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A quantitative structure-activity relationship (QSAR) 
relates quantitative chemical structure attributes 
(molecular descriptors) to a biological activity. 
QSAR studies have now become attractive in 
drug discovery and development because their 
application can save substantial time and human 
resources. Several parameters are important in 
the prediction ability of a QSAR model. On the one 
hand, different statistical methods may be applied 
to check the linear or nonlinear behavior of a data 
set. On the other hand, feature selection techniques 
are applied to decrease the model complexity, to 
decrease the overfitting/overtraining risk, and to 
select the most important descriptors from the 
often more than 1000 calculated. The selected 
descriptors are then linked to a biological activity 
of the corresponding compound by means of a 
mathematical model. Different modeling techniques 
can be applied, some of which explicitly require a 
feature selection. A QSAR model can be useful in the 
design of new compounds with improved potency 
in the class under study. Only molecules with a 
predicted interesting activity will be synthesized. In 
the feature selection problem, a learning algorithm 
is faced with the problem of selecting a relevant 
subset of features upon which to focus attention, 
while ignoring the rest. Up to now, many feature 
selection techniques, such as genetic algorithms, 
forward selection, backward elimination, stepwise 
regression, and simulated annealing have been 
used extensively. Swarm intelligence optimizations, 
such as ant colony optimization and partial swarm 
optimization, which are feature selection techniques 
usually simulated based on animal and insect life 
behavior to find the shortest path between a food 
source and their nests, recently are also involved 
in QSAR studies. This review paper provides an 
overview of different feature selection techniques 
applied in QSAR modeling.

The quantitative structure-activity relationship (QSAR) 
approach was first applied in practice around 50 years 
ago (1, 2). QSAR models describe a relationship between 

the chemical structure of molecules, described by molecular 
descriptors (e.g., geometric, steric, and electronic properties) 
and their corresponding biological activity. QSAR models are 

used to predict the activity of chemical compounds from their 
structural properties. Because of the wide use of QSARs for 
designing drugs, the International Union of Pure and Applied 
Chemistry defines them as follows: “Quantitative Structure–
Activity Relationships (QSAR) are mathematical relationships 
linking chemical structure and pharmacological activity in a 
quantitative manner for a series of compounds. Methods which 
can be used in QSAR include various regression and pattern 
recognition techniques” (3).

Since the introduction of QSAR, many different studies 
have been made, not only based on so-called two-dimensional 
(2D; 4) but also on three-dimensional (3D; 5–7) techniques. The 
major differences between both are the structural parameters 
that can be used to characterize molecular identities as well as 
the mathematical procedure used to describe the relationship 
between descriptors and biological activity (8).

One of the most popular 3D QSAR methods is comparative 
molecular field analysis (CoMFA), which can be built based on 
steric and electrostatic field descriptors between the ligand and 
biological receptor (7). CoMFA and other 3D-QSAR methods 
have several shortcomings, e.g., in many cases, it is impossible 
to precisely define a pharmacophore model, and if a nonoptimal 
alignment of ligands is applied, it may introduce errors in the 
QSAR model (8). The 3D QSAR may be too computationally 
expensive to analyze large data sets. For example, alignment 
of the ligands takes a lot of time, conformational search must 
be done to find the best conformers, and they affect the final 
results very much. Sometimes an automated and unambiguous 
alignment of compounds is not achievable.

The above problems do not occur in 2D QSAR, where we use 
only zero-dimensional, one-dimensional , 2D, and 3D descriptors. 
3D descriptors for 2D QSAR can be calculated only from 
structures optimized by molecular mechanics and/or quantum 
chemical calculations. For example, 3D descriptors are: Randic 
molecular profiles, geometrical descriptors, radial distribution 
function, 3D-molecule representation of structure based on 
electron diffraction, weighted holistic invariant molecular and 
geometry, topology, and atom-weights assembly descriptors. 
Further, any kind of surfaces (e.g., polar surface area) or volumes 
(e.g., molecular volume) can be considered as descriptors, as of 
course, can the quantum chemical descriptors (9).

In spite of the fact that graph theory indexes (i.e., structural 
formulas of compounds; 10–12) stand for different aspects 
of molecular structure, their physicochemical meaning is not 
obvious. Accordingly, 3D descriptors have been developed to 
address this problem of 2D QSAR techniques. Progressively, 
with time, the number of descriptors increases; finding reliable 
descriptors that can be linked to the biological activity in a 
QSAR model becomes a serious challenge.

Several items can affect the predictive ability of a QSAR 
model, such as the optimization of the molecular structures 
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and the modeling technique used to make a relation between 
the descriptors and the biological activity. Several linear and 
nonlinear techniques have been applied in QSAR studies, such 
as multiple linear regression (MLR), partial least squares (PLS; 
13, 14), nonlinear PLS  (15,  16), artificial neural networks 
(ANN; 17–20), support vector machines (SVM; 21–24), and 
multivariate adaptive regression splines (MARS; 25, 26). One 
of the most important tasks, prior to modeling, is the selection 
of relevant descriptors with maximum information about the 
compounds and with a minimum collinearity (27).

There are several reasons why feature or variable selection is 
important. Models with fewer variables are easier to interpret, 
provide improved performance for new samples, and decrease 
the risk of overfitting/overtraining. Filter, wrapper, and hybrid 
methods are the three major categories of feature selection 
techniques (Figure 1). In fact, a method that reduces the pool 
of descriptors into a smaller set based on a specified criterion 
(which is typically based on information content or intervariable 
correlations) is called a filter feature selection method. Filter 
methods do not apply any learning machine in the process, and 
they perform an unsupervised feature selection (28–30).

On the other hand, a linear or nonlinear classifier (or regressor) 
uses an objective function based on an optimization criterion to 
select descriptors. These methods are classified into the wrapper 
techniques (Figure 1; 31–33). Although the wrapper approaches 
are computationally more expensive than filter methods, their 
generalization performance is better (33).

Hybrid methods attempt to take advantage of the two 
approaches by exploiting the different evaluation criteria 
in different search stages (34–36). Most hybrid approaches 
are classified as wrapper methods, because there is not much 
difference between them, and before a wrapper method 
is applied, a filter method is used to reduce the number of 
variables. Therefore, this review only discusses the filter and 
wrapper approaches. The main goal of this review is to provide 
an overview of recently applied feature selection methods in 
QSAR studies (Table 1).

Filter Methods

Filter methods are used in the first step after calculating 
the descriptors to reduce the dimensionality of the dataset. 
When descriptors are removed from the pool based on mutual 

correlation, first two descriptors that are highly correlated 
are indicated from the pool, then one is removed randomly. 
An alternative approach is to retain the one with the highest 
correlation to the dependent variable and to remove the other 
from the data set. The second method seems to be better than 
the first. Another approach is to remove the descriptors with 
the lowest variance and the lowest correlation to the dependent 
variable, and keep those with the highest correlation.

In general, filter methods can be divided into several types, 
such as distance methods (e.g., using the Euclidean distance 
measure and Mantaras distance measure; 37, 38); information 
methods (e.g., entropy, information gain, gain ratio, and 
normalized gain; 39–41); dependency methods (e.g., correlation 
coefficient; 42, 43); and consistency methods (e.g., min-features 
bias; 44). There are still many other approaches that use, for 
instance, mutual information (45), the Chi-square (χ2) metric 
(46), the Kolmogorov-Smirnov statistic (47), the unbalanced 
correlation score (46), and the Shannon entropy (48), to select 
features.

