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Abstract. In the field of multi-label learning, ML-kNN is the first
lazy learning approach and one of the most influential approaches. The
main idea of it is to adapt k-NN method to deal with multi-label data,
where maximum a posteriori rule is utilized to adaptively adjust decision
boundary for each unseen instance. In ML-kNN, all test instances which
get the same number of votes among k nearest neighbors have the same
probability to be assigned a label, which may cause improper decision
since it ignores the local difference of samples. Actually, in real world
data sets, the instances with (or without) label l from different locations
may have different numbers of neighbors with the label l. In this paper,
we propose a locally adaptive Multi-Label k-Nearest Neighbor method
to address this problem, which takes the local difference of samples into
account. We show how a simple modification to the posterior probability
expression, previously used in ML-kNN algorithm, allows us to take the
local difference into account. Experimental results on benchmark data
sets demonstrate that our approach has superior classification perfor-
mance with respect to other kNN-based algorithms.

1 Introduction

1.1 Background

Multi-Label classification has received considerable attention over the past sev-
eral years. In multi-label classification, each instance in the dataset is associated
with a set of labels, and the task of multi-label classification problem is to output
a label set whose size is unknown for each test instances. Multi-label problems
are ubiquitous in the real world, for example, in image categorization, each image
can be associated with multiple labels, such as sea, desert and mountain [1]; in
text categorization, each text may belong to a set of topics, such as economics,
poetry and health [2]; in bioinformatics, a gene may be related to multiple func-
tions, such as metabolism and protein synthesis [3].

Formally, let X = Rd denote the d-dimensional feature space and Y = {0, 1}L
be the label space with L possible labels, then the goal of multi-label classifier
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is to learn a function f : X �→ Y. Given a multi-label dataset D, we can divide it
into feature space X and label space Y. An instance xi is associated with a subset
of labels Yi ⊆ Y (finite set of labels), and a multi-label dataset is composed of
m examples (x1, Y1), (x2, Y2), . . ., (xn, Yn) [4].

Given a multi-label learning task, it can be transformed into other well-
established learning tasks. This category of approaches is formally defined as
Problem Transformation method. In this way, we can decompose a multi-label
problem into multiple single-label problems, and each single-label problems can
be tackled by a binary classifier. Thus, the multi-label classification function
can be represented in another form f = {f1, f2, . . . , fL} in this way. Problem
Transformation is widely used in multi-label learning problems for its greater
flexibility [8,9,11]. Another way to tackle multi-label classification problems is
so called Algorithm Adaptation method [5]. This category of approaches tackles
multi-label learning problem by adapting existing popular learning approaches
such as AdaBoost, Neural Networks or kNN to deal with the multi-label problems
directly [2,12,13].

According to the idea of Algorithm Adaptation, Zhang and Zhou [6] proposed
Multi-Label k-Nearest Neighbor (ML-kNN). It is the first lazy learning approach
and one of the most influential multi-label classification approaches. The basic
idea of this approach is to adapt the classic kNN algorithm to deal with multi-
label classification problems, where maximum a posteriori (MAP) rule is utilized
to adaptively adjust decision boundary for each new instance. In this method,
the test instances which get the same number of votes among k nearest neighbors
have the same probability to be assigned a label. It may cause improper decision
since it ignores the local difference of samples. Actually, in real world data sets,
the instances with (or without) label l from different locations may have different
numbers of neighbors with the label l. Thus, in this paper, we propose a locally
adaptive Multi-Label k-Nearest Neighbor method to address this problem.

1.2 Motivation

We begin by conducting a simple experiment to try to show the local difference
of samples. The local difference here means the instances with (or without) the
l-th label from different locations may have different numbers of neighbors with
the l-th label.

For a dataset, we first find the k nearest neighbors of each instance x and
denote as N (x). Then we can count the number of neighbors of x with label l.
The counting vector can be defined as:

C x(l) =
∑

(x∗,Y ∗)∈N (x)
Y ∗(l), l ∈ Y (1)

After calculating above statistics, we can figure out if the distribution of
C x(l) is related to the location information. In our experiments, we separate
the dataset into five clusters, and use the cluster index to represent location
information. For each cluster Sj and each label l, we calculate: (1) the average
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C x(l) of the instances with label l (defined as Eq. (2)); (2) the average C x(l) of
the instances without label l (defined as Eq. (3)).

