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This paper introduces Signal, a novel method for classifying activity against a small molecule drug target.
Signal creates an ensemble, or collection, of meaningful descriptors chosen from a much larger property
space. The method works with a variety of descriptor types, including fingerprints that represent four-point
pharmacophores or shape descriptors. It also exploits information from both active and inactive compounds
and generates predictive models suitable for high throughput screening data analysis. Given the fingerprints
and activity data for a set of compounds, Signal is a two step process. The first step is toEValuate the
Descriptors: for each descriptor in the fingerprint, quantify and rank the correlation between the activity of
the compounds and the presence of that descriptor. The second step is toCreate an Ensemble Model: use
the high ranking descriptors to create a model of activity against the biological target. For the first step, two
possible ranking strategies were investigated: mutual information and chi-square. For the second step, two
types of ensemble models were investigated: high ranking and a novel method called high ranking set
cover. Of the four possible pairings, the combination of chi-square and high ranking set cover performed
the best on a Thrombin data set.

INTRODUCTION

An integral task in modern drug discovery is the analysis
of high throughput screening data with the goal of finding
information to suggest new compounds for synthesis. One
possible approach is to synthesize analogues around the most
promising hits, which has a high likelihood of discovering
additional actives but a low likelihood of finding novel leads.
Another approach is to identify molecular properties that
appear among many actives and use combinations of these
properties to suggest new compounds for synthesis. While
this search may be performed by humans, computers handle
the tedious task with the capacity to process the large amount
of data that may be generated by combinatorial chemistry.
The goal of these algorithms is to narrow down, if not
identify, the molecular properties that are relevant for activity.

Machine learning is one class of algorithms that have been
explored to solve this problem. Jurs1-5 has applied a variety
of standard machine learning techniques, such as perceptrons,
neural nets, and genetic algorithms to determine structure-
activity relationships in molecule data. Muggleton and co-
workers proposed Inductive Logic Programming to discover
pharmacophore models,6-9 while Young and co-workers
applied recursive partitioning with the same objective.10

Although most of these approaches were implemented using
a pharmacophore model represented as pharmacophoric
descriptors in 3-D space with the distances specified between
them, in principle these methods are extendable to other types

of descriptors. Using real-valued descriptors to discover
correlations with activity has been implemented using neural
nets,3,11 partial least squares,9,12 and nearest neighbor ap-
proaches.13-17 Another strategy besides regression and clas-
sification is the rank-ordering of virtual compounds.18,19 A
few other approaches which do not use machine learning
techniques have also been suggested for the elucidation of
pharmacophores;20-22 however, they are constrained to a
specific type of pharmacophore and do not generalize to other
types of descriptors.

Quantitative structure-activity relationships, as an entire
discipline, have developed around regression-type methods.
However, generally regression is more difficult to solve than
classification, as has been pointed out by Vapnik.23 Ad-
ditionally, many approaches that use real-valued data show
numeric instability. That is, slight changes in the input cause
large changes in the output or the algorithms may not
converge to a solution. Furthermore, in many applications a
regression model is unnecessary. If the goal is to select
compounds from a virtual library, classification or rank
ordering should suffice. The methods presented here agree
with this philosophy and classify compounds into two classes,
active or inactive.

This paper introduces a general framework, called Signal,
which analyzes any property space that can be binned into
a binary vector or fingerprint. Signal selects relevant descrip-
tors from the fingerprint, a task known as thefeature-
selection problemin the machine learning literature.24 The
relevant descriptors are collected into anensemble, which
is a subset of descriptors from the fingerprint that represents
a model for activity. The more descriptors from an ensemble
that a test molecule has, the more likely it is active against
the target of the training set. Using this approach, Signal
was developed with three major goals. First, it must be
capable of evaluating a variety of descriptor types. Other
than the two types of fingerprint presented below, pharma-
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cophore and shape-feature, alternatives are in development
and more are commercially available. Second, the models
that Signal generates must be applicable in an automated
fashion such as searching a virtual library. Finally, Signal
should exploit information from both biologically active and
inactive compounds. For example, if two pharmacophores
are present in an equal fraction of active molecules, but one
is present in only a few inactives and the other in many,
then the prevalence among the inactives of the latter suggests
that it is likely to be less relevant. Overall, these goals were
met by developing a method that makes few assumptions
except that the property space is encoded as a collection of
binary fingerprints. Therefore continuous values, such as
volumes or interatomic distances, must be binned.

