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Abstract
Multi-label classification algorithms based on supervised learning use all the labeled data to train classifiers. However, in 
real life, many of the data are unlabeled, and it is costly to label all the data needed. Multi-label classification algorithms 
based on semi-supervised learning can use both labeled and unlabeled data to train classifiers, resulting in better-performing 
models. In this paper, we first review supervised learning classification algorithms in terms of label non-correlation and label 
correlation and semi-supervised learning classification algorithms in terms of inductive methods and transductive methods. 
After that, multi-label classification algorithms are introduced from the application areas of image, text, music and video. 
Subsequently, evaluation metrics and datasets are briefly introduced. Finally, research directions in complex concept drift, 
label complex correlation, feature selection and class imbalance are presented.
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1  Introduction

With the rapid development of big data, a large amount of 
data is generated in life, and these data contain a lot of infor-
mation closely related to human life. In order to obtain the 
required data, many tasks related to data mining have been 
carried out [1]. Traditional classification methods focus on 
single-label classification. However, many practical prob-
lems require multi-label classification (MLC). The goal of 
MLC is to predict the potential multiple labels of the test set 
by a prediction model based on the training set [2].

The classic MLC methods are mainly divided into prob-
lem transformation (PT) and algorithm adaptation problem 
(AA). The most commonly used in PT is the Binary Rel-
evance (BR) method. The BR method does not consider the 
interdependence between labels. In order to overcome this 
problem, researchers proposed the classifier chains method 
(CC) [3], which is based on BR and connects the binary 
classifier obtained by BR through a chain method. The label 
power-set (LP) method is also PT. The RAndom k-labEL-
sets (RAkEL) [4] is an ensemble use of LP, where each LP 

classifier is trained by a different small subset of randomly 
generated labels. AA is the modification of an existing algo-
rithm to fit the new problem to be solved. The specific per-
formance is to adjust the existing single-label classification 
problem to the MLC problem. Popular models of AA for 
building multi-label classifiers include k-Nearest Neighbor 
(kNN) [5], decision tree [6], Support Vector Machine (SVM) 
[7], Neural Networks (NN) [8] and so on.

In recent years, several surveys on MLC have been pro-
vided. Tsoumakas et al. [9] detailed MLC methods from the 
perspective of PT and AA, briefly introduced some evalua-
tion metrics, and finally compared the experimental results 
of MLC methods. Moyano et al. [10] compared multi-label 
ensemble classifiers on 20 datasets and evaluated their per-
formance based on the characteristics of imbalanced datasets 
and the correlation between labels. Zheng et al. [11] intro-
duced traditional MLC methods and multi-label data stream 
classification algorithms from multi-label data stream clas-
sification, discussed their advantages and disadvantages, and 
determined the mining constraints of multi-label data stream 
classification. Sadarangani et al. [12] only introduced semi-
supervised learning from the perspective of single label. 
Supervised learning (SL) is one of the branches of machine 
learning, which can be divided into regression and classifica-
tion problems. Semi-supervised learning (SSL) is a popular 
method to deal with incomplete markings. So far, no survey 
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has introduced MLC from the perspective of SL and SSL, 
and no survey has provided a comprehensive introduction to 
the practical application of multi-label. The overall frame-
work of this article is shown in Fig. 1.

The main contributions of this paper are:

(1)	 We present a comprehensive review of MLC algorithms 
based on SL and SSL and summarize the existing MLC 
algorithms and discuss their advantages and disadvan-
tages.

(2)	 We have studied and summarized the MLC algorithms 
from the perspective of application fields.

(3)	 We introduce the commonly used evaluation metrics 
and open datasets, and graphically demonstrate the 
evaluation metrics used by SL classification algorithms.

(4)	 We analyze the problems in MLC algorithms, and pro-
pose the next research directions.

The remainder of this paper is organized as follows: 
Section 2 describes MLC based on SL and SSL. Section 3 
describes application fields, including image classification, 
text classification, and other fields. Section 4 mainly intro-
duces the evaluation metrics and datasets. Finally, Sects. 5 
and 6 propose further research directions and conclude the 
whole paper, respectively.

2 � Multi‑label classification based 
on supervised and semi‑supervised 
learning

Both supervised and semi-supervised learning algorithms 
have been widely used in multi-label classification. This sec-
tion will summarize them from the perspective of supervised 
and semi-supervised learning.

2.1 � Supervised learning

SL is a machine learning task that infers a function from a 
labeled training set [13]. In the next few sections, the paper 
will review MLC algorithms from two aspects: SL based 
on non-label correlation and SL based on label correlation.

2.1.1 � Label non‑correlation algorithm

In MLC, the correlation between the labels is very complex 
[14]. Without considering this problem, the difficulty of the 
algorithm can be simplified. Based on label non-correlation, 
this section introduces MLC algorithms from multiple direc-
tions such as decision trees, Bayes, SVM, NN, kNN and 
ensemble.

Multi-label decision trees for prediction probability 
[15] build a tree using a traditional, single-label decision 
tree algorithm in the context of SL, using a normaliza-
tion method to convert multi-label data into single-labeled 
instances. The algorithm evaluates the method based on the 
performance of tree complexity and prediction accuracy, 
introducing a new metric for comparison of datasets. LdSM 
[16] can be used to build and train multi-label decision trees 
with a new objective function optimized in each node of the 
tree that facilitates balanced splitting, maintains high-class 
purity of the child nodes, and allows sending instances in 
multiple directions with penalties to prevent excessive tree 
overgrowth. Once the previous node is completed, each node 
of the tree is trained. ML-decision trees based on NPI-M 
[17] is a new nonparametric predictive inference model 
based on multinomial data, and the splitting criterion of this 
algorithm makes it independent of the noise of the labels, 
and the imprecise information gain is calculated as follows, 
where H∗(L|A = ai) is the maximum value of H∗(L) in the 
partition of the dataset consisting of instances with A = ai.

Multi-label classification based on supervised and 
semi-supervised learning

Multi-label classification Application fields

Supervised learning Semi-supervised learning

Label non-correlation 
algorithms

Label correlation 
algorithms

Inductive methods

Transduction methods

Image fields

Medical image

Remote Sensing 
Image

Text classification

Emotion

Medical biology 

Music, video

Evaluation indicators and 
public datasets

Fig. 1   Overall framework diagram
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Using Bayesian networks as base models, Yang et al. 
[18] proposed a feature weighting method to improve 
the classification accuracy of the decision function. The 
conditional probabilities of positive classes are estimated 
by computing the frequency ratios of features in-depth 
from the training data, and the decision function can be 
simplified by eliminating redundant variables for vari-
ables whose probabilities are independent of the decision 
function.

AEML-LLSVM [19] is a fast classification algorithm 
based on multi-core low-rank-linearized SVM. The BR 
transformation strategy is used to decompose the multi-
label data set into multiple binary data sets. Then, the 
approximate extreme value method is used to obtain a 
representative set from each binary data set. Finally, the 
algorithm is trained on each representative set to achieve 
MLC. AEDC-MLSVM [20] is an algorithm that combines 
approximate extreme value method and divide-and-con-
quer strategy under SL, and is an improved approach to 
the previous algorithm. The algorithm also uses BR to 
implement MLC and is suitable for use with large-scale 
datasets with relatively low time complexity.

Under SL, BP-AEPML [21] uses a method to reduce 
the size of the original dataset by extracting a representa-
tive dataset based on approximate limit points, and then 
a BP neural network is used to train the representative 
dataset. NNMLInf [22] is a prediction model based on 
NN. This model can be used to predict social influence. 
Among them, people’s network structural features are con-
sidered network inputs and their behaviors are classified 
into multiple labels as network outputs. The algorithm of 
deep neural architecture based on bidirectional correlation 
pool layer [23] uses a correlation function to detect differ-
ent pairs of neurons that will be aggregated into merged 
neurons. An iterative procedure is proposed, which can 
estimate the correlation between the merged neurons in the 
deeper layer without recomputing the correlation matrix. 
A novel multi-attention drive system for remote sensing 
[24] proposes a k-branch CNN to extract the preliminary 
local descriptors of remote sensing image bands associated 
with different spatial resolutions. All the outputs of the 
RNN are used to predict the multi-label of remote sensing 
images, instead of determining each label by considering 
a single class-specific node.

Extreme Learning Machine (ELM) is a method based 
on feedforward NN construction and is used in MLC due 
to its fast training [25]. ML-KELM [26] solves the prob-
lem of converting the real-valued output of the network 
to a binary vector using an adaptive threshold function, 

(1)IIG(L,A) = H∗(L) −

n∑

i=1

P
(
A = ai

)
H∗(L|A = ai)

while adjusting fewer parameters, running stably, converg-
ing fast and generalizing well. ML-CK-ELM [27] uses lin-
early combined basis kernels in each layer, which does not 
require random adjustment of parameters and has a signifi-
cant reduction in computation time and memory storage. 
Rr et al. [28] proposed two frameworks, RMLFM applies 
the feature manifold regularization term and RMLDM 
considers both feature manifold and data manifold regu-
larization to maintain the local structure of data and fea-
tures, while two iterative algorithms based on the global 
conjugate gradient method are used to solve the objective 
functions of the proposed methods RMLFM and RMLDM.

