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An unsupervised learning method is proposed for variable selection and its performance assessed using
three typical QSAR data sets. The aims of this procedure are to generate a subset of descriptors from any
given data set in which the resultant variables are relevant, redundancy is eliminated, and multicollinearity

is reduced. Continuum regression, an algorithm encompassing ordinary least squares regression, regression
on principal components, and partial least squares regression, was used to construct models from the selected
variables. The variable selection routine is shown to produce simple, robust, and easily interpreted models
for the chosen data sets.

1. INTRODUCTION linearly independent columns which, nevertheless, still

Computational chemistry has considerable potential for contribute some un_ique information. Multicollinearity impli_es
that the data matrix has at least one small, honzero eigen-

drug design, but to assist in its rational use it would be helpful ) N .
g 9 P value. Redundancy occurs in the limiting case when this

to support the molecular modeling studies with mathematical " ; :
bp g genvalue tends to zero, so that redundancy is the ultimate

analyses of the relationships between the responses detected ticoll ity Wh dund s al 0 b
by bioassays and appropriate sets of molecular propertiesmu Icollineartty. ereas redundancy 1s aiways 1o be

derived using computational methods. In the past this hasavoided, multicollinearity that reflects the properties of the
proved difficult due to the amounts of redundancy and population rather than the sample can be an important feature

multicollinearity contained in typical data sets. This paper of a successful model, for example reflecting characteristic

offers a procedure to overcome this and, as part of afeatures of a series of related chemical structures.
structured approach to model building, produce statistical ~1-2- Preprocessing DataSuch considerations lead to the
models with good predictive power based on a small number following preprocessing strategy for the derivation of models
of relevant properties. for use in structureactivity relathnsh|ps (QSARS)_:_ 1.

1.1. Relevance, Redundancy, and MulticollinearityThe |dent|fy.a subset of columns (variables) with S|gn|f.|cant
ability of molecular modeling packages to generate large cqrrelauon to _the response; 2. remove columns (var!ables)
numbers of molecular descriptors and the development of With small variance; 3. remove columns (variables) with no
3-D QSAR procedures such as COMFA and EVA has led to Unique information; 4. identify a subset of variables on which
the frequent occurrence of data matrices with many more {0 construct a model; and 5. address the problem of chance
columns (descriptors) than rows (objects). This has resultegCorrelation. Attention to these points W|Illresult in parsimoni-
in a much wider choice of variables for possible inclusion 0US QSAR models that are more likely to generalize
in statistical models but has greatly increased the possibility SUccessfully to new objects.
of chance correlatidrwith data describing biological activity. The increasing application of multivariate technicifee
Three main issues arise when developing predictive modelsthe development of models for drug design has led to the
for use in the design of new compounds or when investigat- Widespread use of “over-square” data sets and thus, in the
ing the relationship between biological data sets and chemicalinterests of minimizing chance correlation and improving the
descriptors: relevance, redundancy, and multicollinearity. quality of the sets, various approaches have been proposed
Relevance means simply that the variables included in thefor data preprocessing. The identification and removal of
model should contain information pertinent to the response variables with low or zero variance is a commonly used
being modeled. Relevant descriptors have a statistically method. Indeed, this is almost a prerequisite in the analysis
significant correlation with the response variable and do not Phase of 3-D QSAR studies using CoMFA or EVA which
have low variance; as variance tends to zero, so does thdnvariably result in over-square data sets with many variables
information content of a variable. Redundancy is an exact of low or, particularly in the case of EVA, zero variance.
linear dependence between a subset of the columns in theAlthough useful, this approach normally removes only a
data matrix, so that at least one column in this subset Small number of variables from typical data sets generated
contributes no unique information. Redundancy implies that by molecular modeling packages and does nothing to address
the data matrix has maximal rank. Multicollinearity is the Problems such as redundancy and multicollinearity.
existence of high multiple correlation between a subset of A technique that does set out to remove redundancy, on
the basis of pairwise correlation, is known as CORCHOP.

* Corresponding author phone: (023)9284 5080; e-mail: david.whitley@ This procedure is unsupervised, in the sense that it depends
port.ac.uk. only on the independent variables, and the response variable
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variables whose correlation with one other variable is greater
than some pre-set limit and suggests an appropriate memb
of the pair to remove. After the identification of such sets
of variables the algorithm then identifies variables on the
basis of the count of their pairwise correlation with others.
The intention here is to remove the smallest nhumber of
variables while breaking the largest number of pairwise
collinearities. Others have proposed similar procedtrrés,
and neural network prunifi§ allows a nonlinear estimate
of variable importance as recently review&tHowever, for
generalization, QSAR equations should be of low dimension
with as few variables as possible.