METHODS

The overall process is illustrated in Figure 1. For a given
set of compounds, Signal takes as input their fingerprints
and activity data. To illustrate its flexibility, Signal is
demonstrated using two different binary descriptor spaces:
one is a pharmacophore fingerprint which represents all
possible combinations of up to four pharmacophoric descrip-
tors and the distances between them25 and the other is a
shape-feature fingerprint.26,27Both descriptors were generated
for a Thrombin data set consisting of 41 active compounds
and 6468 inactive compounds in a lead evolution stage of
the drug design process. This data set consists of 38 known
Thrombin actives, a library of 5837 informative28 compounds
from the Universal Informer Library,29,30 and a set of 634
compounds selected from a virtual library of 285 872
compounds.

Generating Descriptors.In addition to using a common
set of compounds for the pair of descriptors spaces,
conformations were generated and pharmacophoric descrip-
tors were identified using the same method, components of
the Discovery Engine.30 Given two-dimensional structure
information, conformational analysis was performed to
generate a collection of low-energy three-dimensional con-
formers for each compound in the data set using CONAN.31

It typically generates 30-200 low-energy conformations per
compound. The conformations are chosen to cover the
conformational space of the compound. For the rest of the
paper, the term conformers will refer to the conformers
generated by CONAN. Next using a rule-based method, the
compound’s substructure was analyzed, and atoms in each
conformation were classified into pharmacophoric descrip-

tors. Six were used: hydrogen bond donor, hydrogen bond
acceptor, positive charge, negative charge, hydrophobic
group, and aromatic ring centroids. From this common
starting point two different types of descriptors were gener-
ated for each compound.

Pharmacophore Descriptors.These descriptors are the
classical pharmacophores where the distances between the
points are discrete. Given a set of pharmacophoric descrip-
tors, typically six, and a set of distance bins, typically
between 8 and 14, all possible four-point pharmacophores
are generated. This combination constitutes the descriptor
space of potential pharmacophores. Some combinations of
distance bins are physically impossible, such as those that
violate the triangle inequality, and are discarded. For the
remainder, on the order of tens to hundreds of millions of
them, a unique offset is assigned corresponding to a position
in a binary fingerprint. For the Thrombin data set, the range
1.5-24 Å was divided up into 11 distance bins resulting in
a fingerprint with roughly 33 million positions. These
positions in the binary fingerprint represent indicator vari-
ables for pharmacophores: if any conformer of a compound
possesses pharmacophorei, then theith position is set to
one, otherwise it remains zero.32

Shape-Feature Descriptors.Given a set of active com-
pounds, this fingerprint is created by considering all possible
shapes that arise from the conformations of these compounds.
This collection is called a shape catalog. If two shapes in
the catalog are similar, within a user-defined threshold, then
one of them is removed in order to reduce the size and
redundancy of the catalog. These shapes are represented by
placing the Thrombin conformation of interest into a three-
dimensional grid so that the positive charge is at the origin,
the centroid falls on thex-axis, and the heavy atom farthest
from the x-axis is on thexy plane. Various higher order
moments are calculated to determine if the centroid is placed
on the positive or negativex-axis, and if the heavy atom
should occur on the positive or negativey-axis. Putta et al.26

give complete details of both the alignment procedure used
to compare shapes and shape-feature descriptors. In short,
the descriptor space consists of all possible combinations of
shapes in the catalog, grid locations, and pharmacophoric
descriptors at that grid location.26,27 For example, for the
Thrombin data, 38 different Thrombin ligands generated
3096 different conformations (between 3 and 334 per
compound) which when duplicates were removed, resulted
in a catalog of 196 shapes. Each shape was placed into a
box with 8550 grid locations. The same six pharmacophoric
descriptors as above were used, resulting in a binary
fingerprint that was 10 054 800 bits long.

