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Several meta-learning techniques for multi-label classification (MLC), such as chaining and stacking, have
already been proposed in the literature, mostly aimed at improving predictive accuracy through the
exploitation of label dependencies. In this paper, we propose another technique of that kind, called
dependent binary relevance (DBR) learning. DBR combines properties of both, chaining and stacking. We
provide a careful analysis of the relationship between these and other techniques, specifically focusing
on the underlying dependency structure and the type of training data used for model construction.
Moreover, we offer an extensive empirical evaluation, in which we compare different techniques on MLC
benchmark data. Our experiments provide evidence for the good performance of DBR in terms of several
evaluation measures that are commonly used in MLC.
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1. Introduction

Multi-label classification (MLC) is a machine learning problem in
which models are sought that assign a subset of (class) labels to each
object, unlike conventional (single-class) classification that involves
predicting only a single class. Multi-label classification problems are
ubiquitous and naturally occur, for instance, in assigning keywords to
a paper, tags to resources in a social network, objects to images or
emotional expressions to human faces.

There is a considerable amount of literature, in which state-of-
the-art binary or multi-class classification algorithms are adapted
and extended to the setting of MLC, including methods using
decision trees [1], instance-based algorithms [2], neural networks
[3], support vector machines [4], naive Bayes [5], conditional
random fields [6] and boosting [7]. Besides, there is also another
line of research, in which approaches of that kind are completely
put aside; instead, the development of specialized methods that
consider the particularities of multi-label data is advocated.

In general, the problem of multi-label learning is coming with
two fundamental challenges. The first one bears on the computa-
tional complexity of the algorithms. If the number of labels is large,
then a complex approach might not be applicable in practice.
Therefore, the scalability of algorithms is a key issue in this field.
The second problem is related to the very nature of multi-label data.
Not only is the number of classes typically larger than in multi-class
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classification tasks, but also each example belongs to a variable-
sized subset of labels simultaneously. Moreover, and perhaps even
more importantly, the labels will normally not occur independent of
each other; instead, there are statistical dependencies between
them. From a learning and prediction point of view, these relation-
ships constitute a promising source of information, in addition to
that coming from the mere description of the objects. Thus, it is
hardly surprising that research on MLC has very much focused on
the design of new methods that are able to detect—and benefit from
—interdependencies among labels.

In recent years, many papers have analyzed the presence of label
correlations, including theoretical analyses of label dependence in
the context of MLC [8]. In this regard, different types of dependence
have been formally distinguished, such as conditional dependence
[6,9-12] and marginal (unconditional) dependence [3,13,14]. Other
papers are aiming at the exploitation of relations in different sets
of labels, such as pairwise relations [3,4,7,15,16], relations in sets
of different sizes [11,17,18], or relations in the whole set of labels
[10,13,14]. Exploiting label dependence implicates the induction
of complex models. In fact, the more the label combinations are
considered, the more complex the models are. This does not mean
that exploiting pairwise correlations is preferable to exploiting full-
order correlations, since the former may fail to capture the true
dependencies while the latter may not work well if the labels display
complex relations that are difficult to deal with.

This paper proposes dependent binary relevance (DBR) models as
an efficient and effective approach to induce multi-label classifiers
that exploit conditional label dependence. Instead of studying them
in combination with independent classifiers, like in [10], our goal is
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to explore their behavior when used in isolation, extending the
work presented in [19] in which this approach was favorably
compared with several state-of-the-art methods [3,11,13,18]. The
DBR approach is conceived as a natural extension of the simple
binary relevance strategy, which does not allow for exploiting
conditional label dependence. We shall elaborate on the positioning
of our approach more closely in Section 3, where we argue that this
approach combines properties of two other meta-techniques for
MLC, namely chaining [11] and stacking [14], and that it fills a “gap”
within the spectrum of methods that have been devised so far.

A key contribution of this paper is a deep analysis of the
properties of dependent binary models, in which we characterize
those conditions under which they should work well in practice.
These models require label estimations (produced by any multi-
label classifier) at prediction time. This issue is analyzed through-
out the paper, concluding that the more reliable these estimations
are, the better the overall performance becomes.

Another contribution of this work is to present a comprehen-
sive study of methods based on chaining [11] and stacking [14]
strategies. Our goal is to analyze these two approaches, which
are closely connected, and to study those factors that have an
influence on their performance. A key distinction between both
approaches is the type of training data they rely on, which in turn
has a decisive impact on the kind of label dependence captured.

The rest of the paper is organized as follows. The next section
introduces multi-label classification in a more formal way. Stack-
ing and chaining methods are reviewed in Section 3. Section 4 is
devoted to the new DBR technique; we describe this approach
formally and provide a detailed analysis of its properties. Finally,
experimental results are reported in Section 5, before concluding
the paper in Section 6.

2. Multi-label classification

Before describing some previous approaches to tackle multi-
label classification, we present this learning task in a more formal
way. The point of departure is a finite and non-empty set of labels
L={¢1,¢2,....¢m} and a training set S={(X1,¥;), ..., Xn,¥,)}. The
elements of this set are supposed to be independently and
randomly drawn according to an unknown probability distribution
P(X,Y) on X x ), where X and Y are the input and the output
space respectively. The former is the space of the object descrip-
tions (instances), whereas the latter is given by the power set
P(L) of L. To ease notation, we define y; as a binary vector
¥i=i1,Yi2,----Yim) in which y;; =1 indicates the presence (rele-
vance) and y;; = 0 the absence (irrelevance) of ¢ in the labeling of
x;. Using this convention, the output space can also be defined as
¥ =1{0,1}". The goal in MLC is to induce from S a hypothesis h :
X—Y that correctly predicts the subset of relevant labels for
unlabeled query instances x.

The most straightforward and arguably simplest approach to
tackle multi-label classification is binary relevance (BR). The BR
strategy reduces a given multi-label problem with m labels to
m binary classification problems. More precisely, m hypotheses
hi,hy,....,hy are induced, each of them being responsible for
predicting the relevance of one label, using just X as the input
space:

hj - X—{0, 1}. 1

In this way, the labels are predicted independent of each other and
no label dependencies are taken into account. Yet, despite its
inability to exploit any label dependencies, the BR algorithm also
exhibits several advantages: (i) each binary learning method can
be used as base learner, (ii) it has linear complexity with respect to
the number of labels and (iii) it can be easily parallelized.

In spite of its simplicity, the BR method obtains competitive
results in benchmark datasets whenever being applied on top of a
state-of-the-art base learner with a proper procedure for tuning
parameters. Interestingly, it has been shown theoretically and
empirically that BR performs quite strong in terms of decompo-
sable loss functions [9]. This behavior can be explained by study-
ing BR from a probabilistic point of view. Given that each binary
model h; is able to estimate P(y;|x), BR is well-suited for every
loss function whose risk minimizer can be expressed in terms
of marginal distributions of labels. Since the classifier used for
learning h; commonly optimizes its accuracy, the whole BR model
minimizes the Hamming loss':

HammingLoss(y, h(x)) = % g‘,] [y #hi(x)]. )

This measure averages the standard 0/1 classification error over the
m labels and hence corresponds to the proportion of labels whose
relevance is incorrectly predicted. Besides, if an appropriate base
learner is employed, then BR is also able to optimize all other macro-
average label-based metrics, such as the macro-F; measure [20].

On the other hand, the decomposition approach followed by BR
affects its performance for those loss functions whose minimiza-
tion requires an estimation of the joint distribution. Examples
of these measures are micro-average metrics and Subset 0/1 loss,
which looks if the predicted and relevant label subsets are equal or
not:

Subsetq,; (¥, h(x)) = [y #hx)]. 3

In these cases, it is necessary to develop algorithms which are
able to estimate the joint label probability distributions to obtain
predictions that minimize this sort of metrics. Dembczynski et al.
[8,21] present a formal probabilistic analysis of multi-label classi-
fication, studying the connection between risk minimization and
loss functions.

3. Modeling label dependence

The arguably most natural way to capture label dependencies is
to learn classifier models that condition the prediction of a label y;
not only on the object features ¥ but also on some of the other
labels y;. This idea of conditioning can be realized in different
ways. In particular, the following distinctions can be made:

(i) Full vs. partial conditioning: The prediction of y; can be condi-
tioned on all other labels {y,....¥;_1.¥i+1,---.Ym} OF only on a
subset of these labels. The most “sparse” conditioning scheme
among those that capture full dependence between labels is a
sequential structure: y; is conditioned on {y;,...,y;_1}. This
structure, which constitutes the core of the idea of classifier
chains (to be discussed further below), can be motivated by the
product rule of probability [9]:

Py = [T POixyr...yi0) @

(ii) True vs. predicted label information: For training the predictor
of y;, the other labels y; are available in the training data and,
therefore, can in principle be used for learning this predictor.
Alternatively, the model for y; can be trained on the estima-
tions y; produced by the other predictors.

! The expression [p] evaluates to 1 if the predicate p is true, and to O
otherwise.
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As for (i), a dependency structure in the form of a chain, i.e.,
conditioning y; on {y;,...,¥;_1}, is quite appealing. In fact, as
already mentioned, this structure is sufficient to capture full label
dependence. Moreover, among these structures, it is the only one
without any cycles in the underlying dependency graph. Thus, it
is also theoretically sound and unproblematic from an inference
point of view. Therefore, one may wonder whether there is any
reason to go beyond a sequential dependency structure.

One reason for an affirmative answer to this question is of
practical nature: Conditional probabilities, like those in (4), need to
be estimated by corresponding models induced from the training
data, and the quality of these models may strongly depend on
which kind of mapping they are supposed to implement. Moreover,
by using a dependency structure that is more complete than a chain
(and therefore in a sense “over-complete”), a certain level of
redundancy is introduced, which might again be beneficial from a
practical point of view (see Fig. 1).