1.3. Aims and Objectives.This paper presents an un-
supervised forward selection (UFS) routine that reduces over-
square matrices to a size for which specification of robust
models is possible. This algorithm was designed specifically

Select the first two columns with the smallest pair-wise
correlation coefticient

A
Reject columns whose pair-wise correlation coefficient
with the selected columns exceeds R,

yyyyyy

v

Select the next column to have the smallest squared

mualtiple correlation coefficient with the previously
selected cotumns

]

Repeat unnf ol
columns are cither

rejected or selected

7

A 4

Reject columns with squared multiple correlation
2
coefficients greater than R°,,,,

to meet items 2 and 3 above but also deals partially with

items 4 and 5. Rather than starting with all the variables
and removing correlated columns in the manner of COR-
CHOP, UFS starts with the two variables which are least

Figure 1. Unsupervised forward selection.

the Gram-Schmidt procedure: if the first two columns are

well correlated and selects additional variables on the basisX, and X, takec, = X, andc, = Y/|Y|, whereY = X, —

of their multiple correlation with those already chosen, thus
building a subset of variables that is as close to orthogonality

(X Xa)Xa-)
The remaining steps of the algorithm are repeated until

as possible. Three examples are presented to demonstrateach column is either selected or rejected. Supposé that

the utility of UFS as part of a QSAR model building
procedure designed to address all the issues listed above.
2. THE UFS ALGORITHM

2 columns have been selected, and{let, ..., ¢} be an
orthonormal basis for the subspaceR5fspanned by these.
6. For each remaining colum); calculate its squared

This section describes the unsupervised forward selectionmultiple correlation coefficienR,—2 with the selected col-

algorithm, applied to an x p matrix X = (x;), wherex; is
the value of thgth variable for thdth compound. Lek; =
(X, ---,Xnj)T denote thgth column ofX. The selection process
halts when thé?? value of each remaining variable with those
already selected exceeds some preassignedﬁﬁgig< 1.

1. Mean-center the columns &f

Xj 7 X — X

where

2. Reject columns with length

1%l =

for some smalk > 0. These columns have small standard
deviation and contribute no significant information.
3. Normalize the remaining columns to unit length:

X — X/ 141

4. Calculate the correlation matrix;{ = X™X. Select as
the first two columns those with the smallest squared
correlation coefficientﬁ and reject columns whose squared
correlation coefficient with either excee®g,,,.

5. Choose an orthonormal ba$is, c;} for the subspace
of RP spanned by the first two columns. (For example, follow

umns. This is the length of the orthogonal projectionXpf
onto the subspace spannedfy, ..., c}:

|
Fﬁz = |k;(xj'ck)ck|

7. Reject columnsX with R® > R, and select from
those remaining the column with the small&t

8. If any columns remain, choose an orthonormal basis
for the subspace spanned by the selected columns and return
to step 6. (For example, usg ..., ¢ andc+; = Y/|Y| where

|
Y=X,— k;(xw-c«)q(

and X, is the column selected at step 7.)

Figure 1 provides a flowchart for the major steps in this
process. Source code implementing this algorithm is available
from http://www.cmd.port.ac.uk. The algorithm as presented
gives the user no control over the variables to be selected.
Clearly it could be implemented as an interactive process,
with the R? values for the unselected variables presented to
the user at each stage, and allowing the user to over-ride the
automatic choice of the variable with the small&&tforcing
the entry of favored variables (Idg, etc.) into the data set.

3. APPLICATIONS OF THE UFS ALGORITHM TO
DRUG DESIGN

To illustrate the use of the algorithm, we describe three
applications to QSAR model building: a CoMFA data set
used to model the relationship between a series of 21 steroid
compounds and their testosterone binding globulin affitity;
a data set containing 70 descriptors used to model the
biological activity of 19 pyrethroid insecticidé3and a data
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set containing 53 descriptors used to model the biological Table 1. Optimal Models for the Steroid Data Set

WHITLEY ET AL.