Weston et al. (46) performed research on 1909 (training 
set) organic compounds to evaluate whether they bind to 
thrombin (a protein involved in blood clotting). Only 42 of 
the compounds showed a positive result, i.e., interacted with 
thrombin. Each compound was described by a single response 
vector comprising a class value (“A” for active, “I” for inactive) 
and 139 351 features (variables are either 0 or 1), which describe 
the 3D properties of the compound. The authors referred to 
examples that bind as having label +1 (and, hence, being called 
positive examples). Conversely, negative examples (that do not 
bind) are labeled –1. The test set included 634 compounds, of 
which 150 were active. The unbalanced correlation score (UCS) 
method (46) was applied for feature selection. This method 
ranks the features according to a criterion. The authors set up 
the criterion to assign a rank to a subset of features rather than 
just a single value. A feature subset with a high score could 
thus be chosen for modeling. The authors also compared USC 
with the Fisher score as a feature selection. The Fisher score 
is a standard (univariate) correlation score (46). Note that in 
this score, negative correlations are just as important as positive 
ones. Complex feature selection methods, such as UCS, may 
show overfitting, while simple standard methods, such as 
the Fisher score, do not always perform well. Constructing a 
criterion that does not overfit but also takes into account the 
unbalanced nature of the data when selecting features will 
improve performance.

Liu (49) compared five methods for feature selection, including 
information gain, mutual information  (44), a χ2-test (45), the 
odd ratio (49), and the Galavotti-Sebastiani-Simi coefficient 
(49). Naive Bayesian classifier (50) and SVMs (51) are used 
to classify the chemical compounds. The data set included the 
1909 (training set) and the 634 (test set) organic compounds 
mentioned above (46).

However, feature selection did not improve the SVM results, 
and it performed better using all features. Naïve Bayesian 
classification accuracy results extensively improved after 
feature selection, especially when the features were selected 
based on the information gain and χ2-test methods. Using 
information gain with a naıve Bayesian classifier, removal of 
up to 96% of the features yielded an improved classification 
accuracy measured by sensitivity. The mutual information 

Figure  1.  Filter methods: Feature selection 
based only on the descriptors without contribution 
of any learning algorithm. Wrapper methods: 
Selection based on the descriptors and activity 
using a learning algorithm. m = Numbers of 
objects (molecules) and n = number of variables 
(descriptors).
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approach was found to have a poor performance because of its 
bias favoring rare features (49, 52).

Whitley et al. (53) proposed an Unsupervised Forward 
Selection (UFS) approach as feature selection with the aim 
of eliminating redundancy and reducing multicollinearity. 
The UFS starts with the two variables that are least correlated 
and selects additional variables on the basis of their multiple 
correlation with those already chosen, thus building a subset 
of variables that is as close to orthogonality as possible. After 
selecting the descriptors with UFS, continuum regression (54), 
an algorithm encompassing ordinary least squares regression, 
principal component regression (PCR) and PLS, was performed. 
The UFS depends only on the independent variables, and 
the response variable (dependent variable) is not involved in 
the selection process. The authors performed UFS on three 
different datasets, i.e., one with 21 steroid compounds, one with 
19 pyrethroid insecticides, and the Selwood dataset with 31 
antifilarial antimycin analogs (53). Though performed on three 
small sets, the authors mentioned that those feature selection 
methods lead to models with a small number of components 
(often only one) of a focused set of variables. The obtained 
models are far easier to interpret than models with several latent 
variables constructed from a large number of descriptors.

Demel et al. (55) compared several unsupervised feature 
selection methods, i.e., McCabe coefficient (56), information 
gain (52), relief (57), correlation-based feature selection  (55), 
and K-nearest neighbor (K-NN; 58), which is a wrapper 
method. All methods were applied on three data sets. These 
sets contained ATP-binding-cassette (ABC) transporters, such 
as ABCB1 (P-glycoprotein), ABCC1 (MRP1), and ABCG2 
(P-glycoprotein) substrates. In this study, the authors assigned 
compounds with correlation coefficients (r) between toxicity 
and transporter expression lower than –0.3 to be substrates and 
those with –0.02 < r < 0.02 to be nonsubstrates. This way a 
set of 240 compounds [i.e., 110 (45.8%) substrates and 130 
(54.2%) nonsubstrates] was obtained for ABCB1, a set of 
227 compounds [i.e., 124 (54.6%) substrates and 103 (45.4%) 
nonsubstrates] for ABCC, and a set of 198 compounds [i.e., 94 
(47.5%) substrates and 104 (52.5%) nonsubstrates] for ABCG2 
were selected. The results showed that the wrapper method 
K-NN outperforms the other feature selection methods. The 
obtained results indicate that possibly nonlinear behaviors exist 
in the data sets.

Salt et al. (59) used both factor analysis (60) and UFS as 
feature selection prior to predicting the affinity and selectivity of 
108 arylpiperazinyl derivatives for both α1 and α2 adrenoceptors 
(ARs) with a MLR method. For FA, used as a wrapper method in 
this case because y (biological activity) is also involved during 
the feature selection process, the factors showing a significant 
(P < 0.05) loading for the response variable were selected, and 
representative descriptors, i.e., those with maximum loading on 
each factor, were retained. UFS, on the other hand, is based on 
the correlation matrix between the independent variables, starts 
by identifying the two least correlated variables, and adds other 
variables on the basis of their multiple correlation coefficients 
with those that already have been chosen. The main goal to use 
UFS in this study was to remove the redundancy from the data 
matrix (whose initial number of variables greatly exceeded the 
rank of the matrix).

Principal component analysis (PCA) also can be used for 
feature selection. PCA defines new latent variables of which the 

first contains most of the variance of the data. It is a variable 
reduction technique that allows visualizing the information 
included in the X matrix (including descriptor values). Usually, 
based on plotting the PC1 versus PC2 loadings (loading plot), 
much information from the data set variables can be extracted, 
because these two PCs contain the highest variances in the data 
set  (61). Some descriptors are clustered in the loading plots, 
which means that they describe similar information. For the 
subsequent calculations, the number of descriptors was reduced 
by choosing a representative one from each cluster of variables 
and removing those with similar information (62).

Roy et al. (63–69) have been working intensively on feature 
selection. They compared genetic function approximation 
(GFA; 70) and PCA as feature selection methods, and MLR 
as a regression technique on several classes of compounds. 
For instance, PCA was used for the selection of descriptors 
for the multiple regression analysis of the acute toxicity of 
56  phenylsulfonyl carboxylates to Vibrio fischeri, formerly 
known as Photobacterium phosphoreum, which is a Gram-
negative rod-shaped bacterium found globally in marine 
environments. In a second case study, the toxicity of a set of 
42 nitroaromatic compounds and in a third case the fish toxicity 
of 92 substituted benzenes were modeled. Variable selection 
using GFA was also done prior to modeling the acute toxicity of 
the 56 phenylsulfonyl carboxylates to V. fischeri.

In their studies (63–69), PCA was used for the selection of 
independent variables. For the selection of variables contributing 
to the biological activity y using (principal component) factor 
analysis, one has to take the y vector also along with the 
descriptors. Only variables with nonzero loadings in PCs, where 
biological activity also has nonzero loading, were considered 
important in explaining the activity.

Bajorath’s group (71–73) introduced mutual information 
differential Shannon entropy (MI-DSE), an improvement of 
Shannon entropy (SE), as a feature selection approach. The SE 
method provides a basis for the quantification of the information 
content of data distributions that can be represented as a 
histogram. The DSE method was introduced to quantify how 
much information about a given compound class is contained in 
the value distribution of a descriptor when compared to another. 

Based on DSE, at first a histogram (class specific entropies) 
is drawn for each class (e.g., classes A and B). Then the two 
classes A and B are combined into a single histogram. The 
SE should be calculated for the combined histogram, then the 
DSE can be obtained as the combined histogram AB minus 
the average of the individual histograms A and B. The authors 
found that there was a problem when the two classes are of 
significantly different size. The combined histogram is too 
influenced by the larger class, and its distribution is biased. 
The utility of the MI-DSE approach to identify class-specific 
information was confirmed by the comparison of the Gaussian 
distributions of the molecular descriptors and resulting DSE 
and MI-DSE values and descriptor rankings. The methods are 
applied on different activities in data sets containing between 
30 and 159 compounds, which were selected from the 100 000 
ZINC compounds database (a free database of commercially 
available compounds for virtual screening; 71).