As for (ii), one may likewise wonder whether there is any
reason to ignore the true label information y; at training time,
using predictions y; instead. Again, however, there is a motivation
for doing so: Since true label information y; is only available for
training, this information has to be replaced by estimations y; at
prediction time. Therefore, since the distribution of the true labels
will normally differ from the distribution of the predicted ones,
the original training data is not representative of the test data.
Consequently, a classifier learned on the observed labels y; might
be misled by the training data [22]. This problem is avoided by
training classifiers on the predictions y; right away. This approach,
however, makes only partial use of the training data and, more-
over, may fail to discover the true label dependencies.

From our discussion so far, we conclude that none of the four
combinations resulting from the above distinctions, namely

) partial conditioning, true label information,

) partial conditioning, predicted label information,
) full conditioning, true label information,

(d) full conditioning, predicted label information,

(a
(b
(c

should be dismissed immediately. The topic of this paper is the only
variant that is still missing in this list, namely (c). Before turning to
this variant, we briefly recall the methods that have been proposed
for the other alternatives.

3.1. Classifier chains

The Classifier Chains (CC) method introduced by Read et al. [11]
implements alternative (a). As its name suggests, CC selects
an order on the label set—a chain of labels—and trains a binary
classifier for each label following this order. In the training phase,
the feature space of each classifier in the chain is extended with
the true label information of all previous labels in the chain. For
instance, if the chain follows the order ¢y —» ¢ — --- — ¢y, then the

Fig. 1. Full vs. partial conditioning for modeling label dependencies. The sequential
structure on the left is the most “sparse” conditioning scheme among those that
capture dependence between all labels. The full conditioning scheme on the right is
redundant and contains cycles.

classifier h; responsible for predicting the relevance of #j is of the
form:

hi: X x {0,1Y~'—{0,1}. (5)

The training data for this classifier consists of instances (x;,y;, ...,
Yij—1) labeled with y;;, that is, original training instances x;
supplemented by the relevance of the labels ¢4, ...,#;_1 preceding
¢; in the chain.

At prediction time, when a new instance x needs to be labeled,
a prediction y = (J4,...,¥,,) is produced by successively querying
each classifier h; As already mentioned, however, the inputs
of these classifiers are not well-defined, since the true attributes
Y1,-..Yj—1 are not available at prediction time. These missing
values are therefore replaced by their respective predictions: y;
used by h; as an additional input is replaced by y; = hy(x), y; and
y» used by hs as an additional inputs are respectively replaced by
¥1 =hy(x) and y, = hy(x,y,), and so forth. Thus, the prediction for
an object x is of the form:

¥y = (h1(®), ha(x, h1(X)), h3(x, h1 (%), ha(x, h1 (X)), ...).

As we also mentioned before, the models h; are not perfect
predictors. Thus, although different chains (label orders) should
theoretically produce the same results,” their performance will
normally differ in practice. Read et al. [11] therefore propose the
use of an ensemble of classifier chains (ECC), in which different
chains (random permutations of the labels) are trained and their
predictions combined. The observation that ECC typically outper-
forms CC can be seen as an example of the redundancy effect
mentioned above: Although a single chain should theoretically
suffice, there is a practical benefit from exploiting and combining
more conditional dependencies.

3.1.1. Probabilistic classifier chains

A probabilistic variant of classifier chains was proposed by
Dembczynski et al. [9]. Probabilistic Classifier Chains (PCC) are
inspired by the product rule (4) and implement this rule by
training corresponding probabilistic classifiers. Thus, unlike CC
that predicts only a single label combination, PCC estimates the
entire joint distribution P(-|x). By doing so, PCC generally improves
in terms of accuracy, albeit at the cost of a higher computational
complexity. Recently, two approaches have been proposed to
reduce this complexity. In [23], the authors show that a probabil-
istic variant of chaining becomes tractable using Monte Carlo
sampling. The method presented in [24] applies beam search,
both to perform tractable test time inference with PCC and to
determine a suitable label order.

3.2. Stacking

The use of the stacked generalization learning paradigm [25],
or simply stacking, in the context of multi-label classification is a
way to implement alternative (d). It was first proposed by Godbole
and Sharawagi [14]. In the learning phase, their method builds a
stack of two groups of classifiers. The first one is formed by the BR
classifiers:

h' (%)= (), ... hyy (%)

In a second level, also called meta-level, another group of binary
models is learned, again one for each label. These classifiers consider
an augmented feature space that includes the binary outputs of all
models of the first level:

W x,3) =M ®.y), ... i5®.P)),

2 Indeed, note that the product rule (4) holds true regardless of the order.
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where y = h' (x). Obviously, the meta-level classifiers are supposed to
induce the dependencies between the labels. At prediction time, the
MLC model returns the outputs of the meta-level classifiers, (%),
while the predictions of h'(x) are only used to obtain the attribute
values in the extended feature space.

Some variants of the stacking approach have been proposed,
mainly aimed at reducing the augmented feature space by remov-
ing some label dimensions. The idea is to ignore the information of
those labels that are not related with label #; in order to induce the
meta-model hjz. For instance, in [26] the authors propose to
calculate the chi-coefficient between each pair of labels, (¢}, Zx),
based on an initial single pass over the training set. The method
prunes the information of labels #, with a correlation below a
threshold. The idea of modeling label dependence in a sparse way
is also related to the next approach, which is a kind of stacking
approach that relies on a sequential dependency structure.

3.3. Nested stacking

By combining the ideas of chaining and stacking, Nested
Stacking (NS) as proposed by Senge et al. [27] implements
alternative (b). Roughly speaking, NS is equivalent to CC, except
for using predicted labels y; instead of the observed ones y; in
the training phase. Thus, the training data of the classifier (5)
now consists of instances of the form (;,¥;1,...,y;;_1) instead of
(xiv)/i,la "'7Yij—1)‘

As explained before, the motivation for training on predicted
instead of observed labels is the observation that CC violates a key
assumption of machine learning, namely that the training data is
representative of the test data in the sense of being identically
distributed. This assumption does not hold for the chained
classifiers in CC, since y; and y; will normally not follow the same
distribution. From the point of view of the classifier h;, which uses
the labels yy,...,y;_; as additional attributes, this problem can be
seen as a problem of attribute noise. More specifically, we are
facing the “clean training data vs. noisy test data” case, which is
one of the four possible noise scenarios that have been studied
quite extensively in [28]. For CC, this problem appears to be vital:
Could it be that the additional label information, which is exactly
what CC seeks to exploit in order to gain in performance
(compared to BR), eventually turn out to be a source of impair-
ment? Indeed, Senge et al. [27] show that nested stacking is at
least competitive to CC, and even appears to be superior for
specific loss functions.

4. Dependent binary relevance classifiers

Our proposal of dependent binary relevance (DBR) models relies
on two main hypotheses: First, taking conditional label depen-
dencies into account is important for performing well in multi-
label classification tasks. Second, modeling and learning such
dependencies in a redundant way, for example using cyclic graph
structures instead of simple chains, may further improve perfor-
mance in practice.

The first assumption is at the core of research in multi-label
classification and quite uncontested in this field. In fact, the
importance of capturing label dependencies has not only been
confirmed in many empirical studies, but it has also been shown
theoretically that simple binary relevance learning is not able to
reach optimal performance for specific types of MLC loss function,
even if the individual binary models are perfect [8].

The second assumption is arguably more disputable, especially
as it is difficult to justify theoretically. On the other side, the
practical usefulness of learning in a redundant way has been
shown in many branches of machine learning, such as ensemble

classification [29]. Besides, as already mentioned in Section 3.1,
similar observations have already been made in multi-label
classification, too, namely in connection with classifier chains:
Although a single chain should in principle be enough to capture
dependencies between all labels, ensembles of such chains are
consistently better in practice.

4.1. Training phase

Formally, the DBR method works as follows. First, we train a
model that is composed of as many binary classifiers as labels:

h(X’J’) = (hl(xayZ’ "'sym)v ---ahm(an/l’ "'7ym—]))’ (6)

where each individual classifier h; is of the form:

hi: & x{0,1)"'—{0,1) (7)
and is induced from the training data:

Si =X Vi1 > Yij—1:Vijr1 - Yim)s Yipli=1,....n}. (8

Thus, the actual information of all labels except #; is used as
additional features. Regarding label dependence, binary classifiers
h; are aimed at detecting full conditional label dependence, since
the description of the object is always considered together with
label information. From a probabilistic point of view, DBR classi-
fiers try to estimate

Pyl Y1, Yo 1:Yjs1s - Ym)- €)

One may suspect that estimating this probability is more difficult
than estimating P(y;|x), as BR does, mainly because the feature
space is larger. First, however, the dimension of the input space is
anyway larger than the space of labels most of the time. Second,
labels typically take binary values whereas attributes are often
continuous. Third, the label space is typically quite sparse. Finally,
the relation between the object descriptions and the labels is
expected to be different from the relations that may exist among
labels, and the hope is that the latter are less difficult to induce
from data than the former.

4.2. Prediction phase

Like in the case of classifier chains, the actually observed labels y;
are available as additional features to induce the binary classifiers h;
only during the training stage, whereas this information is not given
for a new query instance to be classified. Consequently, in order to
make the DBR model applicable, the help of other (multi-label)
classifiers is needed to produce estimates y;, which can then be
used in place of the y;.

Naturally, the simplest solution to obtain such estimations is to
use BR as a base learner. In that case, DBR is somehow similar to the
stacking approach. However, any other multi-label classifier can in
principle be used, regardless of whether it assumes independence
between labels or not. Formally, the inputs for the classifier h; will
be of the form:

(Xv}’)la""yi—IL}A/iJrl”"’ym)v

where the y; are estimations provided by the selected base learner.
Needless to say, the best alternative will be to choose that method
which provides the most reliable label estimations, since the better
the estimations y; mimic the true labels y; on which DBR is trained,
the better the final predictions of DBR will be.

