms
for the descriptor “number of triple bonds” are comparable
for both data sets, and this descriptor is clearly nondiscrimi-
natory (Figure 2B).

The DSE method was introduced to quantify how much
information about a given compound class is contained in
the value distribution of a descriptor when compared to
another.7 As illustrated in Figure 3, DSE calculations for a
descriptor D and two compound classes A and B involve
the following steps: First, descriptor values are discretized
according to an equidistant binning scheme, and histograms
are calculated for the two classes A and B. From these two
histograms, the class-specific SEs HA(D) and HB(D) are
calculated. In a next step, the two classes A and B are
combined into a single histogram where the frequencies for
a bin i are calculated according to the following equation:

Here, n corresponds to the number of molecules in class
A, m corresponds to the number of molecules in class B,
and fA(i) and fB(i) report bin frequencies for classes A and
B, respectively. The histogram is used to calculate HAB(D)
of the combined classes. Finally, DSE is calculated as

If the distributions of classes A and B are similar for a
given descriptor, as shown for hypothetical compound classes

Figure 1. Descriptor histograms and corresponding SEs. Exemplary descriptor histograms calculated from 100 000 compounds randomly
taken from ZINC are shown, and the corresponding SE values are reported. An exemplary value distribution for a low- and high-entropy
descriptor is shown in (A) and (B), respectively.

H(D) ) -∑
i)1

n

pilog2 pi (1)

fAB(i) )
n · fA(i) + m · fB(i)

n + m
(2)

DSE(D) ) HAB(D) -
(HA(D) + HB(D))

2
(3)
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of the same size in Figure 3, then HAB(D), HA(D), and HB(D)
will be similar, and the DSE value will be very small.
However, if the value distributions for the two data sets are
“complementary”, because they have different “shapes” and
cover different descriptor value ranges, then HAB(D) of the

combined histogram will be larger than the single-class
HA(D) and HB(D), and consequently, the DSE value will be
higher. Hence, DSE values provide an intuitive ranking
scheme for descriptors according to their power to discrimi-
nate between two different compound classes.

However, a problem arises if the two compound classes
are of significantly different size. In this case, the combined
histogram is much influenced by the larger class, and its value
distribution is biased, as illustrated in Figure 4A. Although
the descriptor “number of basic atoms” shows distinct value
distributions for an exemplary activity class and ZINC, the
combined histogram reflects the descriptor distribution of
ZINC. Hence, HAB(D) is essentially equal to HB(D), and eq
3 can be reduced to

Thus, under these conditions, the magnitude of DSE is
mostly determined by descriptors that display high variability
in the large compound class but only little variability in the
activity class. Then, DSE does no longer quantitatively
account for the Value range dependence of data distributions,
which is a key feature of the DSE approach, and the method
cannot be applied in a meaningful way.

2.3. MI-DSE. When trying to identify descriptors that
contain activity class-specific information, we are always
faced with large or very large differences in compound class
size. Here, the small class represents an activity class, and
the large class represents a database where the vast majority
of the compounds do not belong to the activity class.
Therefore, we have developed a descriptor selection approach
that is independent of the size of the compound classes under
consideration.

In information theory, the concept that quantifies the
amount of information about a class of objects (compounds)
captured by a descriptor is known as (average) “mutual
information” (MI).10 MI exactly describes how much infor-
mation about the class is contained in the value of a
descriptor. Formally, MI is defined as the difference between
the SE of the descriptor for two combined classes and the
conditional SE of the descriptor given the class:

Figure 2. Discriminatory and nondiscriminatory descriptors. Exemplary descriptor value distributions are shown for an activity class (gray)
and the ZINC compounds (black). (A) Histograms for the “formal charge” descriptor are distinct, and hence this descriptor contains class-
specific information. (B) Histograms for “number of triple bonds” are shown that are very similar. Therefore, this descriptor cannot discriminate
between the activity class and the reference database.

Figure 3. DSE calculation. All steps involved in DSE calculation
are illustrated for two hypothetical classes of the same size, classes
A and B. In this example, the value range of descriptor D is divided
into six bins.

DSE(D) ≈
HB(D) - HA(D)

2
(4)

MI(D, C) ) H(D) - H(D|C) (5)
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Here D is the descriptor and C is the class. H(D|C) quantifies
the additional information content of D for class C. For two
classes A and B, H(D|C) is given by

By setting the probabilities Pr(C ) A) ) Pr(C ) B) ) 0.5,
we obtain

This equation can be seen as an unbiased estimator for
the probability that a molecule belongs to either class.
Because of the inequality MI(D,C) e H(D) ) 1, the score
is normalized to the range of 0-1.