activity of 31 antifilarial antimycin analogués.The data

| ] R ax o variables components Q2 R?
sets used are available on the Centre for Molecular Design™ 57 10 5 1 07528 0.7617
web site (http://www.cmd.port.ac.uk). The pyrethroid and 0.2 1.0 2 1 0.7528 0.7617
; + 0.3 0.3 3 1 0.8277 0.8535
Selwood_data were mean-centered and normalized to unit 57, 03 3 1 08277 08535
length prior to analysis. 0.5 0.3 3 1 0.8277 0.8535
3.1. Model Specification Protocol.The modeling proce- 8j$ 8;3 g % 8;33%2 8;2333’
dure adopted in each case was designed to address the issues 8-8 (1).8 g ‘21 8.;%8 g.gg%
of relevance, redundancy, and multicollinearity identified in ~ 5gg 0.7 11 3 0.8090 0.8860
the Introduction (section 1.1). First, variables whose cor-
: . g N 1-Component ModelRé,,, = o. = 0.3)
relation with the response variable was not significant at the . ;
0 . - Analysis of Variance )
5% level were removed. Second, variables with small var- DE SS MS Fratio  ProbE
iance were removed. The UFS procgdure was then appliedogel 1 17.0700 _17.0700  110.6943 0.0000
repeatedly using values cﬂﬁm stepping from 0.1 to 0.9 error 19 2.9300 0.1542
. ) ; total 20 20.0000
with an increment of 0.1, together Wnﬁﬁm =0.99. In s 0.3927
each case models were built from the subset of variables Ez'uste g o8
identified by UFS using the Portsmouth formulation of ! 'B strap 95.0% Confid Limit
Continuum Regression (CRj,a procedure in which the (Based on 5000 Bootstraps)
model selection criterion depends on a continuous parameter lower  median upper mean  stderr
a in the range < a < 1.5. CR is equivalent to Ordinary E225 —0.6310 —0.4346 —0.2199 —0.4361 0.0985
_ ; E249 0.2955  0.5176 0.7076 0.5138 0.1075
Least Squares (OLS) whem = 0, Partial Least Squares G465 _0BB57 —0.4252  —0.2511  —04332 01010

(PLS) whena = 0.5, and Principal Components Regression

(PCR) whena = 1. The CR calculations were performed
with the in-house PARAGON software using values af
stepping from 0 to 1.5 with an increment of 0.1. To address
the issue of chance correlation, an optimal model was chosen
to have values oR’,,, anda. maximizing@?, the leave-one-

out cross-validate&?. At this stage the correlations between
the residuals and the variables removed on the grounds of
having an insignificant correlation with the response variable
may be examined. Any variable found to have a significant
correlation with the residuals may be added to the set of
variables used to specify the model and CR repeated as
above. This protects against committing a Type | error during
the model specification procedure. As a final check against
chance correlation, the optimal models were analyzed using
(i) n-fold cross-validation for a range of valuesmfwhere

nis the number of cross-validation groups; and (ii) a random-
ization test that involved 1000 permutations of the y scores.

3.2. Steroid Data SetThe first application of UFS is to

(14/)/7[/

the data set of 21 steroid compounds used in the SYBYL
CoMFA tutorial'*6to model their binding affinity to human
testosterone binding globulin (TBG). A CoMFA column was

Figure 2. Maximizing Q2 for the steroid data set.

calculated in SYBYL using the parameters recommended 11 at anax = 0.99. This reflects the increasing degree of
in the tutorial example, and the steric and electrostatic field multicollinearity observed as the number of selected variables
values at each lattice point were extracted. After removing increases. Table 1 shows that the number of selected vari-
those lattice points whose field values exceeded the recom-ables is constant for 0.% anax < 0.2 and 0.3< Rﬁm <
mended 30 kcal/mol cutoff, this resulted in a dataset with 0.5. Over each of these ranges the same set of variables is
1248 columns. From this set, 858 columns not significantly provided to CR, and so identical models are generated. For
correlated with the response variable TBG at the 5% level this data set the number of components in the models found
were removed, leaving a set of 390 columns. A further 367 py CR tends to rise Witlﬁgnax' The overall optimal model is
columns with variance below 1.0 kcal/mol were removed g 3-variable, 1-component model wif? = 0.83 andR2 =

as recommende'd,leaving 23 columns. UFS and CR were  ( g5 that is found over a range of valuesRif,. The value

then applied with the range 6%, anda values described  of o = 0.3 is determined from the plot & versusa and
above. For each value ﬁax the value ofa giving the anax shown in Figure 2.

largestQ? is shown in Table 1, along with the number of

variables selected by UFS, the number of components inthe  This produces the optimized QSAR modgf(, = 0.3,a

CR model, and the fiR2. =0.3):

The number of variables selected by UFS always increases

in a stepwise fashion with the value &, used as a
stopping criterion, rising in this instance to a maximum of

TBG= 0.83C1
(+0.08)
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+ 5465

+E249

Figure 57 Putative pharmacophore for 1BG allinity for steroids,
illustrated for aldosterone and based on the optimal 1-component
model, eq 3.

t = 10.5211prob>t = 0.0000,R* = 0.85,Q° = 0.83

where

(1)

Cl= —0.53E225+ 0.70E249— 0.485465

so that

TBG= —0.44E225+ 0.58E249— 0.39S5465 (2)

(£0.10)  (£0.11)

(+0.10)