Wrapper Methods

Wrapper methods use the information from both independent 
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and dependent variables for feature selection. Several methods 
can be classified in this category. In fact, the number of feature 
selection methods in this category has been increasing rapidly.

Forward selection and backward elimination, and stepwise 
regression are three popular and simple feature selection 
methods. In forward selection, the first selected variable is the 
one with the highest correlation to the dependent variable. Then 
the method consecutively adds variables to the model one at a 
time. This process is terminated when the last variable entering 
the model has an insignificant regression coefficient or when all 
variables are included. In contrast, backward elimination starts 
with all variables in the model and eliminates them one at a 
time, in which the first eliminated variable is the one with the 
least significance. This process is terminated when all remaining 
variables are significant or all but one variable have been 
deleted. Stepwise regression uses both forward selection and 
backward elimination. A variable that entered the model in an 
earlier stage of selection may be deleted at a later stage. Several 
criteria can be used, but the above approaches are mostly based 
on F (statistic) value (74). 

Xu and Zhang (75) compared several feature selection 
methods, i.e., forward selection, backward elimination, and 
stepwise regression, on a data set consisting of 35 nitrobenzenes 
with corresponding toxic activities. In this study, backward 
elimination performed better than forward selection and 
stepwise regression for the selection of molecular descriptors. 
The authors evaluated them based on the correlation coefficient, 
and it was shown that backward elimination was better than 
forward selection and stepwise regression.

Prabhakar (76) introduced a combinatorial protocol interfaced 
with MLR for feature selection. It was first applied on the 
Selwood data set (77), and the results were quite acceptable 
when compared to those obtained by GFA (70) and mutation 
and selection uncover models (78). If a group of variables is a 
bundle, then, according to the combination rule, a total of pCk 
bundles emerge from p variables with k variables in each bundle 
(original variable bundle; OVB). A variable may contribute to a 
model in two different ways: by itself alone, and/or by itself and 
its functionally transformed term together. To find the influence 
of a selected function of any variable along with its original form 
in the model development, the k variables of OVB along with 
their meaningfully transformed functional variables are adopted 
for the formation of new bundles. For efficient evaluation of 
variable bundles, they have to pass four filters. Three of them, 
interparameter correlation cutoff criteria for variables to stay as a 
bundle (controls the correlation between independent variables; 
default value less than or equal to 0.3); a t-value of the variables 
regression coefficient (evaluates the significance of variables in 
a bundle); and the square root of adjusted multiple correlation 
r (to compare the internal explanatory power of bundles with 
different numbers of variables), are initially adopted in this 
process. While the first three criteria were used to check the 
internal consistency, the fourth, i.e., the squared correlation 
coefficient of cross-validation (leave-one-out is the default 
option) was applied to address the external consistency.

This method was applied in several cases (79–83) using 
different classes of compounds. A QSAR study (79) of the HIV-1 
reverse transcriptase (RT) inhibitory activity was done for two 
series of 54 compounds, 2-(2,6-dihalo phenyl)-3-(substituted 
pyridin-2-yl)-thiazolidin-4-ones and 2-(2,6-dihalophenyl)-
3-(substituted phenyl)-thiazolidin-4-ones, belonging to 

2,3-diaryl-thiazolidin-4-ones using the combinatorial protocol 
(CP) interfaced with MLR and PLS analysis. In (80), a series 
of 5 4-benzyl/benzoyl-pyridin-2-ones along with their anti-
HIV activities using CP and genetic algorithms (GA) as 
feature selection and MLR, PLS, and ANNs as regression 
techniques were used. A set of 46 benzoylaminobenzoic acid 
derivatives was studied (81) as β-ketoacyl-acyl-carrier protein 
(ACP) synthase III inhibitors with CP-MLR applied to build 
the QSAR model. In (82), the structure-activity models for the 
myorelaxant activity of 28 cromakalim analogs were developed 
by the CP-MLR method. The antimycobacterial activity of 31 
functionalized alkenol derivatives is also modeled by the CP-
MLR method in (83). For all data sets, the squared correlation 
coefficients were higher than 0.5 (79–83).

The replacement method (RM) is a technique that is 
proposed for feature selection by Duchowicz et al. (84). It was 
applied for the first time on a data set consisting of 62 nitroso 
compounds  (85) to model the carcinogenic potency (TD50). 
The method selected seven descriptors, and an MLR model 
was then able to explain 84.3% of the experimental variance. 
In (85) the obtained models were only evaluated by leave-one-
out and leave-25%-out cross-validation as internal validation. 
The RM method is based on replacing a chosen feature of the 
set by another to minimize the total SD. A set of descriptors is 
initially chosen randomly (the number of selected variables is 
less than the number of compounds); linear regression is then 
applied. One of the features, e.g., xi, is chosen and replaced 
iteratively by each of the remaining features from the pool, 
and finally the best set is selected. The variable with the largest 
relative error in its coefficient is chosen and replaced with 
all pool features except with the one chosen in the previous 
iteration. This process is repeated as many times as necessary 
until the set of features remains unchanged. This method has 
been used on different classes of compounds (86–90), such 
as on the antifeedant activities of aurones, chromones, and 
flavones; the %HIA (human internal absorption) permeability 
values of 160 organic compounds; 154 non-nucleoside reverse 
transcriptase inhibitors (NNRTI) of the wild-type HIV-1 virus; 
the antituberculosis activity of 43 quinoxaline-2-carboxylate 
1,4-di-N-oxide derivatives; and the binding affinity constants 
of flavonoid ligands for the benzodiazepine site of the gamma-
aminobutyric acid (GABA)(A) receptor complex. The obtained 
results indicated the proper ability of RM as feature selection 
approach. RM gave models with better statistical parameters 
(correlation coefficient as well as internal and external 
validation) than the stepwise regression procedure and similar 
or better ones than the more elaborated GA (86–90).

The replacement method was adapted by Mercader et al. (91) 
and called the enhanced replacement method (ERM). The 
ERM follows exactly the same steps as RM but exhibits less 
propensity for remaining in local minima. First, an initial set of 
features is chosen randomly, then one of the features is replaced 
with the remaining one by one, and the set with the smallest 
value of s is selected. Second, from the resulting set the feature 
with the largest SD in its coefficient is chosen and substituted 
by all remaining features from the pool. This procedure is 
repeated until the set remains unmodified. The ERM and RM 
are different in the last step. The RM method does not proceed 
with the optimization if the replacement of the descriptor with 
the largest error by those in the pool does not decrease the value 
of s, while ERM chooses the next-smallest s value, which is of 
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great help for getting out of a local s minimum. This algorithm 
was performed on several data sets with different biological 
activities. For example, on the inhibition of aldose reductase 
by 60 flavonoids, on a fluorophilicity data set consisting of 
116 organic compounds, on a growth inhibition data set with 
growth inhibition values to the ciliated protozoan Tetrahymena 
pyriformis by 200 mechanistically diverse phenolic compounds, 
on a GABA receptor data set containing 78 inhibition 
data for flavone derivatives, on 100 pED50 antiepileptic 
activities of enaminones, on 166 aqueous solubilities of 
drug-like compounds, on 470 pIGC50 aqueous toxicities of 
heterogeneous aliphatic compounds, on 392 pIGC50 aqueous 
toxicities of benzene derivatives, on 17 acetylcholinesterase 
inhibitor activities of substituted indanone and benzylpiperidine 
analogs, on 35  glass transition temperatures of structurally 
diverse polymers, on 30  melt transition temperatures of 
structurally diverse polymers, and on dissociation constants of 
88 pharmaceutical compounds. For all models not only internal 
validation (cross-validation) but also external validation (test 
set) is taken into account. The models are evaluated based on 
them, as well as on the squared correlation coefficient and the 
root mean squared error of prediction (RMSEP). The obtained 
results were quite acceptable and similar or better than the 
GA (92–95).