ML-RkNN [29] is a neighbor-based reverse nearest 
neighbor MLC algorithm. For the same value of k, the 
algorithm adaptively acquires different numbers of neigh-
bors for different instances, thus better learning the local 
configurations around the points. Also, by comparing the 
class distribution of test points and their reverse nearest 
neighbors, it helps to implicitly deal with the local imbal-
ance problem prevalent in the dataset. To address the data 
stream problem, MLSAMPkNN [30] uses self-tuning 
memory to accommodate various types of concept drift, 
implementing a penalty system to identify and remove 
instances of introduced errors. Instances that have a signif-
icant impact on the error are quickly removed, the fact that 
it was recently added to the window. By removing poorly 
performing instances, punitive systems can also help keep 
memory sizes small and reduce the amount of computation 
required to determine the distance of incoming instances. 
MLSAkNN [31] uses the penalties of MLSAMPkNN, but 
it assumes that the instance causing the error is completely 
wrong, but it is possible that an instance has a noisy label 
or that conceptual drift affects only a few labels. The algo-
rithm proposes methods to enable and disable dynamic 
instances and instances of each label.

The ELIFT [32] based on SL uses an ensemble method 
to alleviate the limitation on high classification accuracy. 
Multiple training sets generated using a bagging strategy 
are used to construct multiple LIFT classifiers. According 
to the loss of each classifier, different classifiers are auto-
matically weighted. For each new instance, the predicted 
label vector is obtained through the learned weighted 
ensemble classifier. AESAKNNS [33] uses MLSAkNN 
as the base classifier to take advantage of ensemble clas-
sification to accommodate concept drift in multi-label 
environment. The ADWIN detector monitors each clas-
sifier for concept drift on a subspace. Once detected, the 
algorithm automatically trains additional classifiers in the 
background to try to capture new concepts on new feature 
subspaces. The dynamic classifier selects the most accu-
rate classifier from the active and background ensemble to 
replace the current ensemble.
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2.1.2 � Label correlation algorithm

In many practical tasks, labels are highly correlated, so 
the key to successful multi-label learning is to effectively 
utilize the correlation between different labels [34]. This 
section introduces many aspects such as decision trees, 
Bayes, SVM, NN and ensemble algorithms.

In the case of SL, learning the correlation of labels may 
produce circular dependence. To solve this problem, the 
3RC [35] is proposed. This new method follows the BR 
method and uses multiple decision trees as binary classi-
fiers. This novel method aims to learn the correlation of 
labels and gives results for models that only consider rel-
evant dependencies in order to perform better predictions 
and reduce error propagation due to irrelevant and weak 
dependencies. ML-BTC [36] is an extended algorithm for 
decision trees in which a new labeled space partitioning 
technique is applied to the data to implicitly handle the 
possibility of being overlooked in the process of con-
structing the tree potential class associations. The tree is 
constructed based on parameters that act as restrictions 
to prevent unnecessary branching for smaller imbalanced 
classes.

MLNB-LD [37] proposes Bayes’ theorem with strong 
independence hypothesis, a new posterior probability esti-
mation method for multi-label problems. The proposed 
method uses the correlations between label pairs to deter-
mine the most likely label set for a given unseen instance. 
BCC considers the importance of feature selection in clas-
sification tasks. To improve the performance of classifica-
tion by improving each internal classifier, two algorithms are 
proposed to test BCC [38], namely BF-FS-BCC and GS-FS- 
BCC. Given the structure and chain sequence of BCC, for 
each label, a subset is selected and a classifier is built. BNCC 
[39] uses conditional entropy to describe the relationship 
between labels, with nodes as labels and the weights of the 
edges as associations to construct the BN. It proposes a scor-
ing function to evaluate the BN structure and introduces a 
heuristic algorithm to optimize the BN structure, and derives 
the label order for constructing the CC model by topologi-
cally ranking the nodes of the optimized Bayesian network.

Under SL, RBRL [40] is an algorithm that combines 
ranking SVM, BR and robust low-rank learning. It captures 
the nonlinear relationship between input and output, and 
uses two accelerated approximate gradient algorithms. The 
accelerated proximal gradient method (APG) to effectively 
solves the fast converging optimization problem. SSSVM 
[41] is an SVM method for ultra-high resolution remote 
sensing images. The basic idea is to exploit the relationship 
between labels through structured SVM and to incorporate 
spatial background information into the structured SVM 
optimization process by adding terms to the cost function 
that encourage spatial smoothing.

LCL-Net [42] introduces a multilayer perceptron into 
the LCL module to model the correlation between condi-
tions in the ChestX-ray14 dataset. The multilayer perceptron 
is a general function approximator, which can adaptively 
recalibrate the multi-label output during the training phase 
to improve the performance of LCL-Net. At the same time, 
the LCL module can be easily inserted at the end of any 
CNN-based model. SDLM [43] model uses a convolutional 
neural network called VGG to learn whole brain CT images 
in the image feature learning part. Under SL, the slice cor-
relation between variable-length slices and the causal rela-
tionship between multiple diseases can be obtained from 
RNN. DCNet [44] is mainly composed of three main mod-
ules. Among them, feature extraction is the backbone CNN, 
which is used for the spatial correlation model of feature 
association and the classifier used for classification score 
generation. The features generated by the backbone CNN 
are directly fused through summation, pixel-by-pixel mul-
tiplication or cascading, without a special fusion process. 
Krishna and Prakash [45] used multiple convolutional layers 
to form a deep neural network and extract features at differ-
ent levels. The classifier learns from previously unknown 
trends while discovering potential dependencies between 
labels. Zhou et al. [46] used to structure, attribute and label 
information to solve the multi-label graph node classification 
problem. The model uses the one-dimensional convolution 
operator of TextCNN to extract node feature representations 
while embedding the nodes into the same vector space. The 
dimensionality of the feature representation learned by the 
algorithm is independent of the size of the node neighbor-
hood. It uses an additional attention mechanism to measure 
the compatibility of node labels.

Each output node of ML-RBF is connected to the output 
of the hidden layer, and the correlation between different 
classes can be properly handled to obtain the output weights. 
Nan et al. [47] proposed two methods, WuELM-AE and ML-
ELM-RBF, respectively. WuELM-AE introduces the uncer-
tainty of weights and treats the input weights as random 
variables obeying Gaussian distribution. ML-ELM- RBF 
first overlays WuELM-AE, then performs cluster analysis 
on the sample features of each possible class, and finally 
uses a regularized least squares resolution to calculate the 
output weights of ML-ELM-RBF. ML-AP-RBF-Lap-ELM 
[25] uses ML-RBF for mapping at the input layer, and the 
affinity propagation clustering algorithm can automatically 
determine the number and center of hidden nodes of the 
RBF function and use Lap-ELM to solve the weights from 
the hidden layer to the output layer.

ACkEL [48] is an ensemble classification method, which 
borrows the idea of active learning and proposes label selec-
tion criteria to evaluate the separability and balance level 
of classes transformed from a labeled subset. The K-label 
ensemble method based on mutual information and joint 
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entropy [49] evaluates the redundancy and imbalance of 
each K-label set. The algorithm iteratively performs dis-
crete sampling, retains multiple K-label sets with low mutual 
information as candidates, and selects the K-label set with 
the highest joint entropy.

2.1.3 � Summary

This section provides a detailed description of some algo-
rithms for label non-correlation and labels correlation from 
four perspectives: time complexity, experimental results, 
technical methods and performance.

2.1.3.1  Analysis of  time complexity  Generally speaking, 
compared to decision trees, Bayesian and ensemble algo-
rithms, SVM have limited their application in large-scale 
data sets due to time complexity issues. The algorithm in 
this section effectively solves this problem. Among them, 
RBRL [40] and AEDC-MLSVM [20] can solve the problem 
of class imbalance. The neural network also has the problem 
of too long training time. The learning rate of the BP neural 
network MLC algorithm is fixed. To make the output vec-
tor as close to the expected value as possible, the weight 
and bias of the network need to be adjusted repeatedly dur-
ing the data training process. In this process, the larger the 
size of the training data set, the longer the adjustment time 
required, especially when there are more hidden layers. 
Extracting representative data sets based on approximate 
limit points can reduce the size of the original data set and 
reduce the time spent on data training.

Table 1 shows the complexity analysis of the MLC algo-
rithms for SVM and KNN under SL. L denotes the number 
of labels, M denotes the representative size, k represents the 
number of cluster centers, n denotes the number of hidden 
layers, m denotes the number of landmark data instances, u 
denotes the number of cells in each hidden layer, d denotes 
the feature vector, N denotes the training set cardinality, w 
denotes the window size. As can be seen in Table 1, AEML-
LLSVM has lower time complexity than AEDC-MLSVM, 
while MLSAkNN sacrifices time at the cost of improving 
classification results.

2.1.3.2  Analysis of  experimental results  Both NNM-
LInf and BP-AEPML were compared with SVM and both 
improved in terms of time efficiency. On the dataset Medi-
amill, BP-AEPML has an average precision of 71.12% and 
takes 622.7  s when the number of hidden layers is 5, but 
SVM is only 38.99% and takes 13371 s. BP-AEPML uses 
approximate extreme points to extract the representative 
set and the size of the representative set is smaller than the 
original set. Therefore, the time to adjust the weights and 
thresholds is reduced. Then the training time is reduced. The 
time complexity of the SVM is M3, and M is the size of the 
dataset, making its running time slower. On the dataset You-
tube, NNMLInf has an average precision of 46% and SVM 
of 41.85% when the number of hidden layers is 5.