HereE225= electrostatic field ak = —1.77,y = 0.19,z=
—5.09;E249= electrostatic field ax = 6.23,y = 4.19,z=
—5.09; andS465= steric field atx = —1.77,y = —5.81,z
= 0.91 are standardized variables< 0, 0 = 1), and the

J. Chem. Inf. Comput. Sci., Vol. 40, No. 5, 20063

——— /

3400

17//)/70
Figure b. Maximizing Q< 1or the pyretnroid data set.

standard errors in eq 2 are estimated by bootstrapfirsgng
a sample size of 5000 (Table 1). It is worth noting that pairs
of field points share common coordinates= —1.77 for
E225andS465 and z= —5.09 forE225andE249. In terms
of the original unstandardized variables eq 2 becomes

TBG=8.96— 0.35E225+ 0.35E249— 0.15S465 (3)
(£0.08)  (£0.07)  (+0.04)

As a final check that chance correlation has been avoided
and that the model is likely to generalize to new objects,
n-fold cross-validation was carried out far= 2, 6, 10, 15
and 20, followed by permutation of the y scores. The results
of 40 cross-validations for each value ofare shown in
Figure 3. Apart from a single low value 6 when only 2
cross-validation groups were used, all the cross-validations
produced values af? > 0.6, and whem > 2, Q? > 0.75.

A randomization test for this model, using 1000 permutations
of the response variable, produced tail probabilities less than
0.0001 for fit and 0.0012 for prediction.

By comparison, the SYBYL tutorial produsea 5 com-
ponent model witlQ? = 0.6 andR? > 0.98, an example of
overfitting. The results ofi-fold cross-validation of this mod-
el, shown in Figure 4, are generally weaker than those for
the UFS/CR model in Figure 3, with a wider spread of lower
values ofQ? for each group size.

Figure 5 shows the variables in eq 2 plotted with a repre-
sentative structure (aldosterone). All three variables lie on
the same side of the structure, and their common coordin-
ates lead to them being approximately equidistant from the
central plane of the structure. This illustrates how the model-
ing procedure followed here may lead to potential pharma-
cophores.

3.3. Pyrethroid Data Set.The second example is a data
set consisting of 70 physicochemical descriptors used to
model the killing activity (KA) of 19 pyrethroid insecti-
cides!? Only 6 of these descriptors are significantly cor-
related with KA at the 5% level. In this case no variables
were removed on the grounds of small variance. The results
of the UFS/CR procedure are shown in Table 2. The optimal
model, as chosen by maxim@®P, is a 4-variable, 2-compo-
nent model withR? = 0.775 andQ? = 0.773 obtained when
R:.x = 0.7 anda = 1.2 (Figure 6):
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Table 2. Optimal Models for the Pyrethroid Data Set KA= —2.31+ 9.64A5 + 0.044A8 + 2.4AE-4 MIZ —
R2ax a variables components  Q? R? (+£2.80) (£98) (£8.29E-5)
0.1 1.0 2 1 07196 0.7241 0.037DVX (6)
0.2 1.0 2 1 0.7196  0.7241 (£0.11)
0.3 1.0 2 1 0.7196  0.7241 o . . .
8-‘51 8-% g i 8-;223 8'382} A randomization test for this model using 1000 permutations
0.6 0.2 3 1 0.7563 0.8051 of the response variable produced tail probabilities less than
0.7 0.1 4 1 0.7172  0.7980 0.0003 for fit and 0.0071 for prediction.
8;; é:i é i S:Zggg 8;;;38 A very similar 3-variable, 1-component model occurs over
0.99 0.1 6 1 06823 0.7730  the range 0.4 R.. < 0.6 witho = 0.2:
1-Component ModelR, ., = 0.4,0. = 0.2)
Analysis of Variance KA=0.81C1
DF SS MS F-ratio  ProbF (£0.10)
model 1 14.4913  14.4913  70.2119 0.0000 X
error 17 3.5087 0.2069 = = = =
o s 180000 t = 8.3793,prob>t = 0.0000,R% = 0.81,Q°=0.76 (7)
S 0.4543
R? 0.8051 where
adjusted?®?  0.8051
Bootstrap 95.0% Confidence Limits C1=0.77A5+ 0.49MIZ - 0.41DVX
(Based on 5000 Bootstraps) . . .
lower median upper mean stderr Thus, in terms of standardized variables
A5 0.3715  0.6974 0.9215 0.6860  0.1440
MiZ 00406 02914 04888  0.2846 0.1124 KA = 0.63A5+ 0.39MIZ — 0.33DVX (8)
DVX —-0.5541 —0.3303 —0.0290 —0.3192 0.1332 (£0.14) (£0.11) (£0.13)
2-Component ModelRé,,, = 0.7,0. = 1.2) )
Analysis of Variance where the standard errors are bootstrap estimates (Table 2).
DF SS MS F-ratio  ProbF In terms of the original unstandardized variables eq 8
model 2 13.9421 6.9710  27.4862 0.0000 becomes
error 16 4.0579 0.2563
ol T KA= — 1.80+ 8.67A5 + 1.94E-4 MIZ — 0.20DVX
R2 0.7746 (£2.00) (£5.5E-5) (£0.08)
adjusted?z 0.7613 (9)
Bootstrap 95.0% Confidence Limits
ower e a0 BOOSIAPS)  ean swerr A randomization test for this model using 1000 permutations
A5 02531 0.7047 10101 06847 o201 Ofthe response variable produced_ ta_il probabilities less than
A8 —0.2358  0.1232 0.5582 0.1521 0.2217  0.0001 for fit and 0.0052 for prediction.
MIZ —-0.0673  0.2937 0.5876 0.2805 0.1684 idati i
DX 04967 —0.1321 0.5295 —0.1332 ~ 0.1619 For both these models;fold crosg—vahdatmn was carnec_i
out forn = 2, 6, 10, 15 and 18, with the results shown in
KA= —1.00C1+ 0.51C2 @) Figures 7 and 8. The-fold cross-validation indicates that
(£0.15)  (£0.17) the 1-component model is to be preferred over the 2-com-
ponent model on grounds of parsimony, even though the
where latter has a marginally better value@f. Equation 9 relates