Applying this testing procedure, DBR is clearly an extension of
the BR strategy using more information. Thus, we should expect
that DBR obtains better marginal estimations for each label
whenever some conditional label dependence is present. If this
is true, DBR should perform well in terms of those measures
whose risk minimizer can be expressed solely in terms of marginal
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distributions, for instance Hamming loss or macro-average mea-
sures if an appropriate base learner is employed. The difference
with respect to BR is that DBR learns from a different feature
space. Remember, however, that the level of noise of the label
estimations y; used at prediction time may indeed prevent DBR
from minimizing such loss functions.

Despite its simplicity, DBR appears to be a promising approach,
especially as it exploits all the information available. It does not
include any additional procedure, like a feature selection method
for the label space or a preprocessing step that seeks to capture the
label dependencies, for instance using a directed acyclic graph. A
priori, this could be seen as a drawback, but in fact, it makes the
method flexible enough for letting the learning process induce the
necessary relations, especially given the sparseness of the repre-
sentation in the label space. Furthermore, in this way the DBR
approach can be studied more easily as a natural extension of BR
strategy with more information.

4.3. Comparison with related approaches

Throughout this section, we will suppose that DBR is built
using BR to obtain label estimations y;. This makes it more similar
to related approaches such as stacking and, moreover, simplifies
our analysis. In order to better understand the properties of DBR, it
is useful to analyze the main differences with respect to the most
related methods described above, namely Classifier Chains (CC),
Stacking (STA) and Nested Stacking (NS). As already explained in
Section 3, these methods can be distinguished along two main
dimensions: (i) the training data they use (true vs. estimated
labels) and (ii) the size of the subsets of labels for which
dependencies are modeled (partial/sequential vs. full condition-
ing). Fig. 2 summarizes this categorization.

According to these two aspects, DBR is more connected to STA
and CC than to NS, which is different in both aspects. CC and DBR
are both using true class labels for learning label dependence,
but the corresponding base learners are trained on different label
subsets: all labels in the case of DBR and only the preceding ones
(in the order of the chain) in CC. On the other side, DBR is similar
to STA because both are built on top of another multi-label
classifier (namely BR in our case) in order to obtain label estima-
tions. The difference is that STA tries to capture labels correlations
using such estimations while DBR employs true labels to induce
dependent models.

In terms of computational complexity, it is worth noting that all
methods allow for learning the base classifiers individually and,
therefore, can easily benefit from parallel implementation techni-
ques. Moreover, while the complexity of all approaches scales
linearly in the number of labels, they differ in the concrete number
of models that are produced: m for CC and NS vs. 2m for STA and
DBR (m being the number of labels).

4.4. Expanding the feature space: True vs. predicted labels

We conclude this section with a closer look at the first criterion
we proposed to distinguish the methods, namely the type of data

Training data

actual labels predictions
K%) previous CcC NS
£
— all DBR STA

Fig. 2. Properties of chaining and stacking methods.

used in the training phase, and a more in-depth discussion of
possible advantages and disadvantages of the two options (true
label information vs. predicted).

To begin with, recall that the learning processes of CC and DBR
both violate a key assumption of machine learning, namely the
assumption that the training data is representative of the test data
in the sense of being identically distributed. This assumption does
not hold because true label data y; are used as input attributes
during the training phase, while this information is replaced
by estimations y; at prediction time. Unless the predictions are
perfect, the distribution of the y; will not be identical to the
distribution of the y;. This same problem was previously studied in
the context of sequential learning [30]. From the point of view of
each binary classifier hj, this issue can be seen as a problem of
attribute noise. More specifically, we are facing the “clean training
data vs. noisy test data” case, which is one of the four possible
noise scenarios that have been studied in [28].

The question that arises is if using true additional label informa-
tion during training, which is exactly what CC and DBR seek to
exploit in order to perform better than BR, could perhaps be
harmful rather than useful. This question is difficult to answer in
general, since, as explained in more detail in [22], there are several
factors involved. The following two are especially important:

® The accuracy of label estimations: The level of attribute noise is in
direct correspondence with the accuracy of the estimations used
at prediction time. If they are perfect, then the training distribu-
tion equals the test distribution, and there is no problem.’
Otherwise, however, the distributions will differ.

® The dependency among labels: Perhaps most interestingly, a
(strong enough) dependence between labels is a prerequisite
for both, an improvement and a deterioration in comparison to
BR. In fact, CC and DBR cannot gain (compared to BR) in case
of no label dependence. In that case, however, they are also
unlikely to lose, because the binary classifier will most likely
ignore the attributes containing label information. On the
contrary, in case of pronounced conditional label dependence,
they will fully rely on these attributes, and whether or not this
is advantageous will mostly depend on the previous factor.

DBR must be less robust against attribute noise than CC, simply
because it uses more label estimations. For classifier h; in a CC
model, the larger the number j—1 of preceding classifiers in the
chain is, the higher is the potential level of attribute noise for h;. For
example, if prediction errors occur independent of each other with
probability &, then the probability of a noise-free input is only
(1—&y~'. In a DBR model, this value is (1—&)™~! for all binary
classifiers. Another difference between both is that in a CC model
the prediction for each label is used as an estimation for the next
labels. Thus, more realistically, one may assume that the probability
of a mistake is not constant but will increase with the level of
attribute noise in the input [22]. Then, due to the recursive structure
of CC, the probability of a mistake will be reinforced and increase
even more rapidly along the chain. The order of the chain plays a
role, too, since some labels might be inherently more difficult to
predict than others. In particular, it would be advantageous to put
easier labels in the beginning and harder ones more toward the end
of the chain. Notice that DBR is free of this problem, because all
label estimations used come from another multi-label classifier, and
not from their own predictions.

3 Strictly speaking, equality does not even hold in this case, since a classifier
will normally produce a deterministic prediction, that is, a 0/1-valued probability
distribution, even if the true (conditional) distribution is not of that kind.
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STA and NS do not suffer from the problem of attribute noise.
Training and test data originate from the same source, both are label
estimations produced by the same classifiers, so they are identically
distributed. However, considering their abilities to detect condi-
tional label dependence, the potential of STA and NS is clearly
limited: Since none of these methods ever gets to see a true label y;
as input information during the training phase, there is no way to
learn the true label dependence. What they can learn, instead, is the
dependency between the predictions y;, which can be seen as a
noisy version of the true label dependence. Thus, somewhat
simplified, one may conclude that CC and DBR are able to learn
true label dependence that will only hold approximately at predic-
tion time, whereas STA and NS can only learn a proxy of the label
dependence that will nevertheless hold exactly at prediction time.

As already mentioned, the practical performance of all these
methods will depend on the level of attribute noise and conditional
dependence of the domain. For datasets on which BR already
performs strongly—the original input space provides enough infor-
mation to make accurate predictions—or label dependence is low,
the performance of all methods will be similar to that of BR. For
those domains with more conditional label dependence and a
reasonably good accuracy, CC and DBR are expected to gain in
performance compared to BR, STA and NS. Finally, if the accuracy of
BR is low and the label dependence high, CC and DBR may perform
poorly. In the next section, we will conduct a series of experiments
to confirm these claims.

5. Experiments

This section reports the settings and the results of the experi-
ments performed. The main goal of these experiments is to make
an exhaustive comparison between stacking and chaining
approaches, including our newly proposed one. The aim is to
prove which one performs better than the rest for each of the
metrics considered, and if one of them is superior with regard to
capturing label dependence. For a comparison of some of these
methods, for instance CC, with other multi-label learners, see [31].

The second objective is to analyze the behavior of CC and DBR,
especially with respect to the attribute noise problem discussed
above. Several experiments were carried out to that end, showing
that this is a key issue for exploiting label dependence.

5.1. Settings

Before discussing the experimental results, let us describe the
common settings of all experiments: datasets, learning algorithms,
parameter selection procedures and evaluation metrics.

The experiments were performed over several benchmark
multi-label datasets whose main properties are shown in Table 1.
As can be seen, there are significant differences in the number of
attributes, examples and labels. The cardinality—number of labels
per example—varies between 1.07 and 4.24.

The learning algorithms compared were those discussed along
the paper: CC, STA, NS and our proposal, DBR. We also included BR
as the baseline to show the performance under the label inde-
pendence assumption. The base learner employed to obtain the
binary classifiers that compose all these multi-label models was
logistic regression [32]. The regularization parameter C was estab-
lished for each individual binary classifier performing a grid search
over the values Ce{1073,1072,...,10°} optimizing the accuracy
estimated by means of a balanced 2-fold cross validation repeated
5 times. This guarantees that the binary classifiers for a particular
label of the compared methods are exactly the same when their
respective feature spaces coincide. This happens, for instance, for
the first classifier of CC and NS. It will be also equal to that of BR for

Table 1
Properties of the datasets used in the experiments.

Dataset Attributes Examples Labels Cardinality
Bibtex 1836 7395 159 240
Emotions 72 593 6 1.87
Enron 1001 1702 53 3.38
Genbase 1185 662 27 1.25
Image 135 2000 5 1.24
Mediamill 120 5000 101 427
Medical 1449 978 45 1.25
Reuters 243 7119 7 1.24
Scene 294 2407 6 1.07
Slashdot 1079 3782 22 1.18
Yeast 103 2417 14 424

that label. Another example is the classifier of the last label in a
CC model, it will be identical to the classifier of that label in a DBR
model. Unlike [11], we do not apply any threshold selection
method, and instead we use t=0.5 for deciding the relevance of
a label in all cases. In fact, our goal is to study the behavior of all
approaches without the influence of any factor that may bias the
results.

The results will be presented in terms of several measures
commonly adopted in multi-label classification [12]. Here we
consider only example-based evaluation because the goal of the
studied classification methods is to detect conditional label depen-
dence. In addition to Hamming and Subset 0/1 loss introduced
earlier, we also used the F; and Jaccard index, which are defined
respectively as follows®:

23" lyi=1and hi(x)=1]

Fl(‘y’h(X)):Z;nzl([[yi :‘lﬂ_l,_ [[h,(x):l[[)

>m o [yi=1and hix)=1]
Srlyi=lorh@=1]"

The F1 measure is the harmonic mean of precision and recall. Thus,
since the number of relevant labels is typically smaller than the
number of irrelevant labels, a correct prediction on the former
becomes more important than a correct prediction of the latter. This
is in contrast to other measures like Hamming, which give the same
importance to each individual label. Similar remarks also apply to
the Jaccard measure.