Xue et al. (96) used recursive feature elimination (RFE) as 
feature selection. RFE is a strategy to select variables based on 
SVM. At each iteration a linear SVM is trained, followed by 
removing one or more “bad” features from further consideration. 
The goodness of the features is determined by the absolute value 
of the corresponding weights used in the SVM. RFE is used 
for selecting descriptors to predict P-glycoprotein substrates 
(P-gp), which facilitates early identification and elimination of 
drug candidates of low efficacy or high potential resistance from 
a data set including 116 substrates and 85 nonsubstrates; HIA, 
including 113 absorbable and 65 nonabsorbable compounds; 
and TdP agents that cause “torsades de pointes” including 85 
TdP and 276 non-TdP agents. When using this feature selection, 
the dimension of descriptors decreased. For example, the total 
number of descriptors in the original data set was 159 for all 
three classes, and was reduced to 22, 27, and 31 for P-gp, HIA, 
and TdP, respectively. Then SVM based on a Gaussian kernel 
function is applied as a modeling technique. The RFE reduced 
the number of descriptors significantly, and the computational 
speed for the classification increased (96). From another point 
of view, the prediction accuracies for both P-gp and HIA 
increased, but for TdP nothing changed when the number of 
descriptors was decreased by RFE.

GA is one of the most popular techniques, which has been used 
as feature selection approach in QSAR studies as well. The GA 
is a technique based on natural evolution principles introduced 
by Holland in 1975 (97) and relies on Darwin’s evolution 
theory. Features play the role of genes, and a set of features is 
called a chromosome. Each individual object of a population 
is described by a chromosome of binary values, zeros or ones. 
The first generation is selected randomly, and the state of each 
variable is represented by the value 1 (selected) or zero (not 
selected). The practical application of GAs requires the tuning 
of some parameters, such as the population size, generation gap, 
crossover rate, and mutation rate. Crossover is an operation in 
which a pair of chromosomes is divided, mutually exchanged, 
and merged. Mutation is a genetic operator (change from a zero 

to one and vice versa) used to maintain genetic diversity from 
one generation of a population of algorithm chromosomes to 
the next.

Several papers have been published that describe GAs to 
explore and build QSAR models. Hasegwa et al. (98) modified a 
GA and performed it as feature selection on 35 dihydropyridine 
(DHP) derivatives with the corresponding inhibitory activities 
of calcium channel antagonists. The GA is modified in order to 
protect more informative chromosomes. An extra step, which 
decides whether a new chromosome replaces the old or not, 
was introduced after the reproduction step (selection, crossover, 
and mutation) in the GA. In fact, an informative chromosome 
is the one with high interval predictivity using a small number 
of variables. Therefore, the more informative chromosome 
has a probability to produce a useful QSAR model and should 
not be eliminated from the population of chromosomes in the 
GA. Results showed that the prediction of the PLS model was 
much improved by the GA-PLS analysis. In another study (99), 
GA-PLS was used as feature selection-modeling approach 
on a dataset containing 57  benzodiazepines to model their 
binding affinity to GABA(A) receptor. The PLS model with 
the selected variables was a significantly better predictor than 
the one with all descriptors. GA-genetic programming (GP) 
was used as a feature selection on a dataset of 79 inhibitors 
of HIV-1 reverse transcriptase, i.e., 1-((2-hydroxyethoxy) 
methyl)-6-(phenylthio) thymine compounds, by Tang and Li 
(100). The GP was used in a symbolic regression application 
to find the appropriate equation prototype and the coefficients 
of the equation, which are represented by the combination of 
function nodes and terminal nodes. Nodes are composed of 
single-variable function nodes (N1), binary function nodes 
(N2), and leaves (N0). A tree is used to express the individuals. 
GA was used for optimizing the parameters during the process. 
It is an algorithm for dealing with all kinds of functional and 
fractional relationships, which use GP to create new individuals 
and GA to optimize them simultaneously. In this way, the 
advantages of GA and GP are fully used. The results showed 
the applicability of the introduced method in a QSAR study. 
Cho and Hermsmeier (101) used GA to select subsets of 
compounds and to group different chemotypes. GA was applied 
on the molecular electronegativity distance vector of 13 atomic 
types. Then a QSAR model was built using MLR. The obtained 
result on a data set containing three molecular systems, i.e., 31 
steroids, 58 dipeptides, and 16 COX-2 inhibitors, showed that 
the prediction ability of GA-MLR is better than that of a PCR 
method (102). GA coupled to PLS was also performed on 123 
organic compounds to model the concentration causing 50% 
lethality (narcotic activity; 103). 

GFA also can be used as a feature selection method (70). This 
approach involves the combination of the MARS algorithm 
with a GA to evolve a population of equations that best fits 
the training set data. It provides an error measure, called the 
lack-of-fit (LOF) score, that penalizes models with too many 
features (64). GFA generates a population of equations rather 
than one single equation to correlate biological activity and 
physicochemical properties.

GFA starts with the generation of an initial population of 
equations by a random choice of descriptors. Pairs from the 
equation population are randomly chosen and “crossovers” are 
performed. Progeny equations can then be generated, and the 
fitness of each progeny equation can be assessed by the LOF 
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Table  1.  Different wrapper and filter methods

Feature selection technique
Filter (F) or 
wrapper (W) Modeling method Reference 

Unbalanced correlation score (cub) F 46

Fisher score (fish) F 46

Information gain F 49, 55

Mutual information F 49

c2-test F 49

Odds ratio F 49

GSS coefficient F 49

Unsupervised forward selection (UFS) F 53, 59

McCabe coefficient F 55

Correlation based feature selection F 55

K-nearest neighbor W 55

Relief F 55

Factor analysis (FA) F 59

Principal component analysis (PCA) F 63–69

Mutual information differential Shannon entropy (MI-DSE) F 71–73

Shannon entropy F 71–73

Backward elimination W MLR 75

Stepwise regression W MLR 75, 125

Forward selection W MLR 75

Leaps-and-bounds regression W MLR 75

Genetic algorithm W MLR, PLS, ANN 75, 98, 99, 102, 103, 106–108, 123, 
125

Combinatorial protocol (CP) W MLR, ANN, PLS 76, 79–83

Replacement method (RM) W MLR, ANN, SVM 86–90

Enhanced replacement method (ERM) W MLR 91–95

Recursive feature elimination (RFE) W SVM 96

Genetic programming (GP) W MLR 100, 126, 127

Genetic function approximation (GFA) W 104, 105, 125

Genetic algorithm Shannon entropy cliques (GASEC) W AdaBoost.M1, SVM 109–111

Genetic algorithm-variable subset selection (GA-VSS) W ANN, SVM, PLS 120–122

Multi-objective (MO) W MLR, ANN, NLR, DT 124

Generalized simulated annealing (GSA) W MLR 125, 130–133

k-nearest neighbor (K-NN) W NN 133

Successive projection algorithm (SPA) W MLR, ANN 134–136

Counter-propagation artificial neural network (CPANN) W ANN 138

Ensemble of neural networks (NN) W ANN 139

Heuristic multilinear regression W MLR, ANN, SVM 96, 147–152

Variable selection and modeling based on the prediction 
(VSMP)

W MLR 153

Kolmogorov-Smirnov statistics (KS) F 155

Factor analysis (FA) W PLS 159–162

Uninformative variable elimination (UVE) W PLS 163

Ordered predictors selection W PLS 164

Bayesian regularized neural network (BRNN) W ANN 165, 166

Reverse elimination method-tabu search (REM-TS) W PCR, PLS 167, 168
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measure. When the fitness of the new progeny equation is better, 
it is preserved (104, 105).