high insecticidal activity of pyrethroids to a low or negligible
dipole component, a partial positive charge at the meta-
position of the benzyl ring of the alcohol moiety, and a large
moment of inertia in thez-direction. These features are

Cl= —-0.15A5+ 0.81A8+ 0.26MIZ + 0.50DVX

(n=19,t= —6.7349,prob>t = 0.0000) consistent with a mode of action in which the order within
a lipid bilayer or biological membrane is disrupted.
C2=—0.7709A5+ 0.4162A8 — 0.3619MIZ + 3.4. Selwood Data SefThe final example is the data set

0.3186DVX studied b_y_Se_Iwood_ et éﬂ_.in modeling the biological actiyity

of 31 antifilarial antimycin analogues. Of the 53 descriptors
in the data set only 12 are significantly correlated with the
response at the 5% level. None of these variables was consi-
dered to have small variance, so all 12 were used in the UFS/

(n=19,t=3.1006,prob>t = 0.0069)

so that CR modeling phase. The results, shown in Table 3 and Figure
9, are exceedingly poor. The best model, wkh= 0.42
KA = 0.6951A5 + 0.0001A8 + 0.4941MIZ — andQ? = 0.41, was obtained whe®f ., = 0.1 anda. = 1.0:
(£0.20) (£0.22) (£0.16)
0.0620DVX (5) log £ = 0.64C1
(+0.19) C (+0.14)

Here A5, A8 = atomic chargesMIZ = z-component of  t=4.5683,prob>t = 0.0001,R* = 0.42,Q° = 0.41
moment of inertia, an®VX = x-component of dipole vector