Evaluating Descriptors. To create a model for activity,
Signal quantifies how well individual descriptors (D) cor-
relate with activity (A) by tracking the number of active (a)
and inactive (i) compounds in whichD is either present (p)
or not (n). A particular descriptor is said to be present in the
compound’s fingerprint, if the corresponding position in the
fingerprint is set to one (in short,D coVers this compound).
Signal quantifies the relative merit of each descriptor’s
correlation with activity by evaluating these counts with a
ranking equation. In general, their value increases as a
descriptor covers more active or fewer inactive compounds.
The relative tradeoff assigned to the number of active versus
inactive compounds covered by the descriptor varies for

Figure 1. It is a two step process to convert the input, a set of
fingerprints, and their corresponding activities, into a model suitable
for screening a virtual library. First, Evaluate Descriptors: Signal
evaluates each descriptor’s correlation with activity. Second, Create
Ensemble Model: Signal creates an ensemble, or a set of the most
promising descriptors as a model of activity. A virtual library could
then be screened to identify compounds that have an unusually large
number of descriptors in common with the ensemble.
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different ranking equations. To capture this variation, two
equations which have been well characterized in the literature
are compared:mutual informationfrom information theory33

andchi-squarefrom, among other places, categorical data
analysis.34 While the significance of the differences between
them in a drug design application will be presented in the
Results section, the formulas are described below.

Mutual Information. The first ranking equation (eq 1)
is called the mutual information,I(A, D), of the activity of
an individual descriptor.32 Its first term (eq 2) is the Shannon
entropy of the activity data and is a function solely of the
proportion of active and inactive compounds in the data set.
It reaches its maximum when the number of active com-
pounds in a data set equals the number of inactives. The
second term (eq 3) is a function of the probability of a
compound being active given the presence or absence of the
descriptorD. The parameters used in eqs 1-7 are listed in
Table 1.

where

If the descriptor and the activity are completely indepen-
dent, then the compounds are just as likely to be active
whetherD is present or not. Hence the three fractions in eq
4 are all equal.

Therefore the first term ofH(A) cancels out the first two of
H(A|D), as shown in eq 5.

With a similar argument, the second term ofH(A) cancels
out the last two terms ofH(A|D). ThereforeI(A,D) reaches
its minimum, zero, in the case whereA is independent ofD.
So mutual information varies between zero and the entropy
in the data set, depending on how well the presence of the
descriptor being ranked correlates with the activity of the

compounds. Another ranking equation with similar proper-
ties, the Kullback-Leibler distance, has also been used in
drug design.35

Chi-Square. The second ranking equation considered is
the chi-square statistic:

Each of the four terms in the sum quantifies the correlation
of a different combination of whether a descriptor is present
(p) or not (n) in the compounds and whether the compounds
are active (a) or inactive (i). The first term in the sum quan-
tifies the first combination: to what extent isp independent
of a? If completely independent, then the probability of
finding actives in the whole data set equals the probability
of finding them among those covered by the descriptor; that
is, eq 7 would be satisfied. The further from independence,
the more positive or negative the difference is.

The numerator of the first term in eq 6 is obtained by
multiplying both the numerator and denominator of eq 7 by
N2. This value is squared ensuring that the difference is
always positive, and it is normalized by dividing byNaNp

making the value independent of the sample size. In
summary, in the case of independence betweenp anda, the
numerator of the first term of eq 6 equals zero. With similar
arguments, the other numerators of eq 6 equal zero as well.
On the other hand, the stronger the correlation between the
presence of the descriptor and activity, the larger the value
of the chi-square statistic.

Creating an Ensemble Model.With both chi-square and
mutual information, a descriptor that is present in all actives
and absent in all inactive compounds receives the highest
possible rank. However, in practice, a single descriptor rarely
possesses such strong correlation. Using an ensemble, or
collection, of descriptors to model activity can mitigate this
limitation. Researchers have observed that combining clas-
sifiers in a meaningful way increases their accuracy.36,37

Hansen and Salamon38 have shown that as long as each
descriptor in an ensemble has better than a 50% accuracy
and the errors of each descriptor are uncorrelated, then an
ensemble of descriptors can achieve arbitrarily high accuracy.
Dietterich39 has noted three reasons for this improvement.
First, when there is insufficient data, which is typical in the
early stages of drug design, there may be many equally good
models of activity and using an ensemble of them minimizes
the risk that the wrong one is selected. Flexible ligands
further aggravate the problem when it is unclear which
conformation accounts for activity. Second, many search
strategies halt at a local minima, so tracking many potential
solutions reduces the risk that the global minima is missed.
Having many potential solutions at hand is also useful when
one promising avenue turns out to have pervasive pharma-
cokinetic problems. Third, simple models, such as a single
pharmacophore, may not account for the complexity of