An improvement of GA as feature selection is done in (106) by 
adding an extra step after selection, cross-over, and mutation. A 
chromosome with k variables is defined as the most informative 
when it gives the best prediction among all the chromosomes 
with the most k variables. Because the more informative 
chromosome has probability to produce a useful QSAR model 
(predictive and easily interpretable model), such a chromosome 
should not be eliminated from the population of chromosomes 
in the GA. Therefore, this chromosome should be protected, and 
the authors added an extra step for protecting them. In this extra 
step, it is decided whether or not a new chromosome can replace 
an old one. If a new chromosome is protected, the method is 
replacing the least-fitting nonprotected chromosome (one that 
can be eliminated from the population). If a new chromosome 
is nonprotected, it replaces the old one only if its predicative 
ability is higher than that of the least-fitting nonprotected 
chromosome; otherwise the new chromosome is rejected. 
This method was applied on 35 dihydropyridine derivatives to 
model the molar concentration necessary to inhibit 50% of the 
contraction of guinea pig ileum induced by methylfurmethide. 
The results indicated the ability of this method for feature 
selection. The predictivity of the PLS model is improved by 
variable selection, and the squared correlation coefficient of 
prediction is considered to be a good measure of fitness in this 
GA-PLS computation (106).

Hybrid GA as feature selection, coupled to linear methods, 
such as MLR and correlation-based feature selection, 
and nonlinear methods, such as nonlinear decision tree 
and ANN, were used as feature selection approaches on 
170  (cycloalkylpyranone analogs) HIV protease enzyme 
inhibitors (107). The selected descriptors were quite different, 
but all methods showed good prediction performance, although 
the ANN models were better than the MLR and decision tree 
models.

GA was used for a binary classification of three different 
data sets, i.e., one with 463 estrogen receptor (ER) ligands 
and their corresponding relative binding affinity, one with 
337 carbonic anhydrase II (CAII) inhibitors, and one with 
1608 monoamine oxidase (MAO) inhibitors (108). The GA-
based feature selection could improve the performance of the 
binary classification QSAR models. Binary classification is an 
approach for the analysis of high throughput screening data by 
correlating structural properties of compounds with a “binary” 
expression of biological activity (1 = active and 0 = inactive) 

and calculating a probability distribution for active and inactive 
compounds in a training set. The predictive accuracy obtained 
for the binary classification of CAII was much better than for 
both ER ligands and MAO inhibitors. The results with or without 
GA were compared and showed that GA can remove irrelative 
variables from the dataset. For instance, for ER ligands, CAII 
inhibitors, and MAO inhibitors obtained results were 91, 90, 
and 95 with GA and 96, 85, and 87 without GA, respectively, 
which showed that when irrelevant variables were removed the 
result did not change a lot.

Wegner et al. (109–111) introduced GA coupled to Shannon 
entropy cliques (SEC) as feature selection. SEC was used to 
measure the information content of the descriptors. Clique 
detection is used to find initial feature sets that are uncorrelated 
and have a high information content. The sets selected in the 
clique detection phase then form a population that is optimized 
using a GA. The authors also reported a number of hybrid 
approaches to feature selection that combines filter and wrapper 
methods. In the third paper of their series (111), they analyzed a 
human intestinal absorption data set including 194 compounds, 
represented by 2934 descriptors.

GA was performed on several data sets as feature selection, 
e.g., on the data set of 72 4-(1-methyl-5-nitro-2-imidazolyl) 
dihydropyridine derivatives with their calcium channel 
antagonist activities in quinea-pig (112), and the data set of 
41  DHP derivatives with their channel antagonist activity 
in guinea pig ileal (113). GA was also performed as feature 
selection on 18 sulfa drugs with carcinogenesis activity, for 
which they found a significant effect of the highest occupied 
molecular orbital energy on the carcinogenesis activity in the 
context of the shape of this orbital (114). GA-based feature 
selection also was performed on 46 nonpeptide HIV-1 protease 
inhibitors (115), 6-naphthylthio 1-[(2-hydroxyethoxy) methyl)-
6-(phenylthio)] thymine derivatives in the prediction of anti-
HIV-1 activity  (116), 26 diaryl-substituted pyrazoles CCR2 
inhibitors  (117), 53 structurally diverse compounds that were 
known or suspected to interact with CYP 3A4 (118), and 70 
ligands with their dopamine transporter inhibitors (119). 
All obtained models based on either PLS or MLR modeling 
indicated the ability of GA as a feature selection approach, and 
the obtained models clearly demonstrated good correlations 
between the structure (descriptors) and the inhibitory activity of 
the studied compounds.

GA-variable subset selection (VSS) is a method to search for 
the best ranking within a wide set of predictor variables (120). It 
was performed on several data sets, e.g., for predicting the acute 

Table  1.  (continued)

Feature selection technique
Filter (F) or 
wrapper (W) Modeling method Reference 

High ranking F 45

High ranking set cover F 45

Signal method W OLS 45

Ant colony optimization (ACO) W MLR, PLS, SVM 171–175

Particle swarms optimization (PSO) W MLR, PLS 176–179

Regression coefficients W PLS 180

Variable importance in the projection (VIP) W PLS 181, 182



	 Goodarzi et al.: Journal of AOAC International Vol. 95, No. 3, 2012  643

toxicity to the fathead minnow (Pimephales promelas) of a set 
of 408 heterogeneous chemicals  (121). Several quantitative 
structure–toxicity (lethal oral dose for mouse) relationship 
models for 54 benzodiazepine derivatives, using GA-VSS 
as feature selection and ANNs, SVMs, or PLS as regression 
techniques, have been developed (122). In that study, the 
nonlinear models showed better results than the linear (122). 

A combination of GA and neural network was used to 
select a subset of relevant descriptors in (123). The introduced 
method is different in two ways to what usually is done. The 
GA was not constrained to a defined number of descriptors. 
Second, optimization of the neural network architecture was 
done simultaneously with the variable selection by dynamically 
modifying the size of the hidden layer (123). Six different data 
sets were used, three of them were simulated and the rest were 
55 benzodiazepine compounds with their biological activities, 
50 2-phenyl-4-quinolone and 2-phenyl-1-, 8-naphtyridin-4-
one derivatives with their tubulin polymerization inhibitory 
activities, and a set of 268  organic compounds with known 
central nervous system activities.

Soto et al. (124) proposed a novel method for feature 
selection containing two steps. The first step is a multi-
objective (MO) wrapper. It provides a framework for solving 
decision-making problems involving multiple objectives that 
aim both to maximize predictive capacity and to reduce the 
number of selected descriptors. The output of the first step is 
used by the second, also called validation phase, in order to 
determine which subsets of descriptors are the most relevant for 
prediction. The mentioned method is applied on three different 
data sets consisting of 289 compounds with their blood-
brain barrier penetration, 127 compounds with their human 
intestinal absorption, and 442 organic compounds with their 
hydrophobicity, respectively.

So et al. (125) compared forward regression, GFA, GSA, 
and GA-neural network (GA-NN) on a data set containing 
56 progestagenic steroid compounds with their relative binding 
affinities. It was discovered that using FR and GFA was good 
for an initial screening of the data set, but the result was not 
good enough because of the nonlinear behavior of the data set. 
Although excellent results were obtained by GSA, the best were 
found using GA-NN.