C (Sj , l) =
1

|Sl1
j |

∑
(x,Y )∈Sl1

j

C x(l) (2)

C ∗(Sj , l) =
1

|Sl0
j |

∑
(x,Y )∈Sl0

j

C x(l) (3)

where Sl1
j = {(x, Y )|(x, Y ) ∈ Sj , Y (l) = 1} and Sl0

j = {(x, Y )|(x, Y ) ∈
Sj , Y (l) = 0}.

We conduct the experiment on an image data set scene, which has 2407
instances and 6 labels. The results are shown in Table 1. The first part and the
second part respectively show C (Sj , l) and C ∗(Sj , l) of each cluster Sj and each
label l. As is shown in Table 1, for a same label l, the C (Sj , l) and C ∗(Sj , l) of
different clusters may vary tremendously.

Table 1. Each cell of the table means the average C x(l) of the instances with (or
without) label l in each cluster.

Label beach sunset fall field mountain urban

C Cluster 1 1.432 0.926 1.470 2.000 1.785 5.532

Cluster 2 1.600 1.500 2.047 6.188 2.256 1.000

Cluster 3 1.250 5.265 6.055 1.571 0.500 1.090

Cluster 4 1.044 1.607 1.214 1.936 4.761 2.000

Cluster 5 4.863 1.333 1.000 2.333 1.444 1.956

C
∗

Cluster 1 0.401 0.029 0.083 0.176 1.073 4.503

Cluster 2 0.221 0.005 0.219 4.462 1.116 0.167

Cluster 3 0.098 0.248 1.696 0.201 0.134 0.198

Cluster 4 0.346 0.067 0.123 0.556 3.759 1.369

Cluster 5 3.543 0.006 0.195 0.430 0.891 1.084

The above results hint that the distribution of C x(l) is significantly related to
the location information. In ML-kNN, however, the local difference of samples is
ignored, which may cause the improper decision. To take the local difference into
account, we propose a locally adaptive Multi-Label k-Nearest Neighbor method
in this paper. In our approach, the test instances which get the same number of
votes among k nearest neighbors may have different probabilities to be assigned
a label if they come from different regions. Experimental results on benchmark
data sets demonstrate that our approach has superior classification performance
with respect to previous ML-kNN algorithm, especially on large scale data sets1.

1 The code available at https://github.com/DENGBAODAGE/LAMLKNN.

https://github.com/DENGBAODAGE/LAMLKNN
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1.3 Paper Organization

The rest of this paper is organized as follows. The related work is discussed
in Sect. 2. The details of our approach are proposed in Sect. 3. After that, the
experiment results are reported in Sect. 4. Finally, the conclusion is summarized
in Sect. 5.

2 Related Work

The k-nearest neighbors (kNN) rule [7] is one of the oldest and simplest methods
for pattern classification. For traditional single-label classification problems, the
kNN rule usually classifies each unlabeled instance by the majority label among
its k nearest neighbors in the training data. The kNN-based methods often yield
competitive results and have been widely used in practical applications mainly
due to its implementation simplicity. However, for multi-label classification, the
traditional kNN rule is inappropriate mainly due to the severe class-imbalance
issue.

ML-kNN was proposed based on the traditional kNN algorithm to deal with
multi-label classification problems. Rather than classifying new instance by the
majority label among its k nearest neighbors, ML-kNN employs maximum a
posteriori (MAP) principle to predict the set of labels of the new instance.

Yt(l) = arg max
b∈{0,1}

P (H l
b|El

Ct (l)
)

= arg max
b∈{0,1}

P (H l
b)P (El

Ct (l)
|H l

b)
(4)

where Yt(l) is the label vector for the new instance t. Ct (l) is the same as
described previously. H l

1 represents the event that t has label l, while H l
0 repre-

sents the event that t doesn’t have label l. El
Ct (l)

denotes the event that, among
the k nearest neighbors of t, there are exactly Ct (l) instances which have label
l. The prior probability P (H l

b) and the conditional probability P (El
Ct (l)

|H l
b) in

Eq. (4) can all be estimated from the training dataset in advance.
The reported experiment results show that ML-kNN performed well on sev-

eral real world data sets. However, it ignores the local difference when using
utilizing maximum a posteriori rule, and we think the location information of
the new instance is helpful especially for large scale data sets.