Table 1. Ranking Equation Parameters for a DescriptorD

symbol meaning

N total number of compounds
Na number of active compounds
Ni number of inactive compounds
Np number of compounds withD present
Nn number of compounds withD not present
Nap number of active compounds withD present
Nan number of active compounds withD not present
Nip number of inactive compounds withD present
Nin number of inactive compounds withD not present

ø2 )
(NapN - NaNp)

2

NaNp
+

(NipN - NiNp)
2

NiNp
+

(NanN - NaNn)
2

NaNn
+

(NinN - NiNn)
2

NiNn
(6)

Nap

N
-

Na

N

Np

N
) 0 (7)

I(A, D) ) H(A) - H(A|D) (1)

H(A) ) -(Na

N
log(Na

N) +
Ni

N
log(Ni

N)) (2)

H(A|D) ) -(Nap

N
log(Nap

Np
) +

Nan

N
log(Nan

Nn
) +

Nip

N
log(Nip

Np
) +

Nin

N
log(Nin

Nn
)) (3)

Na

N
)

Na

Np
)

Nan

Nn
(4)

Na

N
log(Na

N) -
Nap

N
log(Nap

Np
) -

Nan

N
log(Nan

N ) ) 0 (5)
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binding, such as different ligands having different binding
modes or overlapping but nonidentical sets of interactions
within the same pocket. An ensemble model can address this
complexity because different binding modes are modeled by
the ability of the each mode to match a different subset of
the ensemble.

In this paper, two ensemble methods were investigated.
The first, high ranking ensemble, is simple and generally
quite effective. The second,high ranking set coVer, is a novel
method specifically developed to address the limitations of
the first when it is applied to early stage computational
drug discovery. In principle, either ensemble method could
be used in conjunction with either chi-square or mutual
information.

High Ranking Ensemble (HRE). A straightforward
approach for creating an ensemble is to select descriptors
with the largest chi-square or mutual information values.
Typically the user would decide on an ensemble size,n, and
select the topn ranking descriptors. A simple example in-
volving three active compounds,A1-A3, and six inactive
compounds, I1-I6, characterized by four descriptors,
D1-D4, is given in Table 2. Both mutual information and
chi-square ranking equations would rank the descriptors in
the orderD1, D2, D4, andD3. For an ensemble of size two,
the two highest ranking descriptors,D1 and D2, would be
chosen.

High Ranking Set Cover (HRSC).Unfortunately, HRE
possesses limitations. For many data sets HRE only covers
a fraction of the active compounds. An example is presented
in the Results and Discussion section. The basis for an
alternate approach for selecting the ensemble, calledset
coVering, originates from Dash.40 A descriptor is said to cover
a set of compounds if it differentiates one class (such as the
actives) from another (inactive compounds). For example,
in Table 2 descriptorD1 differentiatesA1 andA2 from I2-I6

becauseD1 has different values for these active versus
inactive compounds, so it is said to cover{A1, A2, I2, I3, I4,
I5, I6}. Similarly, D2 covers{A1, A2, I3, I4, I5, I6} and D3

covers {A1, A3, I1, I2, I6}. The subset{D1, D2, D3} of
descriptors covers all the compounds as does the subset
{D1, D3}. Dash’s algorithm searches for the minimum
number of descriptors that covers the data set so it would
select{D1, D3}.

A novel variation of Dash’s algorithm calledhigh ranking
set coVer overcomes the limitations of HRE. As in HRE,
the descriptors are first ranked using one of the two equations
presented earlier. The descriptors are then examined in
descending order, and one is added to the ensemble only if
it covers active compounds that are not already covered by
at leastd descriptors, whered is a user-specified parameter

establishing the depth of coverage. The algorithm continues
to evaluate the remaining descriptors until all the actives are
covered by at leastd descriptors. For example, using the
data in Table 2 with a coverage ofd ) 1, the algorithm runs
as follows. The descriptors rankD1, D2, D4, andD3 by either
ranking equation.D1 is added to the ensemble because it
covers activesA1 and A2. D2 is skipped because it covers
only actives that are already covered.D4 is added because it
coversA3. With that choice, all actives are covered at a depth
of at least one, so the algorithm halts selecting the ensemble
{D1, D3}.