are standardized variables, and the standard errors in eq Qvhere

are bootstrap estimates (Table 2). In terms of the original

unstandardized variables eq 5 produces C1=0.71SUM_F+ 0.721MOFI_z

(10)
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Figure 7. n-fold cross-validation for the optimal 2-component 05\\\; 0> S
model for the pyrethroid data set. Four negatdferalues obtained L0 /0
whenn = 2 are not shown. (T4 00
(/40/,(/
| 0 igure 9. Maximizing Q¢ for the Selwood data set.
Table 4. Optimal Models for the Selwood Data Set with
038 - l l i i \ Compound M6 Removed
X
1 X X X R o a variables components = Q? R?
0.6 A x x 0.1 1.0 2 1 0.4113 0.4270
~ : 0.2 1.0 2 1 0.4113 0.4270
Qi | 0.3 1.0 2 1 0.4113  0.4270
| 0.4 1.1 3 2 0.3286 0.4380
04 0.5 1.1 3 2 0.3286  0.4380
0.6 1.1 3 2 0.3286 0.4380
0.7 1.0 4 1 0.3793 0.4363
024 0.8 1.0 6 1 0.4458 0.4787
0.9 0.8 8 1 0.4866 0.5310
: 0.99 0.0 12 1 0.4964 0.8517
0.0 ‘ ‘ 1-Component ModelRé,,, = 0.99,0. = 0.0)
0 > 1o 15 20 Analysis of Variance _
groups DF SS MS F-ratio  ProbF
Figure 8. n-fold cross-validation for the optimal 1-component ~ Model 2 RS S 8.1386  0.0001
model for the pyrethroid data set. total 29 20.3539
S 0.5029
Table 3. Optimal Models for the Selwood Data Set R2 0.8517
. adjustedR?  0.7611
R2 o o variables components = Q? R? ) L
Bootstrap 95.0% Confidence Limits
01 1.0 2 1 0.4086  0.4240 (Based on 5000 Bootstraps)
0.2 1.0 2 1 0.4086  0.4240 lower  median upper mean stderr
0.3 1.2 3 1 0.1423 0.4435
0.4 1.2 3 1 0.1432 0.4435 ATCHS8 —3.9277 0.0605 4.0518 0.0948 2.1537
0.5 1.0 4 1 0.0192 0.4150 ATCH9 —1.4681 —0.0129 1.2296 —0.0359 0.7986
0.6 1.0 4 1 0.0192 0.4150 ESDL5 —1.0053 —0.1880 0.9849 —0.1585 0.5902
0.7 1.0 5 1 0.1908 0.4478 ATCH7 —1.9265 0.2049 2.4041 0.2453 1.3341
0.8 1.0 7 1 0.3214 0.4776 SUM_F 0.0914 0.9037 1.8585 0.9185 0.4176
0.9 10 8 1 0.3413 04743 NSDL9 —0.9815 —0.0535  0.6861 —0.0768 0.4804
0.99 0.8 12 1 0.3718 0.4475 MOFI_Z —0.1966 1.3536 2.6885 1.3390 0.7559
S8 1DX —2.4146 —1.1739 0.0353 —1.1765 0.6543
1-Component ModelF{,znaXZ 0.1, =1.0) SUM_R —0.6086 0.4421 1.3414 0.4317 0.5071
Analysis of Variance ATCH4 —2.7713 0.0366 2.2178 0.0449 2.0804
DF SS MS F-ratio  ProbF S8_1DY —2.0059 -0.8678 0.0353 —0.8980 0.5330
model 1 12 3842 12 3842 508692 0.0001 NSDL10 —0.1696 0.6742 1.5089 0.6700 0.4501
error 28 16.6158 0.5934
total 29 29.0000 - . . .
s 0.7703 In terms of the original, unstandardized variables eq 11 is
R 0.4270 equivalent to

adjustedR2  0.4270

Bootstrapd95.0% Confidence Limits 1
Based on 5000 Bootstraps
lower ( median upper P ) mean stderr |0g 6 = _1.43+ 1-868UM F+ 3-9455 MOFI Z

SUM_F 0.3287 0.4671 0.5945 0.4643  0.0667 (:|:0.29) (i8'04|:_6) (12)

MOFI_z 0.3205 0.4670 0.5945 0.4593  0.0952

The bootstrap estimates for the standard errors suggest that
Thus both terms $UM_F and MOFI_2) are significant. A
randomization test for this model using 1000 permutations
log 1_ 0.45SUM_F+ 0.45MOFI_Z (11) of the response variable produced tail probabilities less than
c (£0.07) (£0.09) 0.0001 for fit and 0.0014 for prediction.
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Iogéz —0.012+ 5.4ATCH8+ 3.2ATCH9—

(+£0.013) (£46)
0.084ESDL5+ 2.3ATCH7+ 4.0SUM_F—
(+0.46) (£60) (£1.7)
0.18NSDL9+ 1.3E-4 MOFI_Z — 0.49S8_1DX+
(£3.8) (£6.6E-5) (£0.27)
2.5SUM_R+ 0.10ATCH4— 0.23S8_1DY+
(£2.2) (£0.18) (+0.13)
3.3NSDL10 (15)
(£2.8)

A randomization test for this model using 1000 permutations
of the response variable produced tail probabilities less than
0.0008 for fit and 0.0328 for prediction.

The n-fold cross-validation results fan = 2, 6, 10, 15,
20, and 25 are shown in Figure 11 for the entire data set
and in Figure 12 for the case where M6 was removed. In
the latter case all but 2 of the cross-validation resultsnfor

Figure 10. Maximizing Q? for the Selwood data set with compound

= 2 gave values 0f? < 0 and are omitted from Figure 12.
M6 removed.