Table 2 shows the average precision of ELM algorithms. 
The algorithms in the table are experimented with using 
five-fold cross-validation. ML-KELM is set with an adap-
tive threshold function, which gives it a faster convergence 
and better generalization performance. On the dataset yeast, 
the running time of ML-KELM is 0.56 s, which is 1.3276 s 

Table 1   Table of time complexity analysis

Algorithm Time complexity

AEML-LLSVM [19] O
(
LM2∕k

)

AEDC-MLSVM [20] Training time complexity: O(LMm2)

BP-AEPML [21] O(nuM)

ML-RkNN [29] In general: O(N2 + d)

MLSAMPkNN [30]
Average time complexity: 

O

(
wlog2

w

wmin

)
 , Worst case scenario: 

O

(
wmaxlog2

wmax

wmin

)

MLSAkNN [31]
Average time complexity: 

O

(
wd + wL + wlog2

w

wmin

)
 , Worst case scenario:

O

(
wmaxd + wmaxL + wmaxlog2

wmax

wmin

)

Table 2   Table of ELM result analysis

The bolded values indicate the highest results obtained in the corre-
sponding data set in table

Algorithm Yeast Scene

ML-AP-RBF-Lap-ELM [25] 0.7673 0.8121
ML-KELM [26] 0.7702 0.8850
ML-CK-ELM [27] 0.7702 0.8148
ML-ELM-RBF [47] 0.7673 0.8299

Table 3   Table of kNN result analysis

The bolded values indicate the highest results obtained in the corre-
sponding data set in table

Algorithm Mediamill Imdb Nuswide-C

MLSAMPkNN [30] 0.160 0.066 0.247
MLSAkNN [31] 0.152 0.072 0.251
AESAKNNS [33] 0.189 0.093 0.240
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faster than ML-ELM-RBF. Meanwhile, in the larger dataset 
Delicious, ML-ELM-RBF can obtain a better average accu-
racy of 38.2%, compared with 37.73% for ML-CK-ELM and 
ML-ELM-FM-DM is 35.74%, but ML-CK-ELM is in a bet-
ter result except the AP and error are lower than ML-ELM-
RBF, while the Coverage of ML-CK-ELM is 547.0185, 
which is smaller than both ML-ELM-RBF.

Table 3 shows the subset accuracy of kNN algorithms. 
For a summary of kNN algorithms on data streams, which 
can all cope with the concept drift problem, the table 
only records the experimental results on larger data sets. 
AESAKNNS can overcome various multi-label data difficul-
ties due to its combinatorial mechanism.

2.1.3.3  The technical analysis involved in algorithms  Table 4 
summarizes the classification methods, and the correlation 
between labels, and deals with imbalances between classes 
mentioned in the paper. BF-FS-BCC is an extended algo-
rithm of BCC [38], which considers the correlation between 
labels, and experiments with the BR algorithm, which does 
not process the label relationships, reveal that BF-FS-BCC 

can obtain good classification results in terms of Hamming 
score, accuracy and Macro accuracy. Among them, in the 
dataset Medical, the accuracy of this algorithm is 72.5%, 
which is 18.4% higher than BR. The class imbalance prob-
lem is more interesting and challenging for multi-label data-
sets [29].ML-BTC and ML-RkNN consider the problem of 
class imbalance and the classification effect is effectively 
improved. On the dataset CHD49, the Macro F1 value of the 
comparison algorithm MK-KNN is 40.92% and ML-BTC 
is 43.38%. On the dataset Yeast, the Macro F1 value of the 
comparison algorithm MLkNN is 37.82%, while that of ML-
RkNN is 45.28%.

2.1.3.4  Analysis of performance of algorithms  To facilitate 
the analysis of performance of algorithms, Table  5 sum-
marizes the SL algorithms mentioned in the paper in terms 
of comparing algorithms, experimental datasets, testing 
domains, and advantages and disadvantages. In general, BR 
is widely used in many fields because of its simple imple-
mentation and fast running speed, but it ignores the relation-
ship between labels and treats each label separately, losing 

Table 4   Table of technical 
analysis

Algorithm Classification method Correlation 
between labels

Deal with imbal-
ances between 
classes

LdSM [16] Decision trees No No
3RC [35] Decision trees Yes No
ML-BTC [36] Decision trees Yes Yes
BCC [38] Bayes Yes No
BNCC [39] Bayes Yes No
RBRL [40] SVM Yes No
AEDC-MLSVM [20] SVM No Yes
SSSVM [41] SVM Yes No
AEML-LLSVM [19] SVM No No
BP-AEPML [21] NN No No
NNMLInf [22] NN No No
LCL-Net [42] NN Yes Yes
SDLM [43] NN Yes No
DCNet [44] NN Yes No
LANC [46] NN Yes No
ML-ELM-RBF [47] ELM Yes No
ML-ELM-FM-DM [28] ELM No No
ML-CK-ELM [27] ELM No No
ML-KELM [26] ELM No No
ML-AP-RBF-Lap-ELM [25] ELM Yes No
ML-RkNN [29] KNN No Yes
MLSAMPkNN [30] KNN No Yes
MLSAkNN [31] KNN No Yes
AESAKNNS [33] Ensemble No Yes
ELIFT [32] Ensemble No No
ACkEL [48] Ensemble Yes Yes
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much information. The algorithm under tag association can 
obtain better accuracy than the algorithm under non-tag 
association. If the application has higher requirements for 
accuracy, it can be achieved by solving the related problems.

MLSAMPKNN, AESAKNNS and MLSAKNN can han-
dle the concept drift that occurs in the data stream. Penalty 
mechanisms and enable/disable labels can be introduced 
when the algorithm needs to handle concept drift. If one 
wants to increase the diversity of the underlying classifier, 
measures of feature subspaces can be introduced. LdSM and 
ML-KELM can experiment on large-scale data. ML-KELM 
performs better and is more stable on large-scale data. For 
the dataset RCVLV2, the Hamming loss of ML-KELM 
is about 5.8% and the coverage is about 12.8%, while the 
Hamming loss of the comparison algorithm RANK-SVM is 
about 7.1% and the coverage is about 10.8%, and the smaller 
values of two evaluation metrics indicate better classifica-
tion performance. And the accuracy of LDSM decreases 
compared with the comparison method. But it has lower 
complexity and shorter prediction time. If one wants to have 
better classification performance on large data sets while 
spending less time, one can introduce the kernel extremum 
learning machine principle or use a tree structure that facili-
tates balanced splitting to maintain a high degree of purity of 
the child nodes and has penalties for overgrowth.

2.2 � Semi‑supervised learning

In practical applications, obtaining fully labeled instances 
is expensive and time-consuming, and using incompletely 
labeled data for training is a practical approach. Let 
D = DL + DU be a set of instances, where DL and DU are the 
sets of labeled and unlabeled instances, respectively. The 
task of semi-supervised MLC is to construct a classification 
function f: DL ∪ DU → 2L. This section presents inductive and 
transductive methods, where inductive methods involves the 
optimization of the prediction model, while the transduction 
methods optimizes the prediction directly.

2.2.1 � Inductive methods

Semi-supervised multi-label inductive methods typically 
extend SL algorithms to allow them to handle unlabeled 
data. This section provides an overview of the algorithms 
from three main perspectives: wrapper, clustering and 
others.

2.2.1.1  Wrapper algorithms  Wrapper can be divided into 
co-training, self-training and boosting. Li et al. [50] fused 
the algorithms of MLkNN [51] and FESCOT [52] to form 
COMN algorithm. COMN is trained on the same dataset by 
using a pair of MLkNN classifiers with two different sets 
of parameters. Both classifiers label unlabeled instances Ta
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and provide each other with training datasets. SSR-CT [53] 
is a co-training method based on semi-supervised regres-
sion. During the co-training process of the algorithm, each 
learner first makes predictions for unlabeled instances, and 
then selects and adds the most confidently labeled unlabeled 
instances to another learner's training set to improve its per-
formance. The algorithm iterates until the stopping condi-
tion is satisfied and the final prediction of the test data is the 
average of the two learners' predictions. Each base classifier 
in SSkC [54] is trained in a co-training fashion. To avoid 
the accompanying set giving biased labeled predictions, 
each accompanying base classifier is required to label only 
its accompanying instances. Once the algorithm updates all 
base classifiers, the labeling decision threshold is recali-
brated to satisfy the target loss function and the importance 
of features is re-evaluated using both labeled and unlabeled 
instances.

SS-MLLSTSVM [55] is a semi-supervised multi-label 
least squares double SVM. It introduces the least squares 
idea into each subclassifier of MLTSVM, so that each 
subclassifier only needs to solve a linear system of equa-
tions, and introduces a manifold regularization term in 
each subclassifier, which can make full use of the geomet-
ric information in unlabeled and partially labeled samples. 
LP-MLTSVM [56] proposed a new two-stage classification 
method. In the first stage, the labels of the unlabeled training 
data are determined by using a smooth graph constructed by 
manifold regularization. In the second stage, a multi-label 
classifier is built.

Zhan et al. [57] used the under-inductive setting in their 
algorithm. In each round of co-training, the dichotomy of the 
feature space is learned by maximizing the diversity between 
the two classifiers induced on the dichotomous feature sub-
set. CobMLkNN [58] extends the paradigm of co-training 
using the multi-label kNN algorithm. The principle is to 
identify the k-nearest instances of each test instance and cal-
culate the number of neighbors belonging to the same label. 
It then uses the maximum a posteriori principle to determine 
the set of labels for each test instance.

Nowadays, many applications in life can generate more 
and faster data than ever before, but most co-training meth-
ods cannot deal with this problem. For this reason, Chu et al. 
[59] first used the sliding window mechanism to divide the 
data stream into data blocks and trained a basic classifier for 
each data block using COINS, and then an ensemble model 
with a WCOINS classifier is generated to adapt to the data 
stream environment containing a large amount of unlabeled 
data. At the same time, a new class emergence detection 
mechanism is introduced to detect the emergence of new 
classes in the data block. When a new label is detected, the 
classifier is retrained on the current data block and the inte-
grated model is updated.