There are also some other kNN based approaches to handle multi-label clas-
sification problems. Note that ML-kNN is a first-order approach which reasons
the relevance of each label separately. Considering that this method is ignorant
of exploiting label correlations, a dependent multi-label classification method
derived from ML-kNN is proposed in [14], which takes into account the depen-
dencies between labels. In order to exploit the non-parametric property of classi-
cal kNN method, Wang et al. [15] further developed classical KNN method, and
proposed a Class Balanced K-Nearest Neighbor (BKNN) approach for multi-
label classification. This method picks up the most representative training data
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points from every class with equal number, such that the label of a test data point
is determined via the information from all the classes in a balanced manner. In
[18], a kNN based ranking approach is proposed to solve the multi-label classifica-
tion problem. This approach exploits a ranking model to learn which neighbor’s
labels are more trustable candidates for a weighted KNN-based strategy, and
then assigns higher weights to those candidates when making weighted-voting
decisions.

3 Methodology

As described in previous sections, we try to take the local difference into account
by modifying the posterior probability expression used in ML-kNN algorithm.
How to exploit the location information when using MAP principle to assign
labels to a new instance? In this section, we introduce a Locally Adaptive Multi-
Label k-Nearest Neighbor algorithm to address this problem.

Inspired by the results presented in Sect. 1.2, we firstly separate the training
data into m groups S1, S2, . . . , Sm via clustering, where the average C x(l) of
instances in the different clusters may vary tremendously. For each test instance
t, we can identify which group should it be assigned to by measuring the distance
between the test instance and each cluster center.

wt = arg min
1≤j≤m

‖xt − cj‖2 (5)

where wt is the index of cluster to which should the test instance t assign. cj
stands for the center point of cluster Sj .

Therefore we can get two important information of the test instance t: C t

(records the numbers of x’s neighbors with each label) and wt (stands for the
index of cluster to which should the test instance t assign). Then based on the
membership counting vector C t and the location information wt, the category
vector Yt can be determined using the following maximum a posteriori principle:

Yt(l) = arg max
b∈{0,1}

P (H l
b|El

Ct (l)
,Wwt

) (6)

where H l
b and El

Ct (l)
is the same as described in Sect. 2. Wwt

denotes the event
that the test instance t can be assigned to the cluster Swt

. Based on Bayes
theorem, we have:

Yt(l) = arg max
b∈{0,1}

P (H l
b)P (El

Ct (l)
,Wwt

|H l
b) (7)

The prior probability P (H l
b) and the likelihood P (El

Ct (l)
,Wwt

|H l
b) can be esti-

mated from the training data.
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Equation (6) can also be rewritten by another way (based on Bayes theorem):

Yt(l) = arg max
b∈{0,1}

P (H l
b, E

l
Ct (l)

, Wwt
)

= arg max
b∈{0,1}

P (H l
b,Wwt

)P (El
Ct (l)

|H l
b, Wwt

)

= arg max
b∈{0,1}

P (Wwt
)P (H l

b|Wwt
)P (El

Ct (l)
|H l

b, Wwt
)

(8)

where P (Wwt
) represents the prior probability that Wwt

holds. P (H l
b|Wwt

) rep-
resents the conditional probability that H l

b holds when Wwt
holds. Furthermore,

the conditional probability P (El
Ct (l)

|H l
b, Wwt

) represents the likelihood that the
instance x has C t(l) neighbors with label l when H l

b and Wwt
both hold.