The high ranking set cover approach differs from Dash’s
set cover approach in three ways. First Dash’s algorithm
covers each compound once, whereas the high ranking set
cover specifies a depth of coverage,d. Dash’s algorithm was
not developed specifically for early stage drug discovery,
so while it mitigates the problem of certain subsets dominat-
ing the ensemble, a single descriptor per active is usually
insufficient at this stage. Second, Dash’s algorithm targets
covering the entire data set, both actives and inactives; in
contrast, HRSC covers only the active compounds. It takes
into account information from the inactives implicitly via
the ranking equation rather than by explicitly tracking the
descriptors that correlate with inactivity. These are often
difficult to discover from the data or even impossible at the
early stages of drug design when the inactives are typically
quite numerous and diverse. Third, Dash’s algorithm tries
to cover the compounds with as few descriptors as possible,
whereas the goal of HRSC is coverage with high ranking
descriptors. The belief being that the high ranking descriptors
afford a computationally less expensive yet more effective
tool for distinguishing the actives from the inactive com-
pounds.

Applying an Ensemble Model.Given an ensemble, one
possible application is to search a virtual library. A compound
is scoredagainst the ensemble by counting the number of
descriptors a compound shares in common with the en-
semble. The score may be interpreted as follows: the higher
the score, the more likely that the compound is active. That
is, the score correlates with the likelihood of activity, not
necessarily the magnitude of activity.

Assessing the Performance.One would typically search
a virtual library and synthesize either the top scoring com-
pounds or compounds that score above a certain threshold.
Even with an excellent model, a tradeoff exists: lowering
the threshold discovers more actives (true positives) at the
expense of including more inactive compounds (false posi-
tives). This tradeoff is assessed using a score plot, such as
in Figure 2. Here thex-axis shows all possible thresholds.
Signal predicts that a compound is active when its score is
greater than or equal to the threshold. They-axis shows the
fraction of molecules nominated active. For example in
Figure 2 using a threshold of 15 out of a possible 100, 96%
of the actives and only 7% of the inactives in the test set
have a score greater than 15. As the threshold increases less
compounds, both active and inactive, are nominated active.
Ultimately, the user decides on a suitable tradeoff between
false negatives and true positives when setting the threshold.
To assess the model’s quality, the score plot includes curves
for the performance on both training and test data. A
significant difference between the two suggests that Signal
is overfitting the data.

Table 2. Descriptor Examplea

descriptor A1 A2 A3 I1 I2 I3 I4 I5 I6 I(A, D) ø2

D1 1 1 0 1 0 0 0 0 0 2.250 0.179
D2 1 1 0 1 1 0 0 0 0 0.900 0.073
D3 1 0 1 0 0 1 1 1 0 0.225 0.018
D4 0 0 1 0 0 0 0 0 1 0.321 0.025

a A cartoon example where the columns represent the fingerprints
of three active compounds,A1-A3, and six inactive compounds,I1-I6.
The rows represent the presence or absence of four descriptorsD1-
D4. The last two columns, respectively, represent the mutual information
and chi-square value for these four descriptors.
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While the score plot assesses the performance of a
particular method, it is not well suited for comparing different
methods. To facilitate the latter, the performance is quantified
on log-linear ROC plots, such as in Figure 3 or Figure 4. A
log-linear ROC plot displays the log of the false positive
probability (fraction of inactives selected) on thex-axis
against the true positive probability (fraction of actives
selected) on they-axis, as the threshold for classifying a test
compound as active is decreased.41 However, unlike the score
plot, here the threshold is not explicitly shown on the graph.
Rather, on an ROC plot the performance of a single method
on the test set is depicted as a single curve. Different methods
or parameter settings may be compared by plotting their
performance curves on the same graph. If one curve is always
above another, it means for a given fraction of inactives that
pass the threshold, the method corresponding to the higher
curve discovers more active molecules; that is, it is superior
on that particular data set.