Self-training is another technique most commonly used 
in SSL [60]. Santos et al. [61] proposed two methods of 
applying semi-supervised technology of self-training, 
namely SSLP and SSRAkEL. These methods are based on 
their corresponding monitoring methods LP and RAkEL. 
Santos et  al. [62] proposed a self-training method for 
hierarchical multi-label problems, HMC-SSLP and HMC-
SSRAKEL. But these two methods are associated with the 
random selection of unlabeled instances for labeling. To 
solve this problem, Rodrigues et al. [63] proposed to use 
confidence parameters in the automatic label allocation 
process in combination with data stream features. First, 
the algorithm uses the labeled data stream set to train the 
classifier and calculates the confidence coefficients for all 
unlabeled samples in the dataset. Then, it sorts the unla-
beled samples in descending order based on the stand-
ard deviation and selects the top n examples in the sort. 
Finally, a label is assigned to all selected examples and the 
newly labeled examples are moved to the labeled dataset.

MH [64] is a well-known extension of AdaBoost [65] 
in MLC, which efficiently handles multi-label problems by 
transforming MLC problem into several binary classifica-
tion problems. Zhao et al. [66] also proposed a semi-super-
vised MLC algorithm based on AdaBoost, which proposes 
to use conditional variance as regularization to exploit 
information from unlabeled data and encourages it to find 
hypothetical labels for unlabeled data, which helps drive 
the algorithm to produce better combinatorial classifiers.

2.2.1.2  Clustering algorithms  Clustering algorithms can 
divide instances into labeled and unlabeled sets, and then 
assign labels to unlabeled instances by classification. 
AHMED [67] uses fuzzy clustering, which allows each 
data point to belong to multiple clusters. First, the algo-
rithm updates the dimensional weights and cluster mem-
bership values. After that, it updates the centroids of the 
clusters and updates the summary statistics. In this step, it 
determines K nearest neighbor clusters for each test data 
point. This distance is computed in the subspace of the 
clusters. If K is greater than 1, the algorithm calculates the 
probability of a class by multiplying the inverse of the dis-
tance between the representation of the class and the sub-
space, and then sums each class over all K nearest clusters.

FS-MLSS-KSC [68] uses the kernel spectrum cluster-
ing algorithm as the core model and integrated informa-
tion from labeled data points into the model through regu-
larization terms. It then implements the propagation of 
multiple labeled data points to unlabeled data points by 
combining correlations between labels. The algorithm uses 
the Nystrom approximation to construct an explicit feature 
map and solves the optimization problem in the original 
function. OPFSEMImst+knn [69] uses the optimal path for-
est framework. Since misclassified samples usually appear 
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at the boundary between clusters, this method reduces the 
error in label propagation in the training set by re-prop-
agating labels from the maximum of probability density 
function. In addition, the algorithm gives higher priority to 
training samples closer to their maxima and assigns their 
labels to new samples during classification.

Pham et al. [70] used a greedy method to select class-
label specific features as an extension of the LIFT algorithm, 
as well as a label-free data consumption mechanism from 
text classification using a semi-supervised clustering algo-
rithm. In the clustering phase, the algorithm uses clustering 
to identify components in labeled and unlabeled instances 
based on the highlighted labels. In the classification phase, 
it determines the nearest instance clusters and assigns labels 
to the unseen instances. Ha et al. [71] proposed TESC. In the 
clustering phase, TESC uses the labeled text to capture the 
silhouettes of the text clusters. Next, it adds unlabeled texts 
to the corresponding clusters to adjust their center point. In 
the classification phase, it uses kNN to find the most recent 
clusters and returns the label set of the found clusters as the 
label set of the new data instance. MCUL [72] uses cluster-
ing-based regularization terms to discover unobserved labels 
in the dataset and uses the specific label features learned to 
describe their semantics and use label correlation to over-
come the problem of missing labels.

2.2.1.3  Other algorithms  In addition to wrapper and clus-
tering, inductive methods also use kernel norm or low-rank 
regularization. SLRM [73] uses kernel constant regulariza-
tion on maps to efficiently capture label correlations and 
introduces stream regularization to capture the internal 
structure between data. In the regularization, when two 
instances are close in the feature space, their new represen-
tation based on the map should be close. In this case, the 
mapping is able to capture the intrinsic geometric struc-
ture between instances in the feature space and label space. 
Sheng et al. [74] propose an adaptive low-level SSL multi-
label algorithm. In this algorithm, the intermediate feature 
space for learning labeled and unlabeled training samples is 
reduced by a low-rank matrix, and the multi-label classifier 
is trained by an adaptive SSL strategy.

In order to solve the noise problem in the examples, 
SUN et al. [75] proposed robust semi-supervised multi-
label learning based on three-low rank regularization. The 
algorithm first introduces a linear self-representative model, 
which uses label correlation to recover the matrix of labels 
that may be noisy. Then, it uses low-rank representation to 
construct a low-rank polarity matrix to capture the global 
relationship between labeled samples and unlabeled sam-
ples. The graph Laplacian regularization is constructed 
by using the pair similarity matrix defined above to obtain 
information on the geometric structure of the labeled and 
unlabeled samples. The prediction models of different labels 

are connected in series into a matrix and the matrix tracking 
norm is introduced to capture the correlation and complexity 
of the control model. CORALS [76] optimizes all possible 
labels by minimizing cost-sensitive ranking losses, using 
dual low-rank regularization to capture the corresponding 
correlations and using sparse regularization terms to con-
strain the sparsity of noisy information.

2.2.2 � Transductive methods

Transductive methods in SSL are graph-based, either explic-
itly graph-based or implicitly graph-based [12]. This section 
mainly explains graph-based construction and graph-based 
weighting of transductive methods.

2.2.2.1  Graph‑based construction  Zha et al. [77] proposed 
a graph-based SSL framework, which can simultaneously 
explore the correlation between multiple labels and label 
consistency on the graph. Specifically, the framework 
employs two types of regularizers. One is used to select 
the label smoothing on the graph, and the other is used to 
address that the multi-label assignment of each example 
should be consistent with the inherent label correlation.

In some classification tasks, local feature descriptor-
based methods are more robust to intra-class variation than 
global feature-based methods [78]. LSS [78] outperforms 
the global feature-based GRF algorithm in some classes. 
The performance of LSS depends on the accuracy of the 
feature matching context. Bao et al. [79] proposed a semi-
supervised multi-label image labeling algorithm, which 
based the propagation of labels on virtual local label rep-
resentation rather than on the whole image representation, 
and proposed an effective multiplication iterative method 
to optimize the objective function. Later, Jiang et al. [80] 
proposed an extended algorithm of graph learning based on 
local and global consistency, named Multi-label Depend-
ent semi-supervised learning (MCSL). It incorporates the 
intrinsic correlations between functional classes into protein 
function prediction by utilizing the relationships provided 
by PPI network and functional class network. The classifi-
cation function should be smooth enough on the subgraph 
where the respective topologies of the two networks are well 
matched.

The complexity of data distribution in practical appli-
cations makes it difficult for the algorithm to choose the 
appropriate parameters. To address this problem, Liu et al. 
[81] proposed an SSL framework for MLC based on ker-
nel norms. The framework uses kernel normalization for 
class-level smoothing, uses criterion functions to construct 
class graphs adaptively, and introduces a non-greedy itera-
tive algorithm to solve the criterion functions. It also pro-
poses two algorithms based on the kernel norm. Formula 2 
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is NML-GRF, and Formula 3 is NML-LGC. F is the pre-
diction label matrix, Y is the label matrix, M is (FFT )−

1

2 L
n
 

is the normalized Laplacian matrix of the instance graph, 
Ln = I − D

−
1

2WD
−

1

2.

Ghosh et al. [82] proposed two different graph-based 
methods, namely Label Correlation Propagation-GRF 
(CP-GRF) and Weighted Label Correlation Propagation-
GRF (WCP-GRF). CP-GRF involves propagation on a 
label correlation graph for each instance. WCP-GRF is 
an extension of the CP-GRF method, its correlations are 
not only propagated from other related labels, but are also 
based on proximity to a specific example. SMILE [83] 
used the known labels and supplementary labels of labeled 
instances and unlabeled instances to train a graph-based 
semi-supervised linear classifier and directly predicts the 
labels of new instances that are completely unlabeled. 
Behpour et al. [84] developed adversarial Robust Cuts 
(ARC), using learning tasks as a minimax game between 
predictors and “label approximators” based on minimal 
cost graph cuts. ML-GCN [85] uses GCN to embed node 
features and graph topology information. The algorithm 
randomly generates a label matrix with the same dimen-
sionality of the label vector as the node vector before the 
last convolution operation. During training, it concatenates 
the label vector and the node vector as inputs to a relaxed 
jump graph model to detect node-label correlations and 
label correlations.

In images, many algorithms are proposed for annota-
tion functions. AHL [86] is a multi-label image labeling 
method based on adaptive hypergraph learning. The algo-
rithm preserves the local geometric structure of the data in 
a high-order manner and obtains a potential feature space 
by adding feature projections in which multiple labels can 
be efficiently and robustly assigned to unlabeled instances. 
WeSed [87] uses weakly weighted pairwise ranking loss 
for weakly labeled images and triple similarity loss for 
unlabeled images.