We now return to the DSE formalism and the calculation
of initial value frequencies. Instead of using eq 2 where
compound classes were weighted according to their size, we
calculate the frequencies as follows

This eliminates the class size-depending weighting scheme
from frequency calculations. On the basis of these frequen-
cies, we can generate the combined histogram of the value
distributions of our two compound classes. In the following,
we use the term normalized for a combined histogram that
is based on frequencies calculated according to eq 8 instead of

eq 2. The normalized histogram for the descriptor “number of
basic atoms” is shown in Figure 4B. In contrast to the original
histogram in Figure 4A, the normalized histogram reflects both
the value distribution of the descriptor within the activity class
and the screening database.

Calculating Hnorm(D) from the normalized histograms
yields a modified DSE score that exactly corresponds to eq
7 and is therefore termed MI-DSE:

This quantity also corresponds to the Jensen-Shannon
divergence11 of two feature distributions. The MI-DSE
measure has the desired property of yielding normalized
scores between 0 and 1, reflecting the significance of
descriptors to capture differential information content. A
score of 0 indicates that the descriptor distributions for
compound classes A and B are identical and that the
descriptor captures no class-specific information, whereas a
score of 1 indicates that the value distributions are nonover-
lapping and that the descriptor can thus perfectly distinguish
between A and B.

3. APPLICATIONS

3.1. Descriptor Ranking. To investigate whether MI-DSE
and DSE prioritize different descriptors, as would be
expected on the basis of our analysis, MI-DSE and DSE
calculations were carried out for 168 compound activity

Figure 4. Combined histograms for DSE and MI-DSE. Histograms for value distributions of the descriptor “number of basic atoms” are shown
for an exemplary activity class, AC, and ZINC. The combined DSE and MI-DSE histograms are shown in (A) and (B), respectively.

H(D|C) ) HA(D) · Pr(C ) A) + HB(D) · Pr(C ) B)
(6)

MI(D, C) ) H(D) -
(HA(D) - HB(D))

2
(7)

fAB(i) )
fA(i) + fB(i)

2
(8)

MI-DSE(D) ) Hnorm(D) -
HA(D) - HB(D)

2
(9)
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classes extracted from the ChEMBL12 database that con-
tained at least 50 inhibitors with a minimum potency of 1
µM. Compounds were represented by a large set of numerical
1D or 2D descriptors available in the Molecular Operating
Environment,13 listed in Supporting Information Table S1.
These descriptors accounted for a number of diverse proper-
ties, including physicochemical and bulk parameters, atom
and bond counts, chemical composition, and surface, topo-
logical, or shape properties. This rather comprehensive 2D
descriptor set was arbitrarily chosen for our statistical
analysis. Other types of descriptors could have also been
selected, for example, 3D descriptors. Our analysis aimed
at descriptor profiling and ranking to assess the MI-DSE
approach and not at finding the best molecular representations
to account for specific biological activities. Different binning
schemes were investigated by dividing the value ranges of

all descriptors into 8, 16, 32, or 64 equally sized bins. For
each activity class, all descriptor value distributions were
compared to those in a database of 100 000 randomly
collected ZINC compounds, MI-DSE and DSE scores were
calculated, and the descriptors were ranked in the order of
decreasing scores.

In order to compare DSE- and MI-DSE-based rankings
for an activity class, Spearman correlation coefficients were
calculated. The Spearman correlation coefficient provides a
measure for the correlation between two data rankings when
the values themselves are not of interest, but the relative order
they produce. It can be calculated as the Pearson correlation
coefficient of corresponding ranking positions. As a control
for the choice of binning schemes, DSE- and MI-DSE-based
rankings were first compared among themselves (Supporting
Information Table S2). The rankings produced with different
numbers of bins were highly correlated for the individual
methods, reflecting that descriptor ranking was essentially
independent of the utilized number of bins.

We then compared the DSE and MI-DSE rankings and
found that, irrespective of the applied binning scheme,
correlations between rankings were in most cases not
detectable or rather low. The average Spearman rank
correlation coefficients were 0.151, 0.201, 0.262, and 0.341
for 8, 16, 32, and 64 bins, respectively (hence, with
increasing numbers of bins, the rankings became only slightly
more similar). This large-scale comparison over many
different compound activity classes demonstrated that DSE
and MI-DSE calculations produced very different descriptor
rankings.

Figure 5. Value distributions for top-ranked DSE and/or MI-DSE descriptors. Descriptor distributions for exemplary descriptors for active
and database compounds are shown, and the corresponding MI-DSE and DSE values are reported. Descriptor histograms for active and
database compounds are shown in gray and black, respectively.