GP (126) is in fact, the same as GA, but the main difference 
is the representation of a potential solution. In GP, an individual 
selection is presented as a tree, while in GA it is represented 
as binary strings of 0 and 1. This makes GP more complicated 
than GA. However, it was used in QSAR studies (127) to select 
descriptors from a large pool. The advantage in GP is that the 
number of required terms does not have to be specified, and the 
drawback is that the penalty function, which controls the model 
complexity, has to be calibrated for each data set. However, 
Nicolotti et al. (127) designed it to derive a single linear model 
that represents an appropriate balance between the variance and 
the number of descriptors selected for the model. The authors 
represented a further drawback, i.e., a single solution is found, 
which represents one particular compromise solution, while 
typically a family of different compromise solutions exists. 
However, the authors presented MOGP, which exploits the 
population nature of GP to optimize a family of solutions in 
parallel. In the MOGP method a family of equivalent models is 
found, where each model represents one particular compromise 
between accuracy and complexity. The authors applied it on 

several data sets; in each case, a variety of different models was 
found. In the case of the Selwood data set (77), these models 
include “best” models previously reported in the literature (127).

Simulated annealing is based on the Metropolis Monte 
Carlo algorithm (128), which has been extensively used. In the 
Metropolis algorithm each iteration is composed of a random 
perturbation of the actual configuration and the computation of 
the corresponding energy variation (ΔE; 129). It starts from an 
initial state and introduces perturbations or random moves by 
adding or removing a single variable, which creates a new state. 
Movements with a value lower than the cost function are always 
accepted, and those with a higher value with less probability 
might be accepted in some cases. The acceptance probability is 
based on a parameter so-called temperature (T). The higher the 
value of T, the more likely that a movement with value higher 
than the cost function is accepted.

This method has been performed on several data sets to 
model different biological activities such as the antitubercular 
activities of quinoxaline compounds (130), the antituberculosis 
activities of a series of nitrofuranyl amides (131), the PDE-5 
inhibition of a series of substituted pyrido[3,2-b]pyrazinones 
(132), and 58 estrogen receptor ligands (133).

The K-NN QSAR approach (133) explores formally the 
active analog approach, which implies that similar compounds 
display similar profiles of pharmacological activities. In K-NN 
an unknown pattern is classified according to the majority of 
the class memberships of its K-nearest neighbors in the training 
set (where nearest is based on a distance metric). The procedure 
starts by calculating the distances between an unknown object 
and all the objects in the training set. Then some objects (K) 
from the training set, which are the most similar to the unknown 
object, are selected according to the calculated distances. 
Finally, the unknown object is classified with the group to 
which a majority of the selected objects belongs. The optimal 
subset size k is selected based on the classification of a test set 
or by the leave-one-out cross-validation (133).

Akhlaghi and Kompany-Zareh (134) applied the successive 
projection algorithm (SPA; 135) as a feature selection on a series 
of 107 1-(2-hydroxyethoxy-methyl)-6-(phenylthio) thymine 
derivatives as NNRTIs. They coupled this SPA with backward 
elimination and radial basis function neural network to model 
anti-HIV activity. From 160 molecular descriptors that have 
been used as initial data to derive a new QSAR model, only a 
subset of 11 descriptors was selected using SPA with backward 
elimination. It was concluded that hydrophobic, electronic, and 
geometric descriptors were important for the anti-HIV activity 
of the mentioned class of compounds. Based on the obtained 
results, the reliability of SPA to select variables without losing 
useful information was concluded. In another work, the authors 
proposed the correlation weighted successive projections 
algorithm (136) as a modified version of SPA that was applied 
on same data set as in the previous study. In the proposed 
procedure the correlation coefficient of each descriptor with the 
activities was an additional criterion for selection of descriptors. 
Compared to SPA, results with a lower root mean squared error 
of prediction are obtained using a lower number of selected 
variables (six variables).

The counter-propagation artificial neural network (CPANN) 
technique was used by Jezierska et al. (137) for feature 
selection on a set of 95 aromatic and heteroaromatic amines 
with a mutagenic activity. They removed the variables that were 
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constant for more than 80% of the molecules prior to CPANN. 
The number of the independent variables was reduced from 275 
to 240, and then different dimensions of networks (ranging from 
5*5 to 7*7) and of the number of learning epochs (ranging from 
100 to 1300) were tested. Finally, the 6*6 network dimension 
with 1000 epochs was chosen. The first descriptor from each 
neuron was selected. First descriptor means the one closest to 
the neuron weight. Each molecule is represented as a vector of 
m elements, where m is equal to the number of descriptors. In 
the transposed matrix, the descriptors are stored in rows, which 
means that each row represents an Nmol-dimensional vector of 
one of the m descriptors. For example, the first row contains 
Nmol values of the first descriptor with the vector components 
corresponding to the values of this first descriptor in each of 
the Nmol molecules. This transposed matrix is normalized by 
columns and then introduced to the Kohonen Network that is 
trained until a limiting error is reached (138), and 36 descriptors 
were selected for further study and modeling by Kohonen 
Network using the transposed matrix.

Tetko et al. (139) used an ensemble of NNs to find the best 
set of variables while avoiding chance correlation. Model 
selection, as well as feature selection, was done in different 
ways, e.g., based on a sensitivity determination followed by 
pruning. The sensitivities of all variables are calculated (139), 
and the less sensitive are detected and pruned. Five different 
algorithms are designed to estimate the importance of the 
features. They can be divided into two different categories, such 
as sensitivity (140–142) and penalty term (143, 144) methods. 
Sensitivity methods measure the importance of weights, and 
the elements with the smallest sensitivities are deleted. The 
second group modifies the error function by introducing penalty 
terms (these terms drive some weights to zero during training). 
Pruning is stopped depending on the minimal RMSEP value, 
and this value is always determined with some final precision. 
Cascade-correlation was also used (145) for optimizing the 
NN architecture, in which one starts with a small network and 
dynamically adds new neurons until the analyzed problem 
is solved. However, the optimal set of descriptors could be 
determined using an S/N method (146).

Heuristic MLR (147) was performed on several data sets 
(96,  148–152) to find the best set of selectors and to model. 
Collinearity is checked and avoided. For example, two descriptors 
that are intercorrelated above 0.8 are never involved in the same 
model. The subset size was also considered (149–151). When 
adding descriptors to the model did not improve the squared 
correlation coefficient result anymore, the optimum set was 
obtained. The regression was done on different data sets, e.g., for 
the prediction of the affinity of a diverse set of 94 drugs binding 
to human serum albumin (96), of the neuraminidase inhibition 
of 46 influenza viruses  (148), of the anticancer activity of 35 
2,5-disubstituted 9-aza-anthrapyrazoles (9-aza-APs) (149), of 
the percent inhibitions toward HT-29 of triaminotriazine drugs 
(150), and of the Gp120-co-receptor (CCR5) binding affinity 
of 79 substituted 1-(3,3-diphenylpropyl)-piperidinyl amides 
and ureas  (151). The performance of two heuristic methods, 
the best multilinear regression approach and the heuristic 
back-propagation neural network, was evaluated in developing 
QSAR models  (152), where the toxicity of a diverse data set 
of 1371 organic chemicals is modeled. The descriptor selection 
algorithm started by evaluating ANN models with one descriptor 
as input. The best models were then selected in the next step, 

where a new descriptor was added to the input layer, and the 
number of hidden units was increased by one. Again, the best 
models were selected, and this stepwise procedure was repeated 
until the addition of new input parameters did not improve 
the model significantly. Since ANN models are quite likely 
to converge to some local minima, each model was retrained 
30 times, and the model with the lowest error was selected.

Variable selection and modeling based on the prediction 
(VSMP) is another feature selection method similar to forward 
selection that was introduced by Liu et al. (153). The various 
optimal subsets are searched based on the squared correlation 
coefficient or the RMSEP. Two main steps are needed to search 
the best subset from the descriptor pool. The first is the selection 
of various subsets based on either correlation coefficient or 
RMSEP. Then the best subset from all subsets is determined. 
This is based on high correlation statistics for both internal and 
external validation.