By comparing Eqs. (8) and (4) (in Sect. 2), it is intuitive to understand how
we exploit the location information by involving Wwt

in posterior probability
expression. In our method, the category vector Yt of the new instance t depends
on the membership counting vector C t as well as the location information wt.
Unlike ML-kNN, our approach can derive different probabilities of assigning a
label to new instances which get the same number of votes among k nearest
neighbors but come from different regions. Actually, ML-kNN can be regarded
as a special case of our approach with m = 1. Note that Eqs. (7) and (8) we
described above are actually equivalent. We choose the latter version in our
implementation.

All the three terms in Eq. (8) can be estimated from the training data. Firstly,
the prior probability P (Wwt

) is estimated by calculating the proportion of the
cluster Swt

in training data:

P (Wwt
) =

|Swt
|

|Strain| (9)

where |Swt
| and |Strain| is the size of cluster wt and training dataset.

Then the conditional probability P (H l
b|Wwt

) are estimated by counting the
number of training examples associated with each label in each cluster:

P (H l
1|Wwt

) =
s +

∑
(x,Y )∈Swt

Y (l)

2 × s + |Swt
| (l ∈ Y)

P (H l
0|Wwt

) = 1 − P (H l
1|Wwt

) (l ∈ Y)

(10)

where s is the smoothing parameter controlling the effect of uniform prior on
the estimation [6].

Finally, the estimation process for likelihoods P (El
Ct (l)

|H l
b, Wwt

) is involved.
For each label l, we calculate:

Kl(r) =
∑

(x,Y )∈Sw t

Y (l) · [[C x(l) = r]] (l ∈ Y, 0 ≤ r ≤ k)

K′
l(r) =

∑
(x,Y )∈Sw t

(1 − Y (l)) · [[C x(l) = r]] (l ∈ Y, 0 ≤ r ≤ k)
(11)
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Kl(C) counts the number of training examples which have label l and have
exactly C neighbors with label l, while K′

l(C) counts the number of training
examples which don’t have label l and have exactly C neighbors with label l.
For any ·, [[·]] equals 1 if · holds and 0 otherwise. After calculate Kl(C) and
K′

l(C), we can estimate the likelihood in Eq. (8):

P (El
Ct (l)

|H l
1, Wwt

) =
s + Kl(Ct (l))

s × (k + 1) +
∑k

r=0 Kl(r)

P (El
Ct (l)

|H l
0, Wwt

) =
s + K′

l(Ct (l))

s × (k + 1) +
∑k

r=0 K′
l(r)

(12)

The following pseudo-code illustrates the complete description of our method. In
training phase, we estimate the prior probability P (Wj), the conditional prob-
abilities P (H l

1|Wj), P (H0
1 |Wj), the statistics Kl(r), and K′

l(r) (steps from 5 to
13). In classifying phase, the predicted label set of test instance t can be deter-
mined using the maximum a posteriori principle (by substituting Eqs. (9), (10)
and (12) into (8)).

Train(Strain, k,m)

1 Divide training data into m clusters {S1, S2 . . . , Sm} with k-means

2 for i = 1 to |Strain| do:

3 Identify k nearest neighbors N (xi) for xi

4 end

5 for j = 1 to m do:

6 P (Wj) =
|Sj |

|Strain|
7 for l = 1 to L do:

8 P (Hl
1|Wj) =

s +
∑

(x,Y )∈Sj
Y (l)

2 × s + |Sj |
9 P (Hl

0|Wj) = 1 − P (Hl
1|Wj)

10 Kl(r) =
∑

(x,Y )∈Sj

Y (l) · [[Cx(l) = r]] ( 0 ≤ r ≤ k)

11 K′
l(r) =

∑

(x,Y )∈Sj

(1 − Y (l)) · [[Cx(l) = r]] ( 0 ≤ r ≤ k)

12 end

13 end
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Classify(t, k)

1 Identify Swt (the cluster should t be assigned to) using Equation (5)

2 Identify k nearest neighbors N (t) for t

3 for l = 1 to L do:

4 Calculate Ct(l) according to Equation (1)

5 Estimate P (El
Ct (l)

|Hl
1, Wwt) and P (El

Ct (l)
|Hl

0, Wwt) according to (12)

6 Yt(l) = arg maxb∈{0,1} P (Hl
b|El

Ct (l)
,Wwt)

= arg maxb∈{0,1} P (Wwt)P (Hl
b|Wwt)P (El

Ct (l)
|Hl

b, Wwt)

7 end

4 Experiment

We compare the our proposed method with other multi-label lazy learning algo-
rithms on several data sets. In the following sections, we first describe the exper-
iment setup including the data sets, the evaluation metrics, and the compared
algorithms; Then we discuss the experiment results.