Wang et al. [88] proposed a dual low-rank regularized 
multi-label learning model. The algorithm introduces 
a dual-trace regularization to capture the correlation 
between different label prediction models in the feature 
space and a linear self-recovered model to recover the 
noisy training label matrix in the learning phase. MLRMG 
[89] creates multiple graphs based on a randomly selected 
subset of features, learns the labeling function on each 
graph by optimizing a semi-supervised loss function, and 
finally, it votes on multiple graphs to determine predictive 
labels for unlabeled data. Song et al. [90] introduced the 
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idea of label embedding to capture the network topology 
and higher-order multi-label correlations. The similarity 
of label embedding and node embedding can be used as 
a confidence vector to guide the label smoothing process, 
forming a marginal ranking optimization problem to learn 
the second-order relationships between labels.

Boulbazine et al. [91] proposed an online semi-super-
vised multi-label classifier based on the Growing Neural Gas 
(GNG) algorithm. The main principle of the algorithm is to 
associate a prototype consisting of two vectors with each 
neuron k. These two vectors are updated for each neuron dur-
ing the learning process and used for prediction of unknown 
label vectors. Li et al. [92] extended the graph-based SSML 
to MLC, and also investigated three graph regularization 
methods: Gaussian Field and Harmonic Function (GFHF), 
Local and Global Consistency (LGC), and Manifold Regu-
larization Modification (MR), and propose a semi-super-
vised multi-label decomposition framework for the NIALM 
problem. MGLP [93] uses multi-level neighborhood infor-
mation granularity and a three-way decision method, where 
the three-way decision method can be used to select unla-
beled data for further annotation. Through the iterative pro-
cess of label propagation, data annotation and data subset 
update, the final pseudo label accuracy of unlabeled data is 
improved.

2.2.2.2  Graph‑based weighting  The classic label propaga-
tion algorithm gives a finite weighted graph G = (V, E, W), 
where V is composed of the dataset X = {xi, i = 1, …, n} and 
E is composed of V × V, W is a non-negative symmetric 
weight function, and the algorithm interprets the weight w 
(i, j) as a similarity measure between vertices xi and xj. If ρ 
is a distance metric defined on the graph, then the similarity 
matrix can be constructed as follows:

One disadvantage of label propagation is that it does not 
handle multi-class or MLC problems well due to the lack 
of interaction between labels in different classes. Reference 
[94] proposed a dynamic version of label propagation. For 
the dynamic propagation algorithm, it sets the similarity 
between non-adjacent points to 0, i.e. assumes that local 
similarity is more reliable than distant ones. Local similari-
ties can be propagated to non-local points through a diffu-
sion process on the graph. At the same time, KNN is used to 
test the local distance. The similarity matrix is constructed 
as follows:

(4)W(i, j) = h
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Dharmadhikari et  al. [95] used the KNN method to 
reweight adjacency matrix A, and uses a cosine similarity 
measure to represent edge weights and generate a matrix W 
through a graph segmentation process. Such graph specifica-
tion can improve the efficiency of the label inference stage. 
Lucena et al. [96] extended MLkNN algorithm to SSL. The 
algorithm creates weight matrices and diagonal matrices 
using instances of the partially labeled dataset. The formula 
for the weight is as follows:

Among them, they transformed the training dataset into 
graph G (V, E), e ∈ E. Wij defines the similarity between 
nodes i and j.

Gang et al. [97] proposed to construct two graphs at 
instance level and category level, respectively. For instance-
level, the definition of the graph is based on labeled and 
unlabeled instances, where each node represents an instance 
and the weight of each edge reflects the similarity between 
the corresponding paired instances. For the class hierarchy, 
a graph is constructed based on all classes, where each node 
represents a class, and the weight of each edge reflects the 
similarity between the corresponding pairwise classes.

To make the algorithm more robust to noise and incom-
plete image labels, Cevikalp et al. [98] argue that it is impor-
tant to use a robust ramp loss. The algorithm passes the 
labels of the labeled data samples to the nearest unlabeled 
samples and uses the similarity score to control the reli-
ability of the label assignment. The weight formula of the 
algorithm is as follows:

where u is the unlabeled label, xi feature vector, C+
xi
 and 

C−
xi
 represent the positive and negative labels of xi. si is equal 

to 1, i = 1, …, l, rj is the rank. L(.) is the weighting function 
for different levels and W is the weight matrix. λ is the regu-
larization parameter and K is a user-defined parameter that 
controls the slope loss weight.

2.2.3 � Summary

This chapter provides a tabular overview of the time com-
plexity, application areas, and advantages and disadvantages 
of individual algorithms.

2.2.3.1  Time complexity  Time complexity refers to the 
amount of computational effort required to execute an 
algorithm. It can measure the efficiency of the algorithm, 
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pointing out the relationship between the computational 
workload performed by the algorithm to solve the prob-
lem and the size of the problem. The time complexity of 
the individual algorithms involved in this paper is shown in 
Table 3. We can find that it is mostly related to the number 
of instances and feature dimensions. Individual algorithms 
are also related to the number of iterations performed, and 
the size of the model.

SMILE runs faster than all comparison algorithms with 
30% missing labels. On the three datasets, SMILE only takes 
a total time of 280.51 s, while the comparison algorithm 
MLML consumes 7615.33 s. SS-MLLSTSVM, although it 
needs to compute the Laplace matrix for the whole sam-
ple, still has a faster running speed. On Flags, it takes only 
0.037 s, while the comparison algorithm BPMLL takes 
4.241 s. The running speed of CORALS decreases signifi-
cantly with the increase in the number of instances, label 
classes and feature dimensions. This is because the method 
focuses on checking the correctness of each class label 
(Table 6).

2.2.3.2  Analysis of  performance of  algorithms  The test 
domains for semi-supervised multi-label learning are gener-
ally text, audio, images, biology, and music. Among them, 
the algorithms focusing on text classification include algo-
rithms SISC [67], GB-MLTC [95], MULTICS [70]. SISC 
can determine clusters in subspaces of high-dimensional 
sparse data. GB-MLTC can use cosine similarity measures 
that may ignore certain aspects of semantic relationships 
between text documents that may affect accuracy. MUL-
TICS can be derived from the text classification of the unla-
belled data consumption mechanism.

In the field of image, LSS [78], SSML [92], WeSed [87] 
and AHL [86] algorithms are suitable for multi-label image 
labeling, and LSS can obtain better results when match-
ing more images. SSR-CT [53] uses regression and coop-
erative algorithms to classify and predict images, but it is 
easily affected by noise. But WeSed does well with noisy 
data. CNN + RMLC [98] can remove error samples well to 
expand the training set and suitable for retrieval of large-
scale images.

In the face of large amounts of data, multi-label data 
stream algorithms are particularly important. Both coop-
erative training and self-training algorithms in inductive 
methods can reasonably process data stream data, such as 
the algorithm Rodrigues [63].

Finally, we summarize semi-supervised classification 
algorithms from the perspective of label non-correlation and 
label correlation through Fig. 2, which includes test fields, 
advantages and disadvantages.
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3 � Application field

MLC problems have attracted more and more researchers’ 
attention due to their wide application [13]. In the next few 
sections, MLC algorithms will be described from the fields 
of image classification, text classification, and others.

3.1 � Image field

Image classification is a difficult task that has attracted great 
attention from the research community recently. Image clas-
sification is more suitable to use MLC algorithms for clas-
sification. This is because most images can be described 
with multiple labels to describe their semantic content, such 
as objects, scenes, actions, attributes, etc. [41]. This section 
is mainly introduced from the medical field and the remote 
sensing image field.

3.1.1 � Medical field

Image of MLC has a wide range of applications in the medi-
cal field, such as chest X-rays, electrocardiograms, brain CT, 
eye diseases, etc. The algorithms of MLC can make up for 
the shortage of doctors and reduce the workload of doctors.

Chen et al. [42] proposed a novel label co-occurrence 
learning model for multi-label chest X-ray image classi-
fication, which explores potential co-occurrence labels in 
images by using label co-occurrence and dependent informa-
tion. Guan et al. [99] proposed the CRAL model to solve the 
problem of multi-label chest disease classification on chest 
X-ray images. It predicts the presence of multiple lesions in 
a particular category of attentional view and suppresses dis-
orders in unrelated categories by assigning smaller weights 
to the corresponding features. Chougrad et al. [100] used 
SGD with exponentially decaying learning rate to effectively 

improve domain adaptation so that the model can maximize 
learning over new domains for better classification predic-
tion of mammograms.

Cai et al. [102] proposed a method for arrhythmia based 
on electrocardiogram data set, which can detect 55 kinds of 
heart disease symptoms at the same time, and call it Multi-
ECGNet. This model proposes a complete set of ECG moni-
toring analysis, modeling methods and research ideas of an 
end-to-end deep learning model, and at the same time is 
superior to ordinary cardiologists in terms of indicators. Li 
et al. [43] proposed a multi-label slice-dependent learning 
model called SDLM. It is a sequence-to-sequence model that 
effectively learns image features and slices dependencies in 
an end-to-end manner. He et al. [44] proposed a model that 
considers patient-level diagnosis and multi-label disease 
classification that are associated with binocular eyes. Three 
models are proposed. The first is the CNN model, which 
can classify patient-level multi-label eye diseases, and can 
handle seven eye diseases at the same time through a sin-
gle network, and the second is a novel module SCM, which 
is designed to effectively integrate from Control the func-
tion of CFP extraction. Ou et al. [103] proposed bilateral 
feature Enhancement Network, which uses the interaction 
between bilateral fundus images to enhance the extracted 
feature information. Feature information from images with 
different resolutions extracted by extended convolution is 
superimposed, enriching the feature images and thus captur-
ing more disease features.