SVM (154) is recently a popular machine learning tool that 
has been applied in many fields. SVM can be used for regression 
and for binary or multiclass classification problems. RFE (155) 
is a method that has been used as feature selection. In RFE the 
variables will be removed if they do not substantially change the 
objective function (155, 156). Although RFE is a suitable and 
fast algorithm for selecting variables, it uses a greedy strategy 
to perform backward elimination that can lead to suboptimal 
solutions (156).

RFE-SVM was improved in a method called incremental 
regularized risk minimization (157). This approach will put the 
removed descriptors from the pool in one set and the selected 
descriptors in another. Then it is evaluated whether coupling the 
first set of variables with the second can improve the accuracy 
of the SVM (157). SVM can also be performed on all features, 
and then the least important are deleted using Kolmogorov-
Smirnov (KS) statistics (158). KS statistics can be used as a 
feature selection method (157) based on the cumulative fraction 
function, which represents the dependency of the percentage of 
samples whose feature values are below a certain threshold on 
the position of the threshold value in the sorted list of feature 
values.

The combination of FA and PLS is also possible. FA is 
used for the initial selection of descriptors, after which PLS 
is performed. FA is a tool to evaluate the relationship among 
variables. It reduces variables into a few latent factors from 
which important variables are then selected for PLS regression. 
Most of the time, a leave-one-out method is used as a tool to 
select the optimum number of components for PLS. FA-PLS 
was performed on several data sets, e.g., for the prediction of the 
reverse transcriptase inhibition for 70 tetrahydroimidazo (4,5,1-
jk)(1,4)benzodiazepine derivatives, of the anti-HIV-1 integrase 
inhibition for 36 styrylquinoline derivatives, of the inhibition by 
41 substituted phenols of the germination rate of Cucumis sativus, 
and of the CCR5 binding affinity for 79 1-(3,3-diphenylpropyl)-
piperidinyl amides and ureas (159–162).

Uninformative variable elimination (UVE) is a method to 
exclude uninformative variables from the pool that has high 
variance but small covariance with the dependent variable 
(biological activity). This method is most frequently coupled 
with the PLS method to reduce the complexity and/or to improve 
the predictive ability of the model. UVE uses a cutoff value for 
the PLS regression coefficients, which is determined by adding 
irrelevant descriptors to the original data and evaluating their 
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corresponding PLS coefficients. This method has the ability to 
improve the model by removing the uninformative explanatory 
descriptors from the pool (163). The dataset of (163) includes 
202  non-nucleotide NNRTIs that belong to two chemical 
classes of compounds, known as diaryltriazine- (DATA) and 
diarylpyrimidine (DAPY)-like inhibitors. The groups are 
represented by 78 and 124 NNRTIs, respectively. The selected 
NNRTIs have high inhibitory activities against the wild-type 
HIV and four mutant strains (181C, 103N, 100I, and 188L; 163).

Sorting variables by using informative vectors also can be 
used as a feature selection method (164). The main idea of 
this strategy is to obtain an informative vector, e.g., regression 
vector, correlation vector, residual vector, variable influence 
on projection (VIP), net analyte signal, covariance procedures 
vector, and S/N, that contains information about the location of 
the best variables for prediction. The approach was applied on 
14 molecular descriptors for 48 HIV-1 protease inhibitors (164).

A Bayesian regularized neural network (BRNN) with a sparse 
laplacian prior (165) as an efficient method for supervised 
feature selection is used to model the blood-brain barrier 
partition for 106 organic compounds. It concerns in vivo (in 
rats) measurements of the partition coefficient of the compound 
between the brain and the blood (165). BRNN was achieved in 
an analogous way as the expectation maximization algorithm 
(165, 166) by progressively setting low relevance weights 
representing zero. When all weights connecting a given input 
node are zero, the node and its descriptor are effectively pruned 
out of the model.

The reverse elimination method-tabu search (REM-TS) 
is used to select reliable descriptors from a pool (167). This 
method adds or eliminates one variable/iteration, as forward 
selection or backward elimination. In each iteration, the 
complete neighborhood of the current trail solution is searched. 
This neighborhood is generated by systematically changing the 
status of every variable (in-out or out-in), one after another. The 
neighborhood solution that yields the largest improvement in 
objective function is accepted as the trail solution for the next 
iteration. If no improving neighborhood solution exists, the one 
that results in the mildest detrimental move is chosen where 
in tabu search a move is a transition from one trail subset to 
another (167). The tabu list keeps track of previously explored 
solutions and prevents the search from returning to a previously 
visited solution. This approach was performed in (167) on a set 
of organic compounds to model their partition coefficient.

In a modified tabu search (168), if the neighbor solution is 
not in the tabu list, it is selected to be the new current solution. 
However, this solution is often worse than the current best 
solution; thus, usually a local minimum is reached. To improve 
the performance, the information-sharing mechanism (168), 
among the best previous solutions of all iterations and the current 
solution, is introduced in the step of generating neighbors of 
a given solution. The neighbors are generated by moving the 
given solution toward the best solution of all iterations; the 
move function directs the moving of the solution (167, 168). 
The modified tabu search was performed in the modeling of the 
observed toxicity to Chlorella vulgaris in a novel short-term 
assay for 65 aromatic chemicals (168).

Lanctot et al. (45) introduced a wrapper method, the so-called 
signal method, that can collect an ensemble of meaningful 
descriptors from a large pool. In wrapper methods, the first step 
is a filter method that reduces the initial number of descriptors 

and helps to decrease the computational cost of the wrapper 
method. However, the signal method consists of two steps. 
The first evaluates for each descriptor the correlation with the 
activity based on either mutual information or an χ2 metric. The 
second creates an ensemble model using only the high ranked 
descriptors for modeling. Two different ensemble methods were 
applied in (45), i.e., a high ranking and high ranking set cover.

The high ranking method will select features to create the 
ensemble, only based on rank. The high ranking set cover 
method selects features to create the ensemble based on rank, 
but a feature is only added if it is contained in an active molecule 
that has not yet been covered by the growing ensemble.

This signal method was applied on a thrombin data set 
consisting of 6509 compounds, and including 41 active and 
6468 inactive compounds. Two different binary descriptor 
spaces can be considered: one is a pharmacophore fingerprint 
that represents all possible combinations of up to four 
pharmacophoric descriptors and the distances between them, 
and the second is a shape-feature fingerprint. The authors found 
that the combination of the high ranking set cover ensemble 
method with the Chi-square ranking metric gave the best result. 

K-means clustering based on Fisher discriminant ratio 
(used as a class separability criterion and implemented in a 
k-means clustering algorithm; 169) was used simultaneously as 
feature selection and modeling technique on a set of 221 HIV-
1 protease inhibitors  (170). The total number of molecular 
descriptors computed for each inhibitor was 43. SE (43) was 
also applied on this dataset. It was concluded that the k-means 
clustering scheme performs well in combination with the Fisher 
discriminant ratio (169).