As all of the performance measures considered are defined on a
per instance basis, the value for a test set is the average over all
instances. The scores reported were estimated by means of a 10-
fold cross-validation. The rank of a classifier in a particular dataset
is indicated in parentheses.” The average ranks over all datasets
are computed and shown at the last row of each table. Following
the recommendations of [33] a two-step comparison for each of
the considered measures was performed. The first step consists
of a Friedman test of the null hypothesis that states that all
approaches perform equally. Then, in the case where this hypoth-
esis is rejected, the Nemenyi test is performed to compare the
methods in a pairwise way. Both tests are based on the rank
average. The critical differences (CD) in the Nemenyi test depend
on the number of datasets and learners compared. They are shown
in the caption of each table for different significance levels.

Jaccard(y, h(x)) =

5.2. Experimental results

The first experiment consists of evaluating all methods using
benchmark datasets. Tables 2 and 3 show the scores for the

4 Note that these are accuracy measures instead of loss functions.
5 Average ranks are shown in case of ties.
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Table 2

Experimental results on benchmark datasets for F; and Jaccard index. The critical differences for the Nemenyi test are CD, _ .01 =2.19, CD, _ 05 = 1.84 and CD, _ o = 1.66.

Dataset BR DBR(BR) STA cC NS
F1
Bibtex 0.3702 + 0.0048 (5.0) 0.3754 + 0.0059 (2.0) 0.3781 + 0.0051 (1.0) 0.3718 + 0.0051 (4.0) 0.3722 + 0.0051 (3.0)
Emotions 0.4920 + 0.0200 (5.0) 0.6087 + 0.0140 (1.0) 0.5046 + 0.0181 (4.0) 0.5893 +0.0166 (2.0) 0.5101 + 0.0147 (3.0)
Enron 0.5566 + 0.0046 (5.0) 0.5820 + 0.0044 (1.0) 0.5585 + 0.0044 (4.0) 0.5666 + 0.0057 (2.0) 0.5650 + 0.0053 (3.0)
Genbase 0.9918 + 0.0026 (3.5) 0.9921 + 0.0026 (1.0) 0.9918 + 0.0026 (3.5) 0.9918 + 0.0026 (3.5) 0.9918 + 0.0026 (3.5)
Image 0.4212 + 0.0089 (5.0) 0.5168 + 0.0104 (1.0) 0.4257 4+ 0.0087 (4.0) 0.4628 +0.0129 (2.0) 0.4258 + 0.0090 (3.0)
Mediamill 0.5917 + 0.0034 (3.0) 0.5723 +0.0038 (5.0) 0.6038 + 0.0043 (1.0) 0.5859 + 0.0042 (4.0) 0.6000 + 0.0032 (2.0)
Medical 0.7733 £ 0.0109 (5.0) 0.7982 + 0.0092 (1.0) 0.7840 + 0.0099 (4.0) 0.7891 + 0.0095 (2.5) 0.7891 + 0.0103 (2.5)
Reuters 0.8413 + 0.0026 (4.5) 0.8705 + 0.0023 (1.0) 0.8413 + 0.0026 (4.5) 0.8610 + 0.0033 (2.0) 0.8456 + 0.0031 (3.0)
Scene 0.6125 + 0.0084 (5.0) 0.6846 + 0.0082 (2.0) 0.6329 + 0.0083 (4.0) 0.6927 + 0.0093 (1.0) 0.6455 +0.0087 (3.0)
Slashdot 0.4433 + 0.0047 (5.0) 0.5547 + 0.0058 (1.0) 0.4448 + 0.0048 (4.0) 0.5146 + 0.0069 (2.0) 0.4749 + 0.0060 (3.0)
Yeast 0.6168 + 0.0081 (3.0) 0.6098 + 0.0084 (5.0) 0.6164 + 0.0081 (4.0) 0.6264 + 0.0089 (1.0) 0.6192 + 0.0074 (2.0)
Avg. rank (4.45) (1.91) (3.45) (2.36) (2.82)
Jaccard Index
Bibtex 0.3150 + 0.0048 (5.0) 0.3232 + 0.0059 (1.0) 0.3217 4+ 0.0050 (2.0) 0.3190 + 0.0051 (3.0) 0.3185 + 0.0050 (4.0)
Emotions 0.4227 + 0.0186 (5.0) 0.5176 + 0.0136 (1.0) 0.4350 + 0.0170 (4.0) 0.5149 + 0.0172 (2.0) 0.4413 + 0.0150 (3.0)
Enron 0.4469 + 0.0042 (5.0) 0.4709 + 0.0048 (1.0) 0.4491 + 0.0038 (4.0) 0.4628 + 0.0059 (2.0) 0.4557 + 0.0045 (3.0)
Genbase 0.9894 + 0.0026 (3.5) 0.9897 + 0.0026 (1.0) 0.9894 + 0.0026 (3.5) 0.9894 + 0.0026 (3.5) 0.9894 + 0.0026 (3.5)
Image 0.3860 + 0.0091 (5.0) 0.4732 + 0.0096 (1.0) 0.3910 + 0.0089 (3.0) 0.4286 + 0.0136 (2.0) 0.3906 + 0.0092 (4.0)
Mediamill 0.4670 + 0.0039 (4.0) 0.4542 + 0.0040 (5.0) 0.4836 + 0.0048 (1.0) 0.4710 + 0.0043 (3.0) 0.4790 + 0.0037 (2.0)
Medical 0.7451 + 0.0109 (5.0) 0.7695 + 0.0092 (1.0) 0.7556 + 0.0100 (4.0) 0.7642 + 0.0092 (2.0) 0.7637 + 0.0100 (3.0)
Reuters 0.8167 + 0.0029 (5.0) 0.8400 + 0.0026 (1.0) 0.8169 + 0.0028 (4.0) 0.8364 + 0.0038 (2.0) 0.8219 + 0.0034 (3.0)
Scene 0.5941 + 0.0083 (5.0) 0.6400 + 0.0080 (2.0) 0.6177 + 0.0084 (4.0) 0.6786 + 0.0093 (1.0) 0.6299 + 0.0087 (3.0)
Slashdot 0.4271 + 0.0047 (5.0) 0.4970 + 0.0060 (1.0) 0.4286 + 0.0048 (4.0) 0.4942 + 0.0065 (2.0) 0.4570 + 0.0056 (3.0)
Yeast 0.5071 + 0.0085 (3.0) 0.4968 + 0.0090 (5.0) 0.5070 + 0.0086 (4.0) 0.5231 + 0.0098 (1.0) 0.5110 + 0.0084 (2.0)
Avg. rank (4.59) (1.82) (3.41) (2.14) (3.05)

Table 3

Experimental results on benchmark datasets for Hamming loss and Subset 0/1 loss. The critical differences for the Nemenyi test are CD, _ 01 =2.19, CD, _ 05 = 1.84 and

CDp o1 =1.66.
Dataset BR DBR(BR) STA cC NS

Hamming Loss

Bibtex 0.0121 + 0.0001 2.5) 0.0121 + 0.0001
Emotions 0.2203 + 0.0067 4.0) 0.2315 + 0.0087
Enron 0.0446 + 0.0007 2.5) 0.0488 + 0.0006
Genbase 0.0008 + 0.0001 3.5) 0.0007 + 0.0001

Image 0.2025 + 0.0041
Mediamill 0.0276 + 0.0003

4.0) 0.2161 + 0.0067
3.0) 0.0310 + 0.0004

Reuters 0.0458 + 0.0008 3.0) 0.0577 +0.0012
Scene 0.0983 + 0.0029 3.0) 0.1831 + 0.0047
Slashdot 0.0373 + 0.0004 1.0) 0.0880 + 0.0019
Yeast 0.1981 + 0.0032 2.5) 0.2156 + 0.0036
Avg. rank 3.05) 4.09)
Subset 0/1 Loss

Bibtex 0.8283 + 0.0043 5.0) 0.8154 + 0.0053
Emotions 0.7942 + 0.0156 5.0) 0.7470 + 0.0174
Enron 0.8690 + 0.0055 5.0) 0.8525 + 0.0088
Genbase 0.0181 + 0.0030 3.0) 0.0181 + 0.0030
Image 0.7150 + 0.0097 5.0) 0.6520 + 0.0133
Medical 0.3394 + 0.0123 5.0) 0.3149 + 0.0094
Reuters 0.2569 + 0.0043 5.0) 0.2460 + 0.0042
Scene 0.4603 + 0.0100 5.0) 0.4499 + 0.0085
Slashdot 0.6195 + 0.0055 4.0) 0.6285 + 0.0063
Yeast 0.8453 + 0.0100 5.0) 0.8407 + 0.0120

Avg. rank

( (2.5) 00122 +0.0001
( (5.0) 02184+ 0.0061  (
( (5.0) 0.0446 + 0.0007  (
( (1.0) 0.0008 +0.0001  (
( (5.0) 02018+0.0041  (
( (5.0) 0.0269+0.0003
Medical 0.0099 + 0.0004  (4.5) 0.0098 +0.0004 (1.5 0.0098 + 0.0004  (3.0) 0.0099 +0.0004 (4.5
( (5.0) 0.0457 +0.0008  (
( (5.0) 0.0935+0.0028
( (5.0) 0.0374+ 0.0005  (
( (5.0) 01981+0.0033  (
( ( (