Xu et al. [104] explored easily accessible labels to help 
classify lesion types, used the label of lesion type and patient 
ID to construct a loss function based on DML and also used 
five-fold input to build a deep model using transfer learn-
ing. Finally, a five-fold mining algorithm for label selection 
training samples is proposed.

Table 6   Table of time complexity analysis

Algorithm Dataset Time complexity

SMILE [83] Cal500; Bibtex; Delicious N2C + N2D + ND2 + D3 , C is the number of distinct labels 
of the instance, N is the number of instances, and D is the 
number of features

AHL [86] CUB; SUN; AWA; Corel5K; IAPR-TC12; ESP Game n3 + d3, d is the feature dimension and n is the number of 
samples

SS-MLLSTSVM [55] Flags; Emotions; Birds; Scene; Yeast Linear: O(n2log(n) + Kd3) , nonlinear: O(n2log(n) + Kn3) , K 
is the number of labels, n is the number of instances, and 
d is the distance

CORALS [76] Emotions; CAL500; Genbase; Medical; Corel5k; Pas-
cal07; Delicious; ESPGame

O(t × (q3 + r3)) , t is the iteration time to update the model, 
q is the class label, r is min(d,q)

MCUL [72] Bibtex; Corel16k001; Medical; Stackex The time complexity of ‖‖S − HHT‖‖
2

F
 in the objective func-

tion is O
(
n2(d + l + n)

)

MGLP [93] Wine; Lonosphere; Breast; Heart; Yeast; Image; Wireless; 
QSAR

The worst case is O(kun2) , n is the number of instances, u is 
the unlabeled instances, and k is related to KNN
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Semi-supervised learning 
classification algorithm

Inductive learning

transduction learning

label non-correlation 
algorithm

label correlation 
algorithm

SSR-CT [54]

SS-MLLSTSVM [56]

LP-MLTSVM [57]

CobMLKNN [59]

ARC [85]

OPFSEMImst+knn  [71]

ML-GCN [86]

CMLDSE [60]

LVQ-NN [98]

MCUL [68]

MGLP [94]

KSC [70]

SLRM [74]

MCSL [81]

NML-LGC/GRF [82]

SMILE [84]

MLRMG [90]

GB-MLTC [96]

Test Field: image
Advantages: It utilizes rich unlabeled data to improve the performance of regression estimation
Disadvantages: This method is easy to be affected by noise and has limited application field

Test Field: image, music, audio, biology
Advantages: It improves learning speed and generalization performance.
Disadvantages: It does not investigate the effect of high-dimensional data on classification performance.

Test Field: image, music, audio, biology
Advantages: The algorithm is based on the manifold theory on Graph Laplacian . The experimental 
results are better than the SS-MLLSTSVM[56].
Disadvantages: The algorithm is not extended to structural learning problems.

Test Field: Biological; Images; Music; Video;Text;
Advantages: The algorithm uses a complementary multi-label classifiers in the ensemble to build new 
labeled learning examples with a confidence of over 85%.
Disadvantages: It does not remove irrelevant and redundant features.

Test Field: Images; Biological; Text;
Advantages: This algorithm applies semi-supervised technology to multi-label data stream classification. 
At the same time, a new label detection algorithm is introduced.
Disadvantages: It does not solve the problem of detecting concept drift in the absence of labels.

Test Field: Text;
Advantages: It solves the problem of missing labels and completely unobservable multi-label learning.
Disadvantages: It cannot automatically determine the number of unobservable tags and cannot 
describe the semantics of unobservable tags for various types of data.

Test Field: Text;
Advantages: It solves the problem of missing labels and completely unobservable multi-label learning.
Disadvantages: It cannot automatically determine the number of unobservable tags and cannot 
describe the semantics of unobservable tags for various types of data.

Test Field: Image, audio
Advantages: It can handle large data sets.
Disadvantages: The nonlinear loss function is not considered in this algorithm to measure the marking 
approximation error of the marking data.

label non-correlation 
algorithm

label correlation 
algorithm

Test Field: Biological; Video; Text;
Advantages: In classification, the closer the training sample is to the maximum value, the higher priority 
the algorithm will assign labels to new samples..
Disadvantages: It does not address the issue of active learning in single and multi-labels classification.

Test Field: Biological; Video; Text;
Advantages: This algorithm improves the accuracy of pseudo label. At the same time, the algorithm can 
be applied to data annotation
Disadvantages: It does not study the feasibility of different graphs, nor does it study the case of real-
time streaming data and class unbalanced data weight.

Test Field: Biological; 
Advantages: It effectively overcomes the problem of label data scarcity.
Disadvantages: It effectively overcomes the problem of label data scarcity

Test Field: Text, image, biology
Advantages: It solves the problems of artificial construction of category map and complex distribution 
of data.
Disadvantages: It is not extended to incremental learning.

Test Field: Music, text
Advantages: The algorithm uses the label correlation derived from labeled instances and a large number 
of unlabeled instances to predict the labels of new unlabeled instances.
Disadvantages: It does not solve the correlation between high-order labels.

Test Field: Music, text
Advantages: The algorithm uses the label correlation derived from labeled instances and a large number 
of unlabeled instances to predict the labels of new unlabeled instances.
Disadvantages: It does not solve the correlation between high-order labels.

Test Field: Biological; Video; Text;
Advantages: This algorithm can embed nodes and their labels in the same low dimensional space.
Disadvantages: It does not consider embedding the contents of nodes into the learning model.

Test Field: Biological; Video; Text;
Advantages: The algorithm can deal with high-dimensional data, and also introduces global label 
correlation to solve the problem of multi label classification.
Disadvantages: It did not experiment on large datasets.

Test Field: Text;
Advantages: It integrates multi-label LVQ-NN algorithm into a semi-supervised classification 
framework and tests it on real databases in different fields.
Disadvantages: It does not select the most trusted instance based on the preset threshold in the current 
framework.

Test Field: Text;
Advantages: The algorithm combines document similarity and class label correlation to improve the 
accuracy of multi label text classifier.
Disadvantages: It does not use more robust feature extraction techniques, such as LSI, NMF.

Fig. 2   Summary of SSL algorithms
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3.1.2 � Remote sensing image

Multi-label image classification plays an important role in 
the complex content of remote sensing images, and has trig-
gered some related studies in the past few years [105].

Alshehri et al. [106] proposed a deep learning model 
based on a codec NN architecture with a channel and 
spatial attention mechanism to deal with remote sensing-
based drone problems. The model is based on the task of 
a pre-trained CNN encoder module and converts the input 
image into a set of feature maps using an appropriate com-
bination of features. The task of the decoder module based 
on LSTM network is to generate the classes present in the 
image in a sequential manner. Hua et al. [105] proposed 
an attention-aware labeled relational inference network 
based on remote sensing technology. The network consists 
of three basic modules. The learning module of labeling 
plots by label aims to extract high-level elements specific 
to labels; the attention area extraction module generates 
attention label-specific functions; the label relationship 
inference module uses the output derived from the previ-
ous module the label relationship is used to predict the 
existence of the label.

A novel multi-attention drive system was proposed by 
Sumbul et al. [24] in 2020. The system is mainly divided 
into four modules. The first module extracts preliminary 
local descriptors of remote sensing image bands that can 
be associated with different spatial resolutions. The second 
module is implemented by a two-way RNN architecture, in 
which LSTM nodes enrich local descriptors by consider-
ing the spatial relationship of local regions. The third mod-
ule is implemented through a patch-based multi-attention 
mechanism, which takes into account the co-occurrence 
of multiple land cover categories. The last module uses 
these descriptors to classify multi-label remote sensing 
images. Chaudhuri et al. [107] proposed model based on 
four main steps: The first step is to segment each image 
in the archive and extract the features of each region. The 
second step is to construct the image neighborhood map 
and use the relevant label propagation algorithm. The third 
step uses a novel region labeling strategy to associate the 
class label with the image region, and the last step uses a 
sub-image matching strategy to retrieve images similar to 
the given query image.

Dai et al. [108] proposed a new CBIR model. Combin-
ing spatial and spectral descriptors, this model achieves 
image retrieval through a novel remote sensing image 
retrieval method based on sparse reconstruction, consid-
ers a new label likelihood metric, and extends the original 
sparse classifier to single-label and multi-label remote 
sensing image retrieval problems, proposing a strategy to 
exploit the sensitivity of the sparse reconstruction-based 
approach to different dictionary words. Koda et al. [41] 

proposed an SVM-based MLC method to achieve accurate 
land cover classification of remote sensing images. The 
model that enhances the smoothness of the entire image 
is called Spatial Structured SVM (SSSVM).

3.2 � Text classification

The application field of text classification can also be solved 
by using MLC algorithms. The main application fields are 
sentiment classification and medical biology classification.

3.2.1 � Sentiment classification

Multi-label sentiment classification is a subtask of text sen-
timent classification. Its purpose is to identify coexisting 
emotions (such as joy, anger, anxiety, etc.) expressed in the 
text. Due to its broad potential, it has attracted the attention 
of researchers [64].