The error bars on each curve in Figures 2-4 represent
the 95% confidence interval associated with each point
(rather than the whole curve), and they are calculated from
the distribution of 10 cross-validation trials. One method
outperforms another if its ROC curve is predominately over
the others. With enough samples, if one curve is completely
above another, but always within its confidence interval, it
could still be significantly better than the other as proved
by a simple argument. If two curves are identical, and noise
from the same distribution is added to each, then on average
one curve would be above the other curve 50% of the time.
The odds of having one curve above the other in seven out
of seven data points by chance would be one-half to the
exponent seven, which is less than one percent.

RESULTS AND DISCUSSION

The use of Signal is illustrated on a Thrombin data set
consisting of 6509 compounds in a lead evolution stage of
the drug design process. It took roughly 20 min to process
the data set on a 400 MHz Pentium III computer. For each
of the two types of descriptors, shape-feature and pharma-
cophore, a graph of all four combinations of the two types
of ensemble models, high ranking set cover (HRSC) versus
high ranking ensemble (HRE), and the two types of ranking
equations, mutual information (MI) vs chi-square (Chi), are
plotted along with a curve that represents the average
performance of a random selection. All the curves are the
average performance from 10-fold stratified cross-validation.
Here, the cross-validation is stratified by activity level so
that each training sample is guaranteed to have nine-tenths
of both the active and inactive compounds. This strategy is
necessary when inactive compounds vastly outnumber the
active ones because picking samples completely randomly
could result in a training sample with few if any active
compounds. Figure 3 illustrates the performance for phar-
macophore descriptors and Figure 4 for shape-feature
descriptors. In both of these plots, the combination of using
high ranking set cover with the chi-square ranking equation
works best on the range 0.003-0.3. Experience with other
data sets suggests that this combination is generally superior,

Figure 2. Sample score plot with a Thrombin data set: Thex-axis
shows all possible thresholds for an ensemble of 100 descriptor
components. A molecule with a score greater than or equal to a
particular threshold is nominated active. They-axis is the fraction
of molecules nominated active for each threshold value. The plot
shows the performance curves for both training and test sets which
are further subdivided into active and inactive compounds. The
curve corresponding to train inactive and test inactive lie on top of
each other.

Figure 3. Pharmacophore descriptors with a Thrombin data set:
This plot displays the log of the false positive probability on the
x-axis against the true positive probability on they-axis, as the
threshold for classifying a compound in the test set as active
changes. There is a performance curve for each of the four
combinations of ranking equations (MI: mutual information vs
Chi: chi-square) and ensemble methods (high ranking ensemble
vs high ranking set cover). The combination of chi-square with set
cover is the highest curve and hence the best combination.

Figure 4. Shape-feature descriptor with a Thrombin data set: This
chart displays the log of the false positive probability on thex-axis
against the true positive probability on they-axis, as the threshold
for classifying a compound in the test set as active changes. There
is a performance curve for each of the four combinations of ranking
equations (MI: mutual information vs Chi: chi-square) and
ensemble methods (high ranking ensemble vs high ranking set
cover). The combination of chi-square with set cover is the highest
curve and hence the best combination.

CLASSIFYING COMPOUNDS FORDRUG DISCOVERY J. Chem. Inf. Comput. Sci., Vol. 43, No. 6, 20032167



sometimes equivalent, but never significantly worse than any
of the other three combinations. To understand why, one
must understand the limitations of the descriptors used, and
how the ranking equations and model building techniques
that Signal uses mitigate these limitations.

Comparing the Ranking Equations. When mutual
information and chi-square were used to rank order descrip-
tors on the Thrombin data set mentioned above, the results
were quite different, the top five of which are listed in Tables
3 and 4. Clearly the different rankings favored different
proportions of true positive,Nap, at the expense of false
positives,Nip. In the case of mutual information, the high
ranking descriptors are the ones that select almost all true
positives at the expense of a large number of false positives,
whereas descriptors ranked highly by chi-square have a
greater ratio of true positives to false positives. This contrast
is to be expected because mutual information is a measure
of association42 which evaluates how well the descriptor
correlates with the any compound being active or inactive.
We call this approach a whole model bias. Chi-square is a
measure of statistical significance and is related to the
likelihood that a random descriptor is positive for many
active compared to inactive compounds. We call this
approach a bias toward significant components.