Although eq 13 produces the highest optima&l Qecause

To understand why this result is so disappointing, scatter Of the degree of multicollinearity;,,, = 0.99), it contains
plots of the 12 variables against the response were examinedonly 2 significant termsATCH8 SUM_F) as judged by the
revealing that the data are very badly distributed: some 2-test with standard errors calculated by bootstrapping.
variables have outlying valueATCH4 NSDL10Q; others MoreO\_/er, the stgndgrq errors are highly variable and as a
are clearly clustered into two group&TCH8 SUM_R. In resu_lt m_feren_ce is _dl_fflcult. It is nc_Jt clea_r whether the
fact none of these variables has a relationship with the Multicollinearity exhibited by the variables in eq 13 repre-
response that is visible to the naked eye. In an attempt toS€nts a feature of the underlying population, in which case
obtain improved models, compouMb was removed from  the model may still have some predictive power.
the data set. (Thi§ compounq has a wildly outlying value of 4. DISCUSSION
NSDL10 0.9, while the remaining compounds have values  The preprocessing procedure advocated here, identifying
between—0.2 and 0.1.) The UFS/CR modeling was then yariaples with a significant projection onto the response,
repeated with the results shown in Table 4 and Figure 10. gliminating irrelevant variables, and addressing redundancy
These are an improvement over the earller.resu_lts, but aregng multicollinearity by UFS, has the aim of producing a
still poor, producing the optimized model with wifRf = subset of variables that meets the requirements of OLS. When
0.85 and@? = 0.5 whenR;., = 0.99 ando = 0.0: these requirements are not met, a component-based construc-
tion is required for model building. Continuum regression
provides a close to optimal construction covering OLS, PCR
and PLSY Leave-one-out cross-validation is employed to
select a robust model, and the fimafold cross-validation
indicates the chances of the model generalizing to new
objects. The issue of chance correlation is addressed by
reducing the number of variables used during model speci-
fication, and by the selection of a robust model: good
predictive properties are an indication that chance correlation
has been avoided. Moreover, the selected variables are
relevant, with unique information and minimal collinearity.

In the examples studied here, this procedure leads to models
so that, with standard errors estimated by bootstrapping, ~with a small number of components (often only one) on a

focused set of variables. Such models are far easier to
interpret than models with several latent variables constructed

log 1_z47c1
C (+0.25)

t = 9.8824 prob>t = 0.0000,R% = 0.85,Q° = 0.5 (13)
where

C1=0.037ATCH8+ 0.023ATCH9— 0.043ESDL5+
0.021ATCH7+ 0.39SUM_F— 0.0091INSDL9+
0.59MOFI_Z — 0.48S8_1DX+ 0.24SUM_R+

0.0047ATCH4— 0.39S8_1DY+ 0.22NSDL10

log é — 0.091ATCH8+ 0.056ATCHI—

(£2.15) (+0.80) from a large number of descriptors.
0.11ESDL5+ 0.051ATCH7+ 0.98SUM F— 4.1. Achieving a Generalized ModelMany of the results
(£0.59) (£1.33) (£0.41)" obtained here illustrate the tradeoff between over-fitting and
0.023NSDL9+ 1.47MOFI Z— 1.2S8 1DX+ generalization. The results for the steroid data set in Table
(+0.48) (+£0.76) (+0.65) 1, for example, show that _increasing the number of compo-
0.58SUM R+ 0.012ATCH4— 0.96S8 1DY4+ nents produces a better fit, but at the expense of reducing
(+£0.51)" (+2.1) (+0.53) Q2 A 5-component model witl)? = 0.6 andR?> = 0.98 has
0.54NSDL10 (14) been reported for the same data’$eis noted earlier, the
(+0.45) results ofn-fold cross-validation for this model (Figure 4)

are generally weaker than those for the UFS/CR model
In terms of the original, unstandardized variables we have (Figure 3), with an increasing spread of values®fas the
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Figure 11. n-fold cross-validation for the optimal 2-variable model
for the Selwood data set with compound M6 removed.
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Figure 12. n-fold cross-validation for the optimal 12-variable
model for the Selwood data set with compound M6 removed. 38
negativeQ? values forn = 2 are not shown.

group sizen decreases. The single value@f produced by

J. Chem. Inf. Comput. Sci., Vol. 40, No. 5, 20067

ping 22 evolutionary algorithn?$-?*back-propagation neural
networks? evolutionary programmingf, systematic searcH,
genetic algorithm&? cascade-correlation neural netwofks,
genetic neural network®,and neural networks with active
neurons®® Despite this intense study, and with two notable
exceptiong&3tfew if any comments have been made on the
quality of this data set. The poor data distributions may be
due to a number of reasons such as incorrect structure
representation in the original molecular models, imperfections
in the algorithm® used to derive properties from the
semiempirical calculation output or, perhaps, by the nature
of the compounds themselves. Whatever the cause, and
because the data set is available on the QSAR and Modeling
Society Web site (http://www.pharma.ethz.ch/gsar/), perhaps
it is time that this set was no longer regarded as a “standard”
and is perhaps flagged as “difficult” if not flawed.