( (1.0) 0.8269 +0.0046  (
( (2.0) 0.7825+0.0158  (
( (2.0) 0.8661 +0.0054  (
( (3.0) 0.0181+0.0030  (
( (1.0) 0.7095 +0.0101
Mediamill ~ 0.9036 +0.0047  (5.0) 0.8814+0.0039  (3.0) 0.8794+0.0051  (2.0) 0.8620+0.0043  (1.0) 0.8834+0.0042 (4.0
( (3.0) 03292400115  (
( (2.0) 0.2561+0.0043  (
( (4.0) 04275400098  (
( (5.0) 0.6182 + 0.0055  (
( (3.0) 0.8432+0.0099  (
( ( (

5.0) 0.0121+0.0001  (2.5) 00121 +0.0001 (2.5
3.0) 02164 +0.0081  (1.0) 0.2175+0.0054 (2.0
2.5) 0.0464 +0.0008  (4.0) 0.0445 + 0.0006 (1.0
3.5) 0.0008 +0.0001  (3.5) 0.0008 +0.0001 (3.5
3.0) 0.2013+0.0051  (1.0) 0.2017 +0.0043 (2.0
1.0) 0.0286+0.0003  (4.0) 0.0271+0.0003 (2.0
) 0.0098 +0.0004 (15
2.0) 0.0476 +0.0010  (4.0) 0.0457 + 0.0008 (1.0
1.0) 01069 + 0.0030  (4.0) 0.0970 +0.0030 (2.0

)

)

2.0) 0.0402 + 0.0006 (4.0 0.0379 + 0.0005 (3.0
2.5) 0.2099 + 0.0041 (4.0 0.1978 + 0.0031 (1.0)

2.59) (3.32) (1.95)

4.0) 0.8211+0.0049  (2.0) 0.8226+0.0044 (3.0
4.0) 0.7098 + 0.0216  (1.0) 07741+ 00192 (3.0
4.0) 0.8408 + 0.0070  (1.0) 0.8578 +0.0053 (3.0
3.0) 0.0181+0.0030  (3.0) 0.0181+0.0030 (3.0
3.0) 0.6700+0.0161  (2.0) 0.7110 + 0.0102 (4.0

4.0) 03098+ 0.0098  (1.0) 0.3118 + 0.0103 (2.0
4.0) 0.2375+0.0056  (1.0) 0.2484+0.0049 (3.0
3.0) 03635+ 0.0097  (1.0) 0.4167 +0.0097 (2.0
3.0) 0.5651 +0.0065  (1.0) 0.5949 + 0.0056 (2.0
4.0) 0.7865+0.0119  (1.0) 0.8246 +0.0115 (2.0

3.45) (1.36) (2.82)

evaluation metrics. For DBR, the required label estimations are
provided by a BR classifier, hence it is denoted DBR(BR).
Interestingly, all the stacking and chaining approaches outperform
BR in Fj, Jaccard index and Subset 0/1 loss. This is not surprising,
because BR is well-tailored for Hamming loss, but not for the other
metrics. However, it is worth noting that STA and NS obtain a better

ranking than BR in all measures, including Hamming loss, but their
differences are only significant in the case of NS for Subset 0/1 loss.
DBR(BR) is the best method for F; measure, followed by CC.
Both are significantly better than BR, at level p < 0.01 for DBR(BR)
and p < 0.05 for CC. The rest of the differences are not significant.
Despite STA and NS also boost the scores of BR, showing that some
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improvements can be obtained applying the stacking idea, these
results seem to suggest that inducing multi-label models using
actual label information, as CC and DBR do, helps to better predict
the relevant labels.

In terms of Jaccard index, which is closely related to F;, the
results are quite similar. DBR(BR) is the best method and CC is the
second one; both are significantly better than BR at level p < 0.01.
NS and STA compare unfavorably with their respective counter-
parts, showing again that using predictions is worse to capture the
dependency among labels. BR is again the worst method, con-
firming that its label independence assumption is less appropriate
for this sort of performance measures.

The results for Hamming loss are quite interesting. NS obtains
the best scores, followed by STA and BR; the differences between
them are rather small. Nevertheless, it may surprise that NS and STA
improve the average rank of BR, which optimizes Hamming loss
given the original input space. Our explanation for this result is that
(i) these methods use an extended feature space, in which they are
able to detect some label correlations, and correct the predictions of
BR in the case of STA (remember that STA use the outputs of BR as
input features, including the prediction for the own label), and (ii)
unlike CC and DBR, they do not suffer the attribute noise problem
discussed above. We will study this aspect in more detail in the next
experiment. For all these reasons, NS, STA and BR should produce
similar predictions. On the other hand, DBR(BR) and CC are both
outperformed by BR and stacking approaches, being DBR(BR) the
worst algorithm: it is beaten significantly by NS (p < 0.05).

Finally and as it was expected, CC outperforms the rest of the
methods in Subset 0/1 loss. CC is significantly better than STA
(p <0.05) and BR (p < 0.01), which in turn is also significantly worse
than DBR(BR) and NS (p < 0.05). Note that the chaining approaches,
CC and NS, based on the product rule of probability, perform better
than their respective counterparts considering the kind of training
data used: CC vs. DBR(BR) (true labels), and NS vs. STA (predictions).
However, note that those methods which use true labels during
training perform better than those using predictions.

The bottom line of these results is that we have studied three
different types of loss functions and in each of them one kind of
method is better: F; and Jaccard favoring those predictions that
include the relevant labels (DBR(BR)), Hamming loss needs good
marginal estimations (NS), and Subset 0/1 loss requires to estimate
the joint distribution (CC). The other conclusion is that the first
criterion (using true labels vs. predictions as additional training
information) has a stronger influence on the final behavior of the
learner than the second one (partial vs. full conditioning). It seems that
using predicted labels is better for reducing the Hamming loss, while
true labels are advantageous for measures that are biased to the
relevant labels.

Table 4

5.3. Analyzing the problem of attribute noise

We have previously stated that, in principle, DBR should per-
form well in terms of Hamming loss considering the augmented
feature space formed by the original input space and the label
space. However, the disappointing results achieved by DBR in
Hamming loss do not seem to support our claim. The most
probable reason is the attribute noise in the feature space used.
To prove this conjecture, we carried out several experiments.

The first one is quite simple: the idea was to completely remove
this attribute noise in the two methods that are affected by this
problem: CC and DBR. To that end, when the prediction h;(x) is
calculated, instead of using the estimations of the other labels as
usual, those values are replaced by the true labels. For instance, if
h; is one of the binary classifiers of a DBR model, its feature space is
augmented with the actual values of the rest of the labels:
Yis oo Yi—1:Yjr 1 s Yms notice that the true label of y; is not used.
One may argue that this experiment will produce unrealistically
good results, and that we are “cheating” in the test phase.
Although this is perfectly true, the experiments will hopefully
help us in finding answers to several questions: Can these learners
really detect label dependence? What are the differences between
CC and DBR in this regard? To what extent could BR results be
improved? To what extent are CC and DBR affected by attribute
noise problem?

Table 4 reports the scores of the experiment for Hamming loss.
In addition to the results of CC and DBR using perfect label
information in the test phase, denoted as DBR(True Labels) and
CC(True Labels) respectively, the scores of DBR(BR) and CC of the
previous experiment (Table 3) are included. For all these learners,
Table 4 shows the improvement with respect to BR, which is used
as a reference.

On an average, CC ameliorates the results of BR in more than
15%, while the improvement of DBR is 35%. Thus, the first
conclusion is that both methods can detect significant label
dependencies. In that sense, it is worth noting that DBR uses all
the information available, therefore it comes at no surprise that
DBR models are able to detect more relationships between labels.
The first classifiers in the chain of a CC model are usually quite
similar to those of BR: the first classifier is equal, and the next ones
can be alike whenever the labels placed at the beginning of the
chain do not present much correlation. The improvement is
mainly due to the classifiers at the end of the chain. Contrarily,
all binary classifiers of a DBR model should be better than their BR
counterparts, simply because they are using more information,
without any noise in this experiment.

However, this advantage of DBR comes at a cost. DBR is much
more sensitive to the attribute noise problem. This can be

Experimental results of CC and DBR when both use true label information (in a cheating way) during the testing phase. The table includes the scores of BR, DBR(BR) and CC
previously reported in Table 3. The improvements with respect to BR results are shown as percentages for all methods.

Dataset BR DBR(BR) Im. (%) DBR(TL) Im. (%) cC Im. (%) CC(TL) Im. (%)
Hamming Loss

Bibtex 0.0121 + 0.0001 0.0121 £+ 0.0001 0.0 0.0113 + 0.0001 6.6 0.0121 £ 0.0001 -03 0.0117 + 0.0001 3.7
Emotions 0.2203 + 0.0067 0.2315 4+ 0.0087 -51 0.1535 +£0.0075 303 0.2164 + 0.0081 1.8 0.1841 + 0.0072 16.4
Enron 0.0446 + 0.0007 0.0488 + 0.0006 -94 0.0374 + 0.0006 16.1 0.0464 + 0.0008 —-41 0.0410 + 0.0007 8.1
Genbase 0.0008 + 0.0001 0.0007 + 0.0001 12.5 0.0007 + 0.0001 12.5 0.0008 + 0.0001 2.0 0.0007 + 0.0001 9.0
Image 0.2025 +0.0041 0.2161 + 0.0067 -6.7 0.1623 + 0.0054 19.9 0.2013 +0.0051 0.6 0.1906 + 0.0051 5.9
Mediamill 0.0276 +0.0003 0.0310 + 0.0004 -123 0.0142 + 0.0002 48.6 0.0286 + 0.0003 -3.8 0.0203 + 0.0002 26.5
Medical 0.0099 + 0.0004 0.0098 + 0.0004 1.0 0.0068 + 0.0004 31.3 0.0099 + 0.0004 0.2 0.0085 + 0.0004 144
Reuters 0.0458 +0.0008 0.0577 +0.0012 —26.0 0.0318 + 0.0008 30.6 0.0476 + 0.0010 -39 0.0406 + 0.0010 1.3
Scene 0.0983 + 0.0029 0.1831 + 0.0047 —86.3 0.0238 + 0.0012 75.8 0.1069 + 0.0030 -8.8 0.0724 + 0.0026 26.4
Slashdot 0.0373 + 0.0004 0.0880 + 0.0019 —135.9 0.0262 + 0.0006 29.8 0.0402 + 0.0006 -79 0.0340 + 0.0005 8.9
Yeast 0.1981 + 0.0032 0.2156 + 0.0036 -8.8 0.0331 +0.0011 83.3 0.2099 + 0.0041 -6.0 0.1170 + 0.0019 40.9
Avg. —25.2 35.0 —-2.7 15.6
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observed with the negative improvements of DBR(BR), which are
bigger than those of regular CC. Our explanation for this fact is that
the binary classifiers of DBR seem to intensively use the informa-
tion coming from the rest of the labels, which is in principle good
because they are detecting those relationships, but can have a
harmful impact when the estimation of some labels is poor. This is
especially dangerous with a measure like Hamming loss, in which
every error counts in the same proportion. Measuring the out-
comes for the other performance metrics, we observed that the
improvements of DBR(True Labels) are in fact smaller, but DBR(BR)
still enhances the scores of BR, as can be seen in Tables 2 and 3.