Table 1. Compound Activity Classes for Descriptor Comparisona

target abbreviation no. ligands

carbonic anhydrase 2 CA 159
endothelin A receptor EDN 32
estrone sulfatase ESU 35
gonadotropin releasing hormone GRH 100
low-density lipoprotein receptor LDL 30
lipoxygenase LIP 41
squalene synthase SQS 42
thromboxane receptor THR 33
VEGFR-2 tyrosine kinase VEG 36
xanthine oxidase XAN 35

a For each target, its abbreviation and the number of ligands (no.
ligands) are reported.
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3.2. Comparison of Top-Ranked DSE and MI-DSE
Descriptors. We also calculated DSE and MI-DSE values
for the complete set of descriptors and for 10 other previously
reported compound activity classes14 that contained between
30 and 159 compounds (Table 1) relative to the 100 000
ZINC database compounds. For all descriptors, value ranges
were divided into 16 equally sized bins. These 10 activity
classes were not included in the descriptor correlation
analysis discussed above. For each class, the top-ranked DSE
and MI-DSE descriptors were compared (Supporting Infor-
mation Table S3). The comparison of the descriptor value
histograms for active and database compounds and the
resulting DSE and MI-DSE values clearly showed that MI-
DSE calculations prioritized descriptors capturing compound
class-specific information, much more than DSE calculations.
Representative examples are shown in Figure 5 (for descrip-
tor definitions, see Supporting Information Table S1). The
PEOE_VSA-4 descriptor in Figure 5A is the top-ranked MI-
DSE descriptor for activity class CA (class abbreviations are
used according to Table 1). This descriptor has a low SE
for the ZINC database (HB(D) ) 1.97), resulting in a low
DSE value. However, the descriptor distributions in active
and database compounds display only very little overlap,
which results in a high MI-DSE value reflecting discrimina-
tory power of the descriptor. This example illustrates how
DSE calculations are dominated by the value distribution of
the large compound class. Furthermore, the KierA1 descriptor
in Figure 5B is highly ranked for activity class EDN on the
basis of MI-DSE calculations but not DSE calculations. This
descriptor yields large SE values for both database (HB(D)
) 3.36) and active compounds (HA(D) ) 2.81), resulting in
a low DSE value. However, the MI-DSE value for this
descriptor is high because the high-entropy descriptor value
distributions for both sets overlap only a little, revealing that
the descriptor captures compound class-specific information.
In Figure 5C, value distributions for BCUT_SLOGP_3 are
shown that is the top-ranked descriptor for activity class LDL
on the basis of both DSE and MI-DSE analysis. This
descriptor produces a high SE value for the database (HB(D)
) 3.56) and a low SE value for the activity class (HA(D) )
1.92), resulting in the high DSE value, which is determined
by the high SE value for the database. However, the value
distributions of this descriptor display only limited overlap,
which also results in a high MI-DSE value, consistent with
its evident discriminatory nature. Finally, in Figure 5D,
distributions are shown for BCUT_SLOGP_0, the top-ranked
DSE descriptor for activity class CA. This descriptor has a
high SE value for database (HB(D) ) 3.30) but a low SE
value for active compounds (HA(D) ) 0.83), because the
majority of their descriptor values populate a single bin.
These value distributions thus result in a high DSE value,
although the descriptor does not contain class-specific
information. This is the case because the peaks of the data
distributions closely overlap, i.e., most active and database
compounds produce similar values. This is clearly indicated
by the low MI-DSE value of this descriptor and its low MI-
DSE rank.

4. CONCLUSIONS

The identification of descriptors that capture compound
class-specific information is of high relevance for many

chemoinformatics applications. Generally, compound class-
specific information must be assessed by comparing sets of
compounds having a desired property (such as, for example,
biological activity) with data sets where all or at least the
majority of compounds lack this property. The larger this
reference database is, the more reliable the assessment of
class-specific information becomes. If only small reference
sets are utilized, then the analysis is not meaningful. For the
study of biological activity, descriptors that systematically
differ in their value settings between active and database
compounds are highly desired, i.e., descriptors that are
activity relevant. Here we have introduced an information
theoretic approach to reliably assess compound class-specific
information content of descriptors that is not biased by
intrinsic differences in the size of activity classes and
reference databases. This has been accomplished by com-
bining the differential Shannon entropy formalism with the
mutual information concept. The comparison of value
distributions of descriptors and the resulting DSE and MI-
DSE values and descriptor rankings has confirmed the utility
of the MI-DSE approach to identify descriptors containing
class-specific information. This newly introduced approach
is straightforward and should be useful for large-scale feature
analysis.

Supporting Information Available: Tables S1-S3 report
descriptors, rank correlation coefficients, and DSE and MI-
DSE descriptor rankings, respectively. This information is
available free of charge via the Internet at http://pubs.acs.org.
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