4.1 Experiment Setup

Data Sets: We evaluated the algorithm presented in the previous section on
twelve data sets2 of varying size and difficulty. The statistics of the data sets are
shown in Table 2. Six regular-scale data sets (first part) as well as six large-scale
data sets (second part) are included (the data sets are roughly ordered by the
number of instances). There are two additional properties [10] to measure the
density of labels:

• The cardinality of a dataset S is the mean of the number of labels of the
instances that belong to S, defined as:

cardinality(S) =
1
n

n∑

i=1

|Yi| (13)

• The density of S is the mean of the number of labels of the instances that
belong to S divided by L, defined as:

density(S) =
1
n

n∑

i=1

|Yi|
L

(14)

Metrics: In multi-label learning, the evaluation is more complicated than that in
single-label learning. Various evaluation metrics have been proposed to measure
2 Data sets were downloaded from http://mulan.sourceforge.net/datasets.html and

http://meka.sourceforge.net/#datasets.

http://mulan.sourceforge.net/datasets.html
http://meka.sourceforge.net/#datasets
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Table 2. Multi-label data sets used in experiments.

name domain instances dimension labels cardinality density

Emotions Music 593 72 6 1.869 0.311

Birds Audio 645 260 19 1.014 0.053

Enron Text 1702 1001 53 3.378 0.064

Scene Image 2407 294 6 1.074 0.179

Yeast Biology 2417 103 14 4.237 0.3003

Slashdot Text 3782 1079 22 1.181 0.054

bibtex Text 7395 1836 159 2.402 0.015

corel5k Image 5000 499 374 3.522 0.009

corel16k (1) Image 13766 500 153 2.859 0.019

corel16k (2) Image 13761 500 164 2.882 0.018

corel16k (3) Image 13760 500 154 2.829 0.018

Ohsumed Text 13929 1002 23 1.663 0.072

the performance of multi-label classifier. We use five commonly used metrics:
hamming loss, ranking loss, coverage, one error and average precision [17].
These above five metrics evaluate the performance of a multi-label classifier from
different horizon. Note that for average precision, the larger the values the better
the performance, while for other four metrics, the smaller the values the better
the performance.

Compared Algorithms: We compare the performance of our proposed method
with that of three other kNN-based multi-label approaches: BRkNN, ML-kNN
and DML-kNN. BRkNN [16] is an adaptation of the kNN algorithm that is
conceptually equivalent to using BR method in conjunction with the traditional
kNN algorithm. As we discussed in Sect. 2, DML-kNN is an extension approach
based on ML-kNN, which takes into account the dependencies between labels.

4.2 Results

Following the experiment setup described above, we conduct the comparison
experiments. The experimental results of each algorithm on each data set are
respectively reported in Tables 3 and 4. For each algorithm, the k value is deter-
mined by cross-validation. We can see that our proposed method LAML-kNN
outperform the compared methods in most cases. Furthermore, the advantages
of our approach are more obvious on the large-scale data sets (in Table 4) than
that on the regular-scale data sets (in Table 3).

The experimental results on benchmark data sets and diverse evaluation
metrics validate the superior effectiveness of our approach to existing kNN-based
multi-label approaches. Meanwhile, the experimental results demonstrate the
number of clusters does not significantly affect the classifier’s performance on
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Table 3. Experimental results of each algorithm on regular-scale data sets.