Another consequence of the experiment is that it proves that
exploiting conditional dependence could help to boost the perfor-
mance in Hamming loss. It is well known that BR optimizes such
measure given the original input space, but new learners can be
devised to properly learn from the information contained in the
label space, improving the performance for Hamming loss. These
new methods must solve some potential issues, like the attribute
noise discussed here or others, including the complex depen-
dences (e.g. cycles) that labels could present.

Finally, the experiment shows how DBR can be useful to
observe the level of label dependence in multi-label domains.
For instance, some datasets (e.g. bibtex) do not display much label
dependence, while others like mediamill, scene or yeast do. The
improvement in these domains is quite impressive, suggesting
that the label space contains valuable information that should be
exploited.

We performed a second experiment in order to deeply study
this noise problem. The goal was to show the performance of DBR
under different levels of attribute noise. Several 3D-graphs were
built for this purpose, one per each evaluation measure and per
dataset.® In these graphs (see Figs. 3 and 4), the scores are drawn
as a function of two parameters, namely the percentages of false
positives (FP) and true positives (TP) in the label estimations used
during the test phase of DBR. The first dimension was ranged from
0% to 10%, whereas the second one varies between 0% and 100%.
The election of 10% in case of the FP is due to the sparseness of the
label space. For each pair of values, 30 different label estimations
were drawn randomly and used by the same DBR model to output
its predictions. The graphs show the average for each combination.
For the loss functions, Hamming and Subset 0/1, figures respec-
tively show 1-Hamming Loss and 1-Subset 0/1 loss; thus for all
measures, the higher the better. Besides, the hyperplane in the
graphs corresponds to the BR score, representing the performance
under label independence assumption. Notice that the scale of
Z-axis is different among graphics.

Looking at the figures, some steady behaviors can be observed
for all performance measures and datasets. Firstly, the inclusion of
TP in the label space to feed DBR models rapidly improves the
performance. Although it is true that this increase in performance
begins to be not so pronounced as FP are included. The improve-
ment degree attained with respect to BR performance depends not
only on the dataset, but also on the measure. In fact, F; results tend
to be the scores that can be more easily enhanced, followed by
Jaccard index and Subset 0/1 loss. In the other extreme we find
Hamming loss whose results are hard to be improved on several
datasets. Studying the figures for all benchmark datasets, there are
some domains where more FP hardly worsens the performance
independent of the measure. Besides, it also happens that for the
same domain the performance keeps equal for some measures and
it worsens for others. That is the case of emotions dataset (see
Fig. 3, top) where the influence on F; scores is remarkable with
regard to the others, or the case of medical dataset (Fig. 3, bottom)

6 All of them are included in the supplementary material of the paper.

for F; and Jaccard index. In general, we can state that F; and
Jaccard index are more sensitive as FP are added than in case of
Hamming loss or Subset 0/1 loss, which are more affected by the
percentage of TP in the label estimations.

The figures included here try to exemplify quite different
behaviors of DBR depending on the dataset and on the perfor-
mance measures. Fig. 3 (top) shows the graphics for emotions
dataset. Let us remember that DBR(BR) improves the scores of BR
for this domain in terms of F;, Jaccard index and Subset 0/1 loss
(see Tables 2 and 3). These results can be explained with this
experiment. Firstly, F; and Jaccard index scores attained by BR are
improved by DBR with almost any combination of TP and FP
values. Interestingly, DBR performs better without any information
about the rest of the labels (TP=0 and FP=0), showing that it
is able to learn better models for these measures. Instead, it is
not unlikely that DBR obtains a worse result for Hamming loss,
especially when the label estimations used contain several mis-
takes, as it happens with DBR(BR), given that the percentage of
misclassified labels (Hamming loss) of BR is greater than 22%, the
highest one among all datasets. Finally, DBR seems a little bit more
robust against attribute noise for Subset 0/1 loss.

In our first experiment in Section 5.2, the only domain in which
DBR(BR) ameliorates the results of BR in all measures, including
Hamming loss, was medical dataset. Looking at its graphs (Fig. 3,
bottom), we can observe that it is relatively easy to improve BR's
results in all metrics: only more than 50% of TP is needed, alongside
with a not very large number of FP. Taken into account that the score
of BR for Hamming loss is the second lowest, less than 1% of mistakes
(see Table 3), the attribute noise problem is not a big issue on this
domain, allowing DBR to obtain better scores.

A quite interesting example is provided by scene dataset (Fig. 4,
top). According to Tables 2 and 3, DBR(BR) improves the scores of BR,
except for Hamming loss. The graphics show that this measure is the
most sensitive to noise, DBR would need more than 80% of TP, while
for the rest of the measures this number could be much lower, around
55% and sometimes less, if the percentage of FP is moderate.

Finally, graphics of yeast dataset in Fig. 4 (bottom) present a
case in which DBR has severe difficulties to enhance BR's results in
all measures. In fact, DBR(BR) only obtains better scores than BR
for Subset 0/1 loss and the difference is low. The figures for
all measures are quite similar, requiring a high percentage of TP
to improve over BR (notice that FPs hardly have influence). The
problem, again, is that the Hamming loss of BR is large, more than
19% and those mistakes introduce noise in the predictions of DBR
(BR), which in turn produce even more mistakes. The pity is that
the improvements could be amazing in this domain, more than 20
points for each metric.

The main conclusion of this experiment has to do with the
influence of attribute noise with respect to the performance measures.
Hamming loss is by far the metric more sensitive. Our explanation for
this fact is that for Hamming loss every mistake has the same
influence, but for others metrics, like F;, this is not the case. For
instance, if all relevant labels of an instance are correctly predicted, the
F; will decrease in less quantity with each irrelevant label predicted as
relevant. This suggests that DBR tends to predict some irrelevant labels
as relevant, which is not so harmful for measures like F;.

Furthermore, the graphs provide us more information than just
the behavior of our method. The inclusion of the BR performance
in the figures gives us an idea about the dependence among labels
that exists in the datasets. In this way, we would be able to carry
out a classification of the datasets according to it.

5.4. Using other multi-label classifiers to obtain label estimations

The experiments of the previous section prove that DBR heavily
depends on the label estimations used during the test phase.
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Table 5
Performance of DBR, in terms of F; and Jaccard index, when different multi-label classifiers are used to provide the required labels estimations. The scores of these multi-label classifiers are included for reference.

Dataset  BR DBR(BR) STA DBR(STA) cc DBR(CC) NS DBR(NS)

F1

Bibtex 0.3702+0.0048 (8.0) 0.3754+0.0059 (3.5) 0.3781+0.0051 (1.0) 0.3769+0.0060 (2.0) 03718+0.0051 (7.0) 0.3744+0.0061 (5.0) 0.3722+0.0051 (6.0) 0.3754+0.0058 (3.5)
Emotions 0.4920 +0.0200 (8.0) 0.6087 +0.0140 (3.0) 0.5046 +0.0181 (7.0) 0.6110+0.0123 (1.0) 0.5893 +0.0166 (5.0) 0.6042 +0.0149 (4.0) 0.5101 +£0.0147 (6.0) 0.6092 +0.0124 (2.0)
Enron 0.5566 + 0.0046 (8.0) 0.5820+0.0044 (3.0) 0.5585+0.0044 (7.0) 0.5822 4+ 0.0043 (2.0) 0.5666 +0.0057 (5.0) 0.5786+0.0071 (4.0) 0.5650+0.0053 (6.0) 0.5842+0.0039 (1.0)
Genbase 09918 +0.0026 (6.5) 0.9921+0.0026 (2.5) 0.9918+0.0026 (6.5) 0.9921+0.0026 (2.5) 0.9918+0.0026 (6.5) 0.9921+0.0026 (2.5) 0.9918+0.0026 (6.5) 0.9921+0.0026 (2.5)
Mediamill 05917 +0.0034 (3.0) 0.5723+0.0038 (8.0) 0.6038 +0.0043 (1.0) 0.5885+0.0047 (4.0) 0.5859+0.0042 (5.0) 0.5765+0.0039 (70) 0.6000+0.0032 (2.0) 0.5837 +0.0038 (6.0)
Medical 0.7733 +£0.0109 (8.0) 0.7982+0.0092 (2.0) 0.7840+0.0099 (7.0) 0.7968 + 0.0093 (4.0) 0.7891+0.0095 (5.5) 0.8005-+0.0092 (1.0) 0.7891 +0.0103 (5.5) 0.7975+0.0093 (3.0)
Image 0.4212+0.0089 (8.0) 0.5168+0.0104 (2.0) 0.4257+0.0087 (7.0) 0.5169+0.0117 (1.0) 0.4628+0.0129 (5.0) 0.5127+0.0093 (4.0) 0.4258+0.0090 (6.0) 0.5158+0.0111 (3.0)
Reuters  0.8413+0.0026 (75) 0.8705+0.0023 (4.0) 0.8413+00026 (75) 0.8710+0.0024 (3.0) 0.8610+0.0033 (5.0) 0.8727+0.0031 (2.0) 0.8456+0.0031 (6.0) 0.8750+0.0028 (1.0)
Scene 0.6125+0.0084 (8.0) 0.6846+0.0082 (5.0) 0.6329+0.0083 (7.0) 0.7057+0.0084 (1.0) 0.6927 +0.0093 (4.0) 0.6961+0.0084 (3.0) 0.6455+0.0087 (6.0) 0.7027 +0.0093 (2.0)
Slashdot 04433 +0.0047 (8.0) 0.5547 +0.0058 (4.0) 0.4448+0.0048 (7.0) 0.5555+0.0059 (3.0) 0.5146+0.0069 (5.0) 0.5608+0.0074 (2.0) 0.4749+0.0060 (6.0) 0.5613 +0.0069 (1.0)
Yeast 0.6168 +0.0081 (4.0) 0.6098+0.0084 (8.0) 0.6164+0.0081 (5.0) 0.6107+0.0082 (7.0) 0.6264+0.0089 (1.0) 0.6260+0.0090 (2.0) 0.6192+0.0074 (3.0) 0.6147 +0.0076 (6.0)
Avg. rank (7.00) (4.09) (5.73) (2.77) (4.91) (3.32) (5.36) (2.82)
Jaccard Index