Comparing Ensembles Methods.Both ranking equations
suffer from the same problem during drug discovery on a
real target. Typically the top ranking ensemble covers only
a fraction of the active compounds; however, in an ideal
situation, all the active compounds would be equally well
represented. Table 5 illustrates this limitation. It shows which
active molecules in the Thrombin data set are covered by
the nine descriptors with the highest chi-square values. Each
column under Active Molecules represents a single active
compound. Each row represents a single high ranking
descriptor, with the highest ranking descriptor in row one.
When a cell is filled, then the corresponding descriptor covers
the corresponding active compound. So the first active
compound (or column) does not contain any of the nine
highest ranked descriptors, and the second compound
contains all nine of them. Table 5 demonstrates that the same
15 compounds are covered by the nine top ranking descrip-

tors. So a high ranking ensemble of size nine accounts for
only 15 out of the 41 active compounds. This is an example
of a set of active compounds, typically from the same
congeneric series, dominating the ensemble. When descrip-
tors from a single, or few, congeneric series dominates an
ensemble, it is less likely that this ensemble accounts for all
the different reasons a compound may be active, reducing
the likelihood that novel scaffolds will be discovered.

The first version of Signal used the combination of the
mutual information ranking equation paired with high ranking
ensemble. After about a half dozen early stage drug discovery
projects involving Signal, many users observed the phenom-
ena described above of a small set of active compounds
dominating the ensemble. Using the chi-square ranking
equation, or others like it, only exacerbated the problem,
because it would focus even more on the significant
components. However, the combination of chi-square with
set cover alleviated the problem, as is illustrated in Figures
3 and 4, where the curve corresponding to high ranking set
cover plus chi-square, for the most part, dominates all other
curves. The reason for this result is that the two methods
are complimentary. While chi-square ranking ensures that
few inactives are picked (reducing false positives), the set
cover algorithm, by design, covers as many actives as
possible (increasing true positives).

CONCLUSION

This paper presents a novel machine learning approach to
distinguish active molecules from inactives. Within a general
framework, two different types of 3-D descriptors were used
as a basis for discrimination. The first is a traditional
pharmacophore type, and the second encodes the shapes and
features of a compound. Both are encoded as large binary
vectors. The model itself is an ensemble of the binary
descriptors whose presence correlates strongly with the
activity. Correlation is evaluated using either mutual infor-
mation or chi-square ranking equations, and the high ranking
descriptors are then collected into an ensemble based solely
on their ranking or by covering the set of active compounds.
Cross-validation experiments with this method on a Throm-
bin data set show reasonably accurate classification of the
active and inactive compounds in the test set. Further, the
combination of the high ranking set cover with the chi-square
ranking equation seems to yield the best results.

Table 3. Mutual Information’s Highest Ranked Descriptorsa,b

descriptor rank Nap Nip mutual information

1 35 487 0.016141
2 35 500 0.015946
3 39 827 0.015897
4 39 828 0.015887
5 39 829 0.015877

a Nap - number of active positive compounds.b Nip - number of
inactive positive compounds.

Table 4. Chi-Square’s Highest Ranked Descriptorsa,b

descriptor rank Nap Nip chi-square

1 15 6 1687.1
2 11 1 1591.8
3 11 1 1591.8
4 14 6 1542.4
5 15 8 1538.3

a Nap - number of active positive compounds.b Nip - number of
inactive positive compounds.

Table 5. Set of Compounds Dominating a High Ranking
Ensemblea

a Each row represents a single high ranking descriptor. Each column
represents a single active compound. If a cell is filled in then the
corresponding descriptor is present in the corresponding active com-
pound. This table illustrates that the top ranking descriptors cover only
15 of the 41 active compounds in a Thrombin data set.
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Several positive features of this approach may be noted.
Signal is robust in the sense that it works with a variety of
descriptors, and it is economical because it exploits informa-
tion from both active and inactive compounds. It is efficient
because it can process hundreds of thousands of compounds
a day, making it appropriate for automated searching through
virtual libraries of compounds. Finally, the combination of
the chi-square ranking equation plus the novel method, high
ranking set cover, helps alleviate the problem of a small
number of active compounds having a large influence on
the final predictive model.
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