4.2. Reducing Dimensionality.The use of latent variables
in regression attempts to address the problem of multicol-
linearity. A number of the close to optimal standardized
models reported here have identical or very similar standard
errors for each of the included terms (compare the one
component models (2), (5), and (8)). As one more component
is added, however, the standard errors increase in size and
diverge (cf. the common terms in eqs 5 and 8). Thus, as
more components are added the precision of the final
prediction model decreases to result in less certainty of
accurate prediction. Similarly, as more terms are used to
construct a component, the standard errors obtained for the
original variables by bootstrapping increase, leading to
unstable beta estimates (the familiar problem of “bouncing
betas”). For the Selwood data set, the optimal model obtained
by removing an object (M6) has a maximum Q2 (0.50) but
only 2 significant terms from a total of 12 variables used to
construct this component (eq 13). These important results
emphasize the requirement for using models of as low
dimension as possible that are consistent with maximizing
Q2 Using low dimensional models will lead to smaller

leave-one-out cross-validation can be misleading since theaverage distances for interpolation in the multivariate

results of n-fold cross-validation may have considerable

property space.

variance while more closely representing the expected 4.3. Feature Recognitionlt is often argued that use of

outcome when predicting the activities of a test set from a latent variables constructions on preprocessed data can lead
model constructed using an independent training set. Al- to models that omit terms regarded by medicinal chemists
though use of independent training and test sets is theas important explanatory variables. This problem can be
ultimate check, this is seldom practicable in the initial stages addressed by calculating the component loadings (correla-
of a drug design program. tions of the original variables with a component) for all the
The results for the pyrethroid data set in Table 2 show variables in the over-square data matrix. The loading patterns
that even maximizin@)? may not produce the “best” model. can then be reviewed in order to identify those sets of
Here then-fold cross-validation reveals that the 2-component variables highly associated with the component(s) included
model Q? = 0.77) is inferior to the 1-component modé&¥ in the model. This can help to identify the features associated
= 0.76). In this case, choosing the more parsimonious eq 6with the response.
is supported by the increased precision indicated by the This is illustrated for the pyrethroid set (1 component, 3
standard errors estimated by bootstrapping. variable model). The component loadings significant at the
The models produced for the widely studied Selwood data 1% level are shown in Table 5. Based on this pattern of
set (Table 3) are much less successful, largely due to theloadings, killing potency appears to be associated with the
fact that the data are so poorly distributed. Since this study following features: (i) the atomic charges at the meta
was first published, and probably as a result of the full data positions of the benzyl ring; (ii) the atomic charge of the
being made available as Supplementary Matéfid,has ether linkage; (iii) the smallest component of the moment
become accepted as a “standard” set for assessing nevef inertia; (iv) the dipole along the long axis of the pyrethroid
mathematical modeling techniques. Methods applied to this molecule; (v) the electrophilic superdelocalizability of the
set have included joint eigenvector regression and alternatingcyclopropane atom subtending the geminal dimethyl sub-
conditional expectation$,cluster significance analydfaand stituents; and (vi) the nucleophilic superdelocalizability of
variants?® genetic function approximatioi$Kohonen map- the vinyl carbon attached to the propane ring. These features
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Table 5. Loadings for the 1-Component Pyrethroid Model with logues: A Multivariate Pattern Recognition Stu i)

Tail Probability p< 0.01 199Q 33, 136-142.
(14) Malpass, J. A,; Salt, D. W.; Ford, M. G.; Wynn, E. W.; Livingstone,

variable loading variable loading D. J. Continuum Regression: A New Algorithm for prediction of
s o7 owx 0603 sioiogical Acivy. I [

van de Waterbeemd, H., Ed.; VCH: Weinheim, New

'X‘g 833 :\EA?Z];Z 822‘; York, 1994; Vol. 3 ofMethods and Principles in Medicinal Chemistry
: : pp 163-189.
NS16 —0.605 (15) PARAGON drug design software, Centre for Molecular Design,
. o ) . University of Portsmouth (http://www.cmd.port.ac.uk/webdocs/para-
aVariable MIZ is included here because it occurs in the model, gon.html).
although its loading falls just below the value (0.575) required for (16) SYBYL 6.4 Ligand-Based Design Manu&ipos Inc.: St. Louis, MO,
significance at the 1% level. 1997; pp 4150.
(17) Efron, B.; Tibshirani, [i:hapman
i . and Hall, 1993.
may be useful for developing a putative pharmacophore for (18) Forina, M.: Mosti, L. Joint Eigenvector Regression and Alternating
the killing action of pyrethroid insecticides. Conditional Expectations. IQSAR Rational Approaches to the

Design of Bioactie CompoundsSilipo, C., Vittoria, A., Eds.; Elsevier
Science Publishers: Amsterdam, 1991; pp-181
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