Bibtex 03150 +0.0048 (8.0) 0.3232+0.0059 (3.0) 0.3217+0.0050 (5.0) 0.3245+0.0060 (1.0) 0.3190+0.0051 (6.0) 0.3229+0.0062 (4.0) 0.3185+0.0050 (7.0) 0.3233+0.0059 (2.0)
Emotions 04227 +0.0186 (8.0) 0.5176+0.0136 (4.0) 04350+0.0170 (70) 05212+0.0118 (3.0) 05149+0.0172 (50) 0.5255+0.0151 (1.0) 0.4413+0.0150 (6.0) 0.5216+0.0115 (2.0)
Enron 0.4469 +0.0042 (8.0) 0.4709+0.0048 (4.0) 0.4491+0.0038 (70) 0.4712+0.0046 (3.0) 0.4628+0.0059 (50) 0.4739+0.0070 (2.0) 0.4557+0.0045 (6.0) 0.4742+0.0044 (1.0)
Genbase 0.9894 + 0.0026 (6.5) 0.9897 +0.0026 (2.5) 0.9894+0.0026 (6.5) 0.9897+0.0026 (2.5) 0.9894+0.0026 (6.5) 0.9897 +0.0026 (2.5) 0.9894+0.0026 (6.5) 0.9897 +0.0026 (2.5)
Mediamill 0.4670+0.0039 (6.0) 0.4542+0.0040 (8.0) 0.4836+0.0048 (1.0) 0.4749+0.0052 (3.0) 0.4710+0.0043 (4.0) 0.4647+0.0039 (7.0) 0.4790+0.0037 (2.0) 0.4699 +0.0040 (5.0)
Medical ~ 0.7451+0.0109 (8.0) 0.7695+0.0092 (4.0) 0.7556+0.0100 (7.0) 0.7706+0.0090 (3.0) 0.7642+0.0092 (5.0) 0.7756+0.0092 (1.0) 0.7637+0.0100 (6.0) 0.7724+0.0092 (2.0)
Image 0.3860 +0.0091 (8.0) 0.4732+0.0096 (2.0) 0.3910+0.0089 (6.0) 0.4739+00109 (1.0) 0.4286+0.0136 (50) 0.4725+0.0092 (3.0) 03906+ 0.0092 (7.0) 0.4723+0.0102 (4.0)
Reuters  0.8167+0.0029 (8.0) 0.8400+0.0026 (4.0) 0.8169+0.0028 (7.0) 0.8404+0.0028 (3.0) 0.8364+0.0038 (5.0) 0.8478+0.0036 (1.0) 0.8219+0.0034 (6.0) 0.8456+0.0032 (2.0)
Scene 0.5941 +0.0083 (8.0) 0.6400+0.0080 (5.0) 0.6177+0.0084 (7.0) 0.6638 +0.0081 (4.0) 0.6786+0.0093 (2.0) 0.6826+0.0083 (1.0) 0.6299+0.0087 (6.0) 0.6673+0.0091 (3.0)
Slashdot  0.4271+0.0047 (8.0) 0.4970+0.0060 (4.0) 0.4286+0.0048 (7.0) 0.4979+0.0061 (3.0) 0.4942+0.0065 (5.0) 0.5207+0.0074 (10) 0.4570+0.0056 (6.0) 0.5101+0.0068 (2.0)
Yeast 0.5071 +0.0085 (4.0) 0.4968 +0.0090 (8.0) 0.5070+0.0086 (5.0) 0.4981+0.0089 (7.0) 0.5231+0.0098 (1.0) 0.5228 +0.0098 (2.0) 0.5110+0.0084 (3.0) 0.5040 +0.0090 (6.0)
Avg. rank (7.32) (4.41) (5.95) (3.05) (4.50) (2.32) (5.59) (2.86)
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Table 6
Performance of DBR, in terms of Hamming loss and Subset 0/1 loss, when different multi-label classifiers are used to provide the required labels estimations. The scores of these multi-label classifiers are included for reference.

Dataset  BR DBR(BR) STA DBR(STA) cc DBR(CC) NS DBR(NS)

Hamming Loss

Bibtex 0.0121 + 0.0001 (3.0) 0.0121 +0.0001 (3.0 0.0122 + 0.0001 (7.0 0.0121 +£0.0001 (3.0) 0.0121 +0.0001 (3.0 0.0122 £0.0001 (7.0) 0.0121 +£0.0001 (3.0) 0.0122 +0.0001

(
Emotions  0.2203 + 0.0067 (4.0) 0.2315+0.0087 (8.0 0.2184 +0.0061 (3.0 0.2310 £ 0.0079 (7.0) 0.2164 +0.0081 (1.0 0.2254+0.0085 (5.0) 0.2175+0.0054 (2.0) 0.2296 +0.0072 (6.0)
Enron 0.0446 +0.0007 (2.5) 0.0488 +0.0006 (8.0 0.0446 +0.0007 (2.5 0.0486 + 0.0006 (6.0) 0.0464 +0.0008 (4.0 0.0476 +0.0007 (5.0) 0.0445 +0.0006 (1.0) 0.0487 +0.0005 (7.0)
Genbase  0.0008 +0.0001 (6.5) 0.0007 +0.0001 (2.5 0.0008 +0.0001 (6.5 0.0007 + 0.0001 (2.5) 0.0008 +0.0001 (6.5 0.0007 + 0.0001 (2.5) 0.0008 +0.0001 (6.5) 0.0007 +0.0001 (2.5)

Mediamill 0.0276 + 0.0003
Medical 0.0099 + 0.0004
Image 0.2025 +0.0041

3.0) 0.0310+0.0004 (8.0
75)  0.0098 +0.0004 (4.5
40) 02161+0.0067 (7.0

0.0269 + 0.0003 (1.0
0.0098 +0.0004 (4.5
0.2018 +0.0041 (3.0

0.0294 +0.0004 (6.0) 0.0286 +0.0003 (4.0
0.0096 +0.0004 (1.0) 0.0099 +0.0004 (7.5
0.2153 +0.0068 (6.0) 0.2013 +0.0051 (1.0

( ( (
( ( (
( ( (
( ( (
0.0292 +0.0003 (5.0) 0.0271+0.0003 (2.0) 0.0296 + 0.0003 (
0.0097 + 0.0004 (2.0) 0.0098 +0.0004 (4.5) 0.0098 +0.0004 (
0.2105 + 0.0058 (5.0) 0.2017 +0.0043 (2.0) 0.2162 +0.0067 (8.0)
( ( (
( ( (
( ( (
( ( (
( ( (

Reuters 0.0458 +0.0008 (3.0) 0.0577 +0.0012 (7.0 0.0457 + 0.0008 (1.5 0.0578 +£0.0012 (8.0) 0.0476 +0.0010 (4.0 0.0478 +£0.0011 (5.0) 0.0457 +0.0008 (1.5) 0.0558 +0.0013 (6.0)
0.0935 +0.0028 (1.0 0.1699 +0.0048 (7.0)  0.1069 +0.0030 (4.0 0.1100 + 0.0033  (5.0) 0.0970 +0.0030 (2.0) 0.1600 +0.0044 (6.0)
Slashdot  0.0373 +0.0004 (1.0) 0.0880+0.0019 (8.0 0.0374 + 0.0005 (2.0 0.0873 +0.0019 (7.0)  0.0402 +0.0006 (4.0 0.0646 + 0.0019 (5.0) 0.0379+0.0005 (3.0) 0.0791+0.0017 (6.0)

Yeast 0.1981+0.0032 (2.5) 0.2156+0.0036 (8.0 0.1981£0.0033 (2.5) 0.2149+0.0037 (7.0) 0.2099 4+ 0.0041 (4.0

3.64) (6.55) (3.14) (5.50) (3.91)

0.2100 +0.0041 (5.0) 0.1978 + 0.0031

4.68)

1.0)  0.2107 +0.0037

(
(
(
(
Scene 0.0983 +0.0029 (3.0) 0.1831+0.0047 (8.0
(
(
( 2.59)

Avg. rank 6.00)