He et al. [109] proposed a JBNN, which can effectively 
solve the problem that binary networks ignore the correla-
tion between labels. In JBNN, the representation of text is 
replaced by a set of logistic functions instead of softmax 
function, and multiple binary classifications are performed 
simultaneously in a single neural network framework. In 
addition, the relationships between labels are obtained by 
training a joint binary cross-entropy loss. Yu et al. [110] pro-
posed a new transfer learning architecture. The model uses 
a shared LSTM layer to extract shared emotion features for 
emotion and sentiment classification tasks, and uses a target-
specific LSTM layer to extract specific emotion features that 
are only sensitive to people's emotion classification tasks. 
Fei et al. [111] proposed a TECap, which can learn poten-
tial topic information without external knowledge, thereby 
promoting multi-label sentiment classification.

Alzu'Bi et al[112] proposed a model to solve the senti-
ment analysis of Arab social media. To make the annotated 
data set more accurate, the model uses a mediation process 
to check and update the annotated data set. Bravo-Marquez 
et al. [113] proposed a model of annotated sentiment diction-
ary. The model combines word-level functions and learn-
ing techniques to efficiently accomplish this task, and can 
use unlabeled tweets to identify emotional words from any 
collection of specific fields. Kim et al. [114] proposed an 
attention-based classifier. The model consists of an atten-
tion mechanism and multiple independent CNN, and its 
performance is further improved through preprocessing of 
emoticons and the use of additional dictionaries.

Mulki et al. [115] developed a Tw-StAR to identify emo-
tions embedded in Arabic, English and Spanish tweets. The 
model performs one or more combinations of preprocess-
ing techniques on the tweets, adopts the BR conversion 
strategy, and uses the TF-IDF scheme to generate tweets. 
Alhuzali et al. [116] proposed a SpanEmo model, which 
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uses multi-label sentiment classification for span prediction, 
learns the association between labels and words in sentences, 
and introduces a loss function. Hyun et al. [117] proposed a 
deep learning-based model combining linguistic embedding 
and sentiment embedding for text classification in a CL-
AFF shared task, and sentence features extracted from the 
embedding model were used as a TextCNN to provide input 
for text classification. Ying et al. [118] chose the popular 
BERT language model to provide general language knowl-
edge for modeling sentences. They used a twitter-specific 
preprocessor to decode twitter-related expressions, introduc-
ing a two-step training process to integrate common sense 
and detected domain knowledge for sentiment classification. 
Ameer et al. [119] proposed a large benchmark corpus for 
multi-label emotion classification tasks, which uses content-
based methods, in-depth learning and transfer based learning 
methods to classify the corpus at the same time.

3.2.2 � Medical biology classification

Multi-label text classification plays an important role in the 
field of information retrieval and has had an impact on infor-
mation retrieval in the field of medical biology. [120].

Du et al. [121] proposed the ML-Net model, which is a 
novel end-to-end deep learning framework. The model is an 
efficient and scalable method that combines the label pre-
diction network with an automatic label number prediction 
mechanism, and it does so by using the prediction confi-
dence score for each tag and deep contextual information in 
the target document. Glinka et al. [122] proposed a model to 
improve the feature selection method of multi-label medical 
text classification, investigating filter and wrapper methods 
and hybrid methods. Hughes et al. [123] allow automatic 
generation of context-based, rich representations of health-
related information. They extracted urgent semantics from 
a corpus of medical texts and classified text fragments at 
the sentence level using CNN. Yogarajan et al. [124] use 
multi-label variants of medical text classification to enhance 
the prediction of concurrent medical codes. A new embed-
ding on health-related text compares several variants of the 
embedding model when dealing with the unbalanced multi-
label medical text classification problem.

Wasimp et al. [125] proposed a classification model for 
multi-label questions for fact-based and list-based question 
processes for biomedical question answering systems. In 
the prediction stage, the list-type problems use the COPY 
LAT prediction model, and the fact-type problems use the 
BR LAT prediction model. Baumel et al. [120] proposed 
a HA-GRU. The model can use attention weights to bet-
ter understand which sentences have the most impact on 
decision-making and which words in the sentence have the 
most impact on each decision. At the same time, it can find 
the sentence with the highest score in each label and pass 

this most important find the word with the highest score in 
the sentence. RBA [126] is a rule-based algorithm developed 
using the dictionary method. It uses labels to train attention-
directed RNNs to classify reports as positive reports for one 
or more diseases or normal reports for each organ system.

3.2.3 � Other fields

In addition to image and text classification, the MLC 
method has been widely used in other aspects. This chap-
ter will introduce the application of MLC from two aspects 
of music and video.

Oramas et al. [127] proposed a multi-label music genre 
classification model using deep learning architecture. The 
model combines learning-based feature embedding with 
the latest deep learning methods. For each album, it col-
lects cover images, textual comments, and audio tracks. 
Zhao et al. [128] proposed a model to classify multi-label 
music styles through user comments. The model is divided 
into two mechanisms, a label graph-based neural network 
mechanism responsible for classifying music styles based 
on the correlation between comments and styles, and a 
soft training-based mechanism introducing a loss function 
with a continuous label representation. Ma et al. [129] 
proposed a novel knowledge relation Framework, which 
uses graph CNN to automatically learn deep associa-
tions between styles. The approach focuses on integrat-
ing external knowledge and statistical information about 
musical styles to derive correct and complete dependen-
cies between styles, alleviating the problems of overfitting 
and underfitting.

Kim et al. [130] proposed a NN method. This method 
uses an attention mechanism for space and time dimensions 
to ignore noisy and meaningless frames. The correlation 
between labels is considered by decomposing the joint prob-
ability of labels into condition items. Karagoz et al. [131] 
proposed an auto-encoder for reducing the dimensionality of 
video datasets, and combined the features extracted by the 
multi-objective evolutionary non-dominated sorting genetic 
algorithm and auto-encoder. Araujop et al. [132] proposed a 
video classification model based on the most advanced net-
work architecture based on the intersection of linear algebra 
and deep learning. The layer in the classic form is denoted 
as “dense”, and the layer denoted by loops and diagonal 
lines are referred to as “compact”. The required size is repre-
sented by cascading and slicing. Jiang et al. [133] proposed 
a new system to achieve real-time and MLC of short vid-
eos. The system adds an activation adjustment layer before 
the output S-function to enhance the CNN's discriminative 
power for each label and uses label imbalance-aware train-
ing loss to reduce the effect of mostly irrelevant labels. Wu 
et al. [134] proposed a spatiotemporal location transforma-
tion framework for multi-label video classification tasks. 
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The framework uses the method of global action label co-
occurrence and proposes a plug-and-play spatiotemporal 
label dependency (STLD) layer. STLD not only dynamically 
models tag co-occurrence in video through self-attention 
mechanism, but also completely captures spatiotemporal tag 
dependencies through cross attention strategy.

3.3 � Summary

This section summarizes the MLC algorithm from the 
image field, text classification field and other application 
fields. In order to conveniently analyze the performance 
and advantages and disadvantages of the model, Table 7 
summarizes the models mentioned in the paper from the 
aspects of algorithms, application fields, experimental data 
sets, advantages and disadvantages.

4 � Evaluation metrics and public data sets

4.1 � Evaluation metrics

It is important to choose the appropriate method to evalu-
ate the performance of classification algorithms. In single-
label learning, classification is considered as if the obser-
vations are correctly classified or unclassified, while in 
multi-label learning, classification can be considered as 
partially correct or partially incorrect [50].

Several metrics have been proposed to evaluate the per-
formance of MLC algorithms. The most commonly used 
are one-error, accuracy, hamming loss, recall, rank loss, 
coverage, subset accuracy, average accuracy, and micro-
F1. Specially, the subset accuracy is more than strict for 
the evaluation, it will result in very low metric values. 
The following is a detailed introduction to the evaluation 
indicators in MLC.

Given a multi-label dataset S = {(xi, Yi)}ni=1 , where Yi is 
the true label of dataset xi, n is the number of instances 
in the dataset, h(xi) is the multi-label classifier, I⌈∙⌉ is the 
indicator function.

one-error: It evaluates the percentage of instances where 
the top-ranking labels are not in the relevant label set.

Accuracy: It measures the fraction of correctly classi-
fied labels.

(8)One − error =
1

n

n∑

i=1

I
⌈
min
yj∈Yi

Ri

(
yj ∉ Yi

)⌉

(9)Accuracy =
1

n

n∑

i=1

(|Yi ∩ h(xi)|
|Yi ∪ h(xi)|

)

Hamming loss: It evaluates the frequency of misclas-
sification of an instance label pair, that is, the instance 
predicts an irrelevant label or the relevant label is missed.

Recall: It measures the average proportion of related 
labels for instances predicted to be related.

Rank loss: It calculates the score for incorrectly sorted 
label pairs.

where (ya, yb) is the pair class label for instance xi and 
Ŷ = Y∕Yi.

Coverage: It is an indicator used to averagely calculate 
the number of steps required to cover all relevant labels of 
an instance.

Subset accuracy: Subset accuracy can evaluate all cor-
rectly classified instances of the label.

Average accuracy: The average accuracy is the average 
proportion of related labels that rank higher than a specific 
label.

where Ri(yi) is the predicted rank of the class label yi for an 
instance xi.

Micro-F1: Consider the problem of class imbalance. It 
uses the F1 metric to evaluate each label separately and aver-
ages all labels.

(10)Hamming Loss =
1

n

n∑

i=1

1

l

l∑

j=1

I
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h
(
xi
)
j
≠ Yij

⌉

(11)Recall =
1

n

n∑

i=1
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||

||Yi||

(12)
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1
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(13)Coverage =
1

n

n∑

i=1

max
y∈Y

Ri(y) − 1

(14)Subset accuracy =
1

n

n∑

i=1

I
⌈
h
(
xi
)
= Yi)

⌉

(15)

Average precision =
1
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1
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Precision and recall can be used to calculate the weighted 
F1 metric. This metric is generally considered to be a bet-
ter performance evaluation index than precision and recall.