Metrics Algorithms Emotions Birds Enron Scene Yeast Slashdot

Hamming loss LAMLkNN 0.197 0.045 0.050 0.097 0.198 0.050

MLkNN 0.191 0.044 0.051 0.096 0.198 0.053

BRkNN 0.193 0.045 0.058 0.105 0.203 0.090

DMLkNN 0.187 0.045 0.051 0.097 0.198 0.051

Ranking loss LAMLkNN 0.151 0.093 0.088 0.090 0.170 0.157

MLkNN 0.145 0.102 0.093 0.096 0.171 0.168

BRkNN 0.151 0.119 0.152 0.106 0.183 0.242

DMLkNN 0.147 0.101 0.092 0.083 0.170 0.161

OneError LAMLkNN 0.243 0.709 0.252 0.230 0.236 0.610

MLkNN 0.253 0.728 0.280 0.233 0.242 0.645

BRkNN 0.267 0.726 0.459 0.291 0.242 0.891

DMLkNN 0.253 0.721 0.282 0.238 0.237 0.612

Coverage LAMLkNN 0.307 0.138 0.240 0.093 0.454 0.172

MLkNN 0.298 0.147 0.249 0.096 0.455 0.184

BRkNN 0.303 0.172 0.382 0.105 0.472 0.253

DMLkNN 0.300 0.145 0.246 0.086 0.455 0.176

Avg-Precision LAMLkNN 0.818 0.609 0.654 0.856 0.759 0.530

MLkNN 0.818 0.578 0.640 0.852 0.757 0.502

BRkNN 0.810 0.570 0.564 0.824 0.754 0.334

DMLkNN 0.816 0.580 0.643 0.857 0.758 0.526
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Fig. 1. Comparison results on six regular-scale data sets.
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Table 4. Experimental results of each algorithm on large-scale data sets.

Metrics Algorithms bibtex corel5k corel16k(1) corel16k(2) corel16k(3) Ohsumed

Hamming loss LAMLkNN 0.014 0.009 0.019 0.016 0.017 0.070

MLkNN 0.014 0.009 0.019 0.016 0.017 0.071

BRkNN 0.015 0.010 0.019 0.016 0.017 0.072

DMLkNN 0.014 0.009 0.019 0.016 0.017 0.071

Ranking loss LAMLkNN 0.145 0.118 0.160 0.180 0.184 0.214

MLkNN 0.217 0.127 0.175 0.181 0.183 0.231

BRkNN 0.297 0.292 0.268 0.279 0.259 0.277

DMLkNN 0.208 0.127 0.174 0.179 0.179 0.231

OneError LAMLkNN 0.542 0.670 0.698 0.731 0.732 0.613

MLkNN 0.578 0.706 0.736 0.782 0.769 0.639

BRkNN 0.680 0.742 0.771 0.917 0.769 0.706

DMLkNN 0.576 0.722 0.729 0.767 0.764 0.640

Coverage LAMLkNN 0.222 0.272 0.312 0.316 0.331 0.292

MLkNN 0.354 0.298 0.342 0.326 0.336 0.311

BRkNN 0.431 0.591 0.493 0.475 0.476 0.361

DMLkNN 0.332 0.299 0.339 0.327 0.332 0.311

Avg-Precision LAMLkNN 0.395 0.288 0.305 0.276 0.267 0.470

MLkNN 0.349 0.275 0.288 0.255 0.253 0.442

BRkNN 0.268 0.210 0.200 0.170 0.222 0.394

DMLkNN 0.350 0.265 0.291 0.266 0.258 0.441
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Fig. 2. Comparison results on six large-scale data sets.
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large-scale data sets. We fix the k value as well as change m (the number of
clusters) for our proposed approach, then compare the average precision of
each case with that of ML-kNN. From Fig. 2 we can see, on these six large-scale
data sets, across all the m value, our approach superior to ML-kNN. But the
performance of our approach is sensitive to the cluster number m on small-scale
data sets (see in Fig. 1). The proposed approach may inferior to ML-kNN if we
select improper m for small-scale data sets (e.g. emotions and yeast). We think
one possible reason may be due to lack of prior acknowledge when the size of
each cluster is too small.

5 Conclusion

To achieve more effective multi-label classification using lazy learning method,
in this paper, we introduced an original kNN-based multi-label classification
algorithm. We show how to take into account the local difference of samples by
modifying the posterior probability expression previously used in ML-kNN algo-
rithm. The experimental results on benchmark data sets demonstrate effective
classification of our approach, especially on large scale data sets.
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