Ant colony optimization (ACO) is a class of optimization 
algorithms based on the actions of ants. It is an area of study 
within what is called swarm intelligence. The basic idea in the 
ACO algorithm is the simulation of the behavior of real ant 
colonies. Ants are capable of finding the shortest route between 
a food source and their nest without using visual information. 
Hence, no global world model is obtained. Ants deposit 
pheromones along their trail to a food source. At a decision 
point, they make a probabilistic choice based on the amount of 
pheromone along each search branch. Over time, the shortest 
route will have the highest rate of ant traversal. In the variable 
selection problem, m ants select one variable, then every ant 
moves to another variable according to the probability defined 
(based on a heuristic approach and the amount of pheromone). 
After each iteration, the amount of pheromone is updated 
based on the best subsets found. This process is terminated 
after a fixed number of iterations, or when the system has 
converged. Different papers have been published using ACO 
as a feature selection approach (171–175), e.g., to model the 
HIV-1 activities for a series of 43 3-(3,5-dimethylbenzyl)uracil 
derivatives, the inhibiting action on the epidermal growth factor 
receptor tyrosine kinase of 61 analogs of 4-(3-bromoanilino)-
6,7-dimethoxyquinazoline, and the inhibitory action of a series 
of 111 thiocarbamates, i.e., non-nucleoside HIV-1 reverse 
transcriptase inhibitors. ASO was also applied on the Selwood 
data set (177) and to the modeling of the rate constants of 
o-methylation of 36 phenal derivatives

Another swarm intelligence algorithm is the so-called 
particle swarms optimization (PSO), which is based on 
simulating the social behavior of bird flocking. PSO is used 
as feature selection in QSAR studies. Particles are generated 
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numbers (in the range between zero and one) having random 
positions in the variables space. Particle swarms explore the 
search space through a population of individuals (particles) that 
adapt by returning stochastically toward previously successful 
regions. They are influenced by the success of their neighbors, 
i.e., by “flying” through a multidimensional search space. Each 
particle keeps track of its coordinates in the problem space, 
which are associated with the best solution (fitness) it has 
achieved so far. Their movement is stochastic and is influenced 
by the individuals’ own memories as well as the memories 
of their peers. PSO starts with a set of particles with random 
locations and velocity vectors. These particles “move” through 
the search space and record the best solutions encountered. A 
number of particles is defined having random positions and 
velocities, which change in time within a multidimensional 
space according to definite rules. The particles are stochastically 
drawn toward positions that are a trade-off between their own 
previous best performance and the best previous performance of 
their neighbors. The coordinates of the position of each particle 
indicate the relative weight of a given variable in building the 
regression model. In this approach, the elements of the location 
vectors can only take the values 1 and 0, indicating whether the 
feature is selected or not in the ith particle (subset) (176–179). 
PSO has been applied on several data sets, e.g., to model the 
carcinogenic potencies of a set of 41 aromatic amines (176), 
the angiotensin II antagonism of a set of 38 4H-1,2,4-trialzoles 
(176), the antifilarial activity of antimycin analogs (177), the 
binding affinities of ligands to benzodiazepine/GABA(A) 
receptors (177), the inhibition of dihydrofolate reductase by 
pyrimidines (175), the affinity to a benzodiazepine receptor of 
a series of 58 2-aryl(heteroaryl)-2,5-dihydropyrazolo(4,3-c)
quinolin-3-(3H)-ones (178), the inhibition of dihydrofolate 
reductase by 111 2,4-diamino-5-(3,4-dichlorophenyl)-6-
substituted pyrimidines (179), the inhibition of epidermal 
growth factor receptor tyrosine kinase 4-(X-phenylamino-)-
Y-quinazoline by 61 compounds (179), and the nonpeptide 
angiotensin II antagonism of a set of 85 1,2,4-triazoles.

Feature selection can also be made based on regression 
coefficients. For example, the features that have the least 
standardized values of the regression coefficients can be deleted, 
and a new model developed with a reduced set of features. This 
can be done for different regression methods, such as PLS, MLR, 
and SVM (180). VIP scores, which estimate the importance of 
each variable in the projection used in a PLS model, also can be 
used as a feature selection approach. The value indicating the 
contribution of each predictor variable to a model is evaluated 
to decide on the (un)importance of the variables. A feature with 
an average value of the squared VIP scores close to or above 1 
can be considered important in a model (181, 182).

Conclusions

The main purpose of feature selection is to reduce the 
number of features in a statistical model, while the accuracy 
of the model has to be kept high. In fact, feature selection is 
quite challenging. For example, redundancy exhibited by the 
multitude of features tends to exert an undue influence in the 
analysis, giving rise to misleading associations between the 
features, e.g., the existence of an inherent nonlinearity between 
most features and the biological activity. On the other hand, 
many feature-selection processes are computationally intensive, 

when the number of variables is high, because of, for example, 
many possible iterations to test.

In fact, for any feature to be selected, certain heuristic 
criteria need to be satisfied. For instance, a feature should 
be informative about the output but should not be strongly 
correlated to other selected features. A feature should carry as 
much information as possible about the molecular structure, but 
have little multicollinearity to other features.

However, there is very little consensus on which method 
should be preferred. One possible reason is the different 
behavior of data sets, which are sometimes linear and sometimes 
nonlinear. Regression methods also are linear or nonlinear. 
However, often a given feature selection method is applied both 
with linear and nonlinear regression techniques. Therefore, it 
might be interesting to evaluate whether given feature selection 
techniques are considered better with either linear or nonlinear 
methods.

 It is difficult to evaluate and compare the ability of the many 
feature selections. Thus, some research using different feature 
selection techniques on several data sets is recommended to find 
a basic idea about their mutual abilities. Selection based on a 
nonlinear method or meant for nonlinear modeling should also 
be taken into account.
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Abbreviations

0D Zero-dimensional 

1D One-dimensional

2D Two-dimensional

3D Three-dimensional

3DMorSE 3D-Molecule representation of structure based on electron 
diffraction

ABC ATP-binding-cassette

ACO Ant colony optimization

AMA Antimycin analogues

ANNs Artificial neural networks

BBB Blood-brain barrier

BMLR Best multilinear regression

BRNN Bayesian regularized neural network

BzR Benzodiazepine receptor

CA II Carbonic anhydrase II

CCR5 Gp120-co-receptor

CNS Central nervous system

CoMFA Comparative Molecular Field Analysis

CovProc Covariance procedures vector

CPANN Counter-propagation artificial neural network

CP-MLR Combinatorial protocol multiple linear regression

CWSPA Correlation weighted successive projections algorithm

DHP Dihydropyridine

EGFR Epidermal growth factor receptor

ERM Enhanced Replacement Method

FA Factor Analysis

FR Forward regression

FSR Forward Stepwise Regression

GA Genetic Algorithms

GA-GP Genetic algorithm-genetic programming

GA-NN Genetic algorithm neural network

GA-VSS Genetic algorithm-variable subset selection 

Getaway GEometry, Topology, and Atom-Weights AssemblY

GFA Genetic function approximation

GP Genetic programming

GSA Generalized simulated annealing

GSS Galavotti-Sebastiani-Simi

hBNN Heuristic back-propagation neural network

HIV-1 Human immunodeficiency virus type-1

HOMO Highest occupied molecular orbital

HTS High throughput screening

IRRM Incremental Regularized Risk Minimization

K-NN K-nearest neighbor

KS Kolmogorov-Smirnov

LOF Lack-of-fit

MARS Multivariate adaptive regression splines

MI-DSE Mutual Information Differential Shannon Entropy

Abbreviations (continued)

MLR Multiple linear regression

MO Multiobjective

MOGP Multiobjective Genetic programming

MUSEUM Mutation and Selection Uncover Models

NAS Net analyte signal

NNRTI Non-nucleoside reverse transcriptase inhibitors

N-PLS Nonlinear partial least squares

PCA Principal component analysis

PCR Principal component regression

PCs Principal components

P-gp P-glycoprotein substrates

PLS Partial least squares

PSO Particle Swarms Optimization

QSAR Quantitative Structure-Activity Relationship

RDF Radial Distribution Function

REMTS Reverse Elimination Method-Tabu Search

RFE Recursive feature elimination

RM Replacement method

RMSEP Root mean squared error of prediction

RT Reverse Transcriptase

SE Shannon Entropy

SEC Shannon entropy cliques

SPA Successive projection algorithm

SN Signal-to-noise ratios vector

SVMs Support vector machines

TIBO Tetrahydroimidazo benzodiazepine

UCS Unbalanced correlation score

UFS Unsupervised forward selection

UVE Uninformative variable elimination

VIP Variable influence on projection 

VSMP Variable selection and modeling based on the prediction

WHIM Weighted Holistic Invariant Molecular