Subset 0/1 Loss

Bibtex 0.8283 +0.0043 (8.0) 0.8154+0.0053 (4.0) 0.8269+0.0046 (7.0) 0.8146+0.0053 (2.0) 0.8211+0.0049 (5.0) 0.8141+0.0057 (1.0) 0.8226+0.0044 (6.0) 0.8149+0.0052 (3.0)
Emotions 0.7942 +0.0156 (8.0) 0.7470+0.0174 (5.0) 0.7825+0.0158 (7.0) 0.7369+0.0151 (4.0) 0.7098+0.0216 (2.0) 0.7015+0.0179 (1.0) 0.7741+0.0192 (6.0) 0.7319+0.0164 (3.0)
Enron 0.8690 + 0.0055 (8.0) 0.8525+0.0088 (4.5) 0.8661+0.0054 (7.0) 0.8525-+0.0088 (4.5) 0.8408+0.0070 (2.0) 0.8320+0.0103 (1.0) 0.8578+0.0053 (6.0) 0.8455+0.0086 (3.0)
Genbase  0.0181+0.0030 (45) 0.0181+0.0030 (45) 0.0181+0.0030 (45) 0.0181+0.0030 (45) 0.0181+0.0030 (45) 0.0181+0.0030 (45) 0.0181+0.0030 (45) 0.0181+0.0030 (4.5)
Mediamill 0.9036+0.0047 (8.0) 0.8814+0.0039 (6.0) 0.8794+0.0051 (5.0) 0.8610+0.0049 (2.0) 0.8620+0.0043 (3.0) 0.8580+0.0037 (1.0) 0.8834+0.0042 (70) 0.8624+0.0039 (4.0)
Medical ~ 0.3394+0.0123 (8.0) 0.3149+0.0094 (6.0) 0.3292+0.0115 (70) 0.3067+0.0091 (3.0) 0.3098+0.0098 (4.0) 0.2986+0.0102 (1.0) 03118+0.0103 (5.0) 0.3016+0.0100 (2.0)
Image 0.7150+0.0097 (8.0) 0.6520+0.0133 (3.0) 0.7095+0.0101 (6.0) 0.6500+0.0139 (2.0) 0.6700+0.0161 (5.0) 0.6430+0.0123 (1.0) 0.71104+0.0102 (7.0) 0.6530+0.0134 (4.0)
Reuters  0.2569+0.0043 (8.0) 0.2460+0.0042 (5.0) 0.2561+0.0043 (70) 0.2455+0.0043 (4.0) 02375+0.0056 (2.5) 0.2263+0.0055 (1.0) 0.2484+0.0049 (6.0) 0.2375+0.0049 (2.5)
Scene 0.4603 + 0.0100 (8.0) 04499 +0.0085 (7.0) 0.4275+0.0098 (6.0) 0.4225+0.0087 (5.0) 0.3635+0.0097 (2.0) 0.3552+0.0081 (1.0) 0.4167+0.0097 (4.0) 0.4072+0.0093 (3.0)
Slashdot ~ 0.6195+0.0055 (6.0) 0.6285+0.0063 (8.0) 0.6182+0.0055 (5.0) 0.6277+0.0063 (7.0) 0.5651+0.0065 (1.0) 05788+ 0.0077 (2.0) 0.5949+0.0056 (3.0) 0.6063 +0.0071 (4.0)
Yeast 0.8453 +0.0100 (8.0) 0.8407+0.0120 (6.0) 0.8432+0.0099 (7.0) 0.8378+00118 (50) 0.7865+0.0119 (1.0) 0.7869+0.0120 (2.0) 0.8246+00115 (3.0) 0.8250+0.0126 (4.0)
Avg. rank (7.50) (5.36) (6.23) (3.91) (2.91) (1.50) (5.23) (3.36)
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Moreover, it is clear that the better such estimations are, the better the
predictions of DBR will be, as we expected. But an important question
remains unanswered. DBR needs another multi-label classifier method
which provides label estimations. Thus, the practitioner that decides to
use DBR learner must train an additional multi-label classifier. But, is
it worthy? Or, stated differently, can DBR improve the performance of
that multi-label classifier? When we employed BR in our first exp-
eriment, we observed that DBR(BR) outperformed BR in all measures
except Hamming loss. But, what would happen with a more sophis-
ticated multi-label approach?

In this final experiment, we used the rest of the methods
studied in this paper, STA, CC and NS, to feed DBR models during
the test phase. The process was simple: first, we trained once our
DBR model, and then we tested it with the label estimations
supplied by the other three multi-label classifiers. Recall that DBR
models were exactly the same in all cases because (i) the training
phase of a DBR model requires true label information, not estima-
tions, and (ii) the parameter selection procedure (see Section 5.1)
individually selects the values that optimize the accuracy for each
individual binary classifier. That is, neither the training phase of
DBR, nor the parameter selection process depends on the multi-
label classifier used to provide label estimations, nor fit to it.

Table 5 shows the scores for F; and Jaccard index, while Hamming
loss and Subset 0/1 loss are presented in Table 6. The goal is to prove
if DBR(M) performs better than M, where M is the multi-label
classifier used to provide label estimations. We have included the
scores for BR and DBR(BR) as reference. Despite the average ranks are
shown, we will not discuss the corresponding Nemenyi tests because
there are several multi-label classifiers, all DBR versions, that have
the same learning bias. This fact may alter the results of the Nemenyi
test because, for instance, if DBR performs well in a particular
domain, all DBR versions usually obtain a good rank, relegating the
rest of the methods in that dataset. Instead, we will use the Wilcoxon
sign-ranks test to compare each DBR(M) with its counterpart M.

Analyzing the results for all performance measures, we observe
more or less the same conclusions that in case of DBR(BR). Each
DBR version outperforms its respective counterpart method in
terms of F;, Jaccard index and Subset 0/1 loss. The number of wins,
ties and losses is respectively 35/0/9, 36/0/8 and 34/4/6, for a total
of 105 wins, 4 ties and 23 losses. The losses are always in the same
domains: mediamill and yeast, except one loss in bibtex dataset for
F;. On the contrary, DBR versions are again worse than its counter-
part learner in Hamming loss, with only 8 wins, 2 ties and 34 losses.

Table 7 summarizes the results of the Wilcoxon sign-ranks tests
performed. As shown, DBR is significantly better for F; and Jaccard
index and Subset 0/1 loss, but worse for Hamming loss. We
can observe that, in all comparisons, the test rejects the null-
hypothesis that both algorithms perform equally well, except in case
of CC vs. DBR(CC) for Subset 0/1 loss, but the p-value obtained is
quite low. In fact, the results of DBR(CC) in that particular case are
pretty good: DBR(CC) improves the score of CC in 8 out of 11 datasets,
when it is known that CC is well-tailored for Subset 0/1 loss, despite
in some particular cases it can perform poorly [23]. Nevertheless, in
our experiments, CC outperforms the rest of the methods in terms of

Table 7

Wilcoxon signed-ranks tests, comparing DBR with each method used to obtain
labels estimations. Each row shows the p-value for each performance measure. The
symbol 11 (1) means that DBR is significantly better (worse) than the other method
at level p <0.01 (1 and | at level p < 0.05).

Comparison Fi Jaccard Index Hamming loss Subset 0/1 loss
BR vs. DBR(BR) 0.0186 t 0.0186 1t 0.0098 || 0.0059 1t

STA vs. DBR(STA) 0.0420 1 0.0186 1 0.0137 | 0.0098 1t

CC vs. DBR(CC) 0.0186 1 0.0137 1 0.0186 | 0.0801

NS vs. DBR(NS) ~ 0.0244 1t 0.0244 t 0.0039 |} 0.0371 t

Subset 0/1 loss, except DBR(CC) which normally obtains better
scores.

Interestingly, looking at the results from another perspective,
the four versions of DBR are at the top of the ranking, ahead of the
rest of methods, for F; and Jaccard index. This does not happen for
Subset 0/1 loss, because CC is the second best approach. For
Hamming loss the results are just the opposite. Notice that DBR
(BR), used as representative of our method in the first experiment,
obtains the worse average ranks among DBR versions for all
performance measures. This result is not strange because STA, CC
and NS are more complex learners than BR, and it confirms our
claim that the better the label estimations used, the better the
performance of DBR. However, we cannot state that DBR will be
able to improve the performance of any multi-label classifier used
to provide the required label estimations. But, it seems that when
the problem presents an important level of conditional depen-
dence, DBR tends to obtain very good results in those measures
biased to the relevant labels.

6. Conclusions and future work

Although multi-label classification can be seen as a simple
extension of the well-studied single-class classification, it comes
with the challenge that labels usually display dependencies
amongst each other. This paper proposes the dependent binary
relevance (DBR) approach to cope with multi-label classification
under the hypothesis that, in general, the prediction of each label
can benefit from information about the other labels. To that end,
our learner employs an extended feature space composed of
the original input space and the label space. The main goal of
dependent binary models is to exploit conditional label depen-
dence without making any assumption about the potential rela-
tionships among labels. Our approach requires label estimations
provided by another multi-label classifier in order to make pre-
dictions. This issue has been extensively analyzed throughout
the paper, concluding that the more knowledge of the presence
of certain labels, the better the performance of our method.

The experiments carried out have shown that a DBR model is able
to detect conditional label dependence better than other state-of-the-
art multi-label classifiers, notably classifier chains (CC). This is due to
the fact that DBR employs all available information. However, the
method presents an important drawback, shared with CC, but even
more damaging. It suffers from a problem of attribute noise during the
test phase: when the label estimations used contain many mistakes,
the method may perform poorly. The influence of this issue depends
on the domain and, more importantly, on the evaluation measure. In
our experiments, DBR performs quite well in terms of those evaluation
measures that put emphasis on a correct prediction of the relevant
labels. However, the attribute noise is much more harmful for
Hamming loss, deteriorating the performance of our approach.

As future work, we plan to further investigate how to deal with the
problem of attribute noise in a proper way, reducing its influence on
the performance of dependent binary models. Maintaining the assu-
mptions of our approach, the main idea is to somehow make the
individual binary classifiers less dependent of the information from
the rest of the labels, focusing mainly on the original input space,
whenever object descriptions are enough to correctly predict those
examples. This kind of base learners could be used not only for DBR,
but also for CC and other interesting chaining approaches, including
PCC.
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