In order to better understand the role of evaluation met-
rics in multi-labeling, the evaluation metrics of the above SL 
algorithms are depicted in Table 8. where SA is subset preci-
sion, Acc is accuracy, Pre is precision, Re is recall, Micro 
Pre is micro-prediction, Macro Pre is macro-prediction, 
Micro Re is micro-recall, Macro Re is macro-recall, Macro 
Av is macro-average, Co is coverage, RL is Ranking Loss, 
AP is average precision, OE is One Error.

4.2 � Public dataset

The main application areas of public datasets are media, 
biology, text, image, and chemistry, etc. Selected datasets 
can be downloaded from these three Web sites: http://​mulan.​
sourc​eforge.​net/​datas​ets-​mlc.​html, https://​www.​csie.​ntu.​edu.​

(17)F1 - measure = 2 ×
precision × recall

precision + recall

tw/​~cjlin/​libsv​mtools/​datas​ets/ and http://​www.​uco.​es/​kdis/​
mllre​sourc​es/. In domain, there are many relevant datasets, 
mainly described as follows:

Multimedia: Birds cover audio data. Cal500 Contains 
information about music clips. Emotions covers data about 
music clips with emotional labels. Mediamill covers data 
about the concepts that appear in the video.

Text: Bibtex contains information about bibtex project 
metadata, enron contains data about the emails of Enron 
seniors, and medical, a dataset whose instances correspond 
to documents with a summary of a patient symptom history.

Image: Corel5k is a data set whose examples correspond 
to Corel images that have been segmented through standard-
ized cutting. Scene contains information about the scene, 
which can be annotated in the following six contexts: moun-
tain, city, beach, sunset, field, and fallen leaves. Flags con-
tains information about national flags.

Biology: Two datasets are relevant to this domain. The 
first is Yeast, which contains information about gene func-
tion. A second data set corresponding to biology is genbase, 
which contains data on proteins.

Table 8   Evaluation metrics of SL algorithms

Algorithm Evaluation metrics

HL SA Acc Pre Re F1 Micro
Pre

Macro
Pre

Micro
Re

Macro
Re

Micro
F1

Macro
F1

Macro
Av

Co RL AP OE

LdSM [16] √
3RC [35] √ √ √ √ √
MLNB-LD [29] √ √ √
BCC [38] √ √ √
RBRL [40] √ √ √ √ √ √
AEDC-MLSVM [20] √ √ √ √
SSSVM [41] √
AEML-LLSVM [19] √ √ √ √ √
BP-AEPML [21] √ √ √ √ √
NNMLInf [22] √ √ √ √ √
LCL-Net [42] √ √ √
SDLM [43] √
DCNet [44] √ √ √ √ √
ELIFT [32] √ √
ACkEL [48] √ √ √ √ √ √ √
AESAKNNS [33] √ √ √ √ √ √ √ √ √ √ √
RkNN [29] √ √ √ √
MLSAkNN [31] √ √ √ √ √ √ √ √ √ √ √
ML-BTC [36] √ √ √ √ √ √ √
BNCC [39] √ √ √ √
ML-KELM [26] √ √ √ √ √
ML-ELM-RBF [47] √ √ √ √ √
ML-AP-RBF-Lap-ELM [25] √ √ √ √ √
ML-CK-ELM [27] √ √ √ √ √

http://mulan.sourceforge.net/datasets-mlc.html
http://mulan.sourceforge.net/datasets-mlc.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.uco.es/kdis/mllresources/
http://www.uco.es/kdis/mllresources/
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The attributes of the data set can be counted from N: 
number of instances, M: number of features, L: number of 
class labels, LD (D): label density.

In order to better understand the information of the data-
sets, some datasets are introduced in detail in Table 9, the 
table is listed below in descending order of the number of 
instances.

5 � Next direction

The existing MLC literatures based on SL and SSL have 
been able to solve the classification problem very well, but 
there are still some serious problems for researchers to solve, 
for example, processing of complex concept drift, process-
ing of complex correlations of label, processing of feature 
selection, and processing of class imbalance. The following 
will analyze these issues and serve as the future research 
directions of this article.

5.1 � Processing of complex concept drift

Nowadays, data stream becomes more and more common 
and the imperative for online algorithms for mining transient 
and dynamic data is becoming more and more evident [135]. 
At present, there are few MLC algorithms to solve concept 

drift, which makes concept drift a worthy research direction. 
Since there are various types of concept drift, such as grad-
ual drift, abrupt drift, repeated drift, etc., how to effectively 
detect concept drift has become an urgent challenge. Block-
based and incremental update strategies are widely used in 
single-label algorithms and have achieved good results. The 
research group will decide to convert it into a binary clas-
sifier using BR method. The algorithm based on block and 
incremental update strategy is used to detect concept drift.

5.2 � Processing of complex correlations of label

Existing classification methods simply consider the corre-
lation between labels, but some labels have very complex 
relationships with each other. Some labels within a data-
set have bidirectional relationships and multiple periodic 
dependencies. For example, the prediction of the “beach” 
category depends on the “city” value, while the prediction of 
the “city” category depends on the “beach” value [35]. This 
makes the correlation between labels important for the study 
of MLC problems under SL and SSL. Many algorithms only 
partially consider the complex label correlation problem, 
and effectively considering the label correlation can improve 
the classification performance.

5.3 � Processing of feature selection

Feature selection is the process of data pre-processing. Algo-
rithms can reduce complexity and improve prediction accuracy 
through feature selection. In general, the presence of redun-
dant or irrelevant attributes may cause other problems such as 
poor classification performance and may have high compu-
tational and memory storage requirements [101]. Multi-label 
algorithms based on SL and SSL select a subset of features 
that contain highly relevant and non-redundant features can 
filter out redundant features to a large extent. Currently, the 
most basic feature selection methods can be broadly classified 
as packing, embedding, and filtering methods. However, in 
general, they must collect the complete set of features before 
feature selection starts. This has some limitations because in 
reality many features are dynamically changing. In view of 
this feature, online feature selection methods can be used to 
deal with the multi-label problem and solve the feature selec-
tion problem.

5.4 � Processing of class imbalance

Most multi-label datasets have a serious class imbalance, 
which will seriously affect the classification performance 
[20]. The class imbalance data are divided two aspects: on 
the one hand, for a particular class label, the number of posi-
tive instances is significantly less than the number of nega-
tive instances. On the other hand, for a particular instance, the 

Table 9   Summary of datasets

Datasets Domain N M L LD(D)

Rcv1-v2 Text 804,414 500 103 0.031
IMDB Text 120,919 1001 28 0.071
Mediamill Multimedia(Video) 43,907 120 101 0.043
Tmc2007 Text 28,596 49,060 22 0.098
20NG Text 19,300 1006 20 1
Delicious Text 16,105 500 983 0.019
Ohsumed Text 13,529 1002 23 0.072
bibtex Text 7395 1836 159 0.015
Reuters Text 6000 500 101 0.028
Corel5k Image 5000 499 374 0.009
Slashdot Text 3782 1079 22 0.053
Yeast Biology 2417 103 14 0.303
Scene Image 2407 294 6 0.179
Image Image 2000 294 5 0.247
Enron Text 1702 1001 53 0.064
Medical Text 978 1449 45 0.028
Genbase Biology 662 1186 27 0.046
Birds Multimedia(audio) 645 258 19 0.053
Emotions Multimedia(music) 593 72 6 0.311
CAL500 Multimedia(music) 502 68 174 0.15
Flags Image 194 10 7 0.485
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number of relevant labels is usually less than the number of 
irrelevant labels [40]. Traditional classifiers are more suitable 
for the classification of balanced data, because the classifica-
tion performance will decline sharply when classes are imbal-
anced in the multi-label data. Therefore, it is important to take 
SL and SSL as the next step to deal with the class imbalance 
problem.

6 � Summary

This paper introduces the existing MLC algorithms based 
on SL learning and SSL. At the same time, it summarizes 
algorithms of practical application fields such as multi-
label image and text classification, and summarizes the 
involved algorithms from multiple aspects through images 
and tables. Then the evaluation metrics and public datasets 
of multi-label are briefly introduced. Finally, we propose 
the next research directions based on the current chal-
lenges faced by MLC.

By reviewing supervised and semi-supervised learning 
algorithms for multi-label classification, we can under-
stand that more and more algorithms consider the cor-
relation between labels and it can improve the classifica-
tion performance of the algorithms in supervised learning 
algorithms. Semi-supervised learning algorithms are sig-
nificantly more important when there are labeled and unla-
beled data in the dataset. The inductive methods are opti-
mized for the classification model, while the transductive 
methods are optimized directly for the prediction. Multi-
label classification algorithms can be applied in many real 
scenes, mainly images and text. The image field is mainly 
divided into medicine and remote sensing, and the text 
field is mainly divided into emotion and medical biology. 
If an algorithm considers only one evaluation metric alone 
it may not yield as good results as another metric, but 
this does not mean that the metric has no role at all in the 
evaluation and it can be chosen to be used in combination 
with more sensitive evaluation metrics. In general, multi-
ple evaluation metrics should be provided when measuring 
algorithm performance, rather than allowing performance 
to be determined by a single evaluation metric. With the 
rapid development of big data, more and more data are 
generated in our daily life, multi-label classification algo-
rithms are becoming more and more important, but they 
also face many challenges. We can continue to study the 
problems of complex concept drift, complex label relation-
ships, feature selection and class imbalance.
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