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Abstract

Multi-label classification deals with problems where each datapoint can be assigned to
more than one class, or label, at the same time. The simplest approach for such problems
is to train independent binary classification models for each label and use these models to
independently predict a set of relevant labels for a datapoint. MLkNN is an instance-based
lazy learning algorithm for multi-label classification that takes this approach. MLkNN,
and similar algorithms, however, do not exploit associations which may exist between the
set of potential labels. These methods also suffer from imbalance in the frequency of
labels in a training dataset. This work attempts to improve the predictions of MLKNN
by implementing a two-layer stack-like method, Stacked-MLkKNN which exploits the label
associations. Experiments show that Stacked-MLKNN produces better predictions than
MLKNN and several other state-of-the-art instance-based learning algorithms.
Keywords: multi-label, stacking, instance-based learning

1. Introduction

Multi-label classification problems are those in which a datapoint can be labelled with more
than one class simultaneously (Herrera et al., 2016). For example, images can be labelled as
containing multiple objects, music can be labelled with more than one genre, or documents
can be labelled with multiple topics.

Multi-label classification problems can be formally defined as follows. Let x; be a dat-
apoint from a d-dimensional input space X of real and/or categorical attributes, and let
L = {Ai,2,..., A} be a set of labels. For each datapoint x; there is a subset of labels,
L; C L, that are relevant to that datapoint — for example the objects in an image. On the
other hand, (£ — £;) is the subset of labels that are called irrelevant for the datapoint.

A typical multi-label dataset is defined as D = {(x;,y:)|1 < i < n}, where n is the
number of datapoints in the dataset. Here x; = {xj1,zi2, ..., Ziq} is a vector indicating the
ith datapoint and y; = {Yi1,yi2, . - ., Yiq} is a vector of binary values indicating the set of
relevant labels, £;, for the i*" datapoint where yi; = 1if A\j € £;, and y;; = 0 if \; ¢ L;.
Learning a multi-label classification problem involves learning a model or models, which can
predict the relevance of every label in £ for a new datapoint x;.

There are several multi-label classification methods proposed in the literature. The most
basic method, binary relevance (Boutell et al., 2004), considers each label independently in
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a set of binary classification problems. Although the method is simple and intuitive, it
fails to take advantage of associations that exist between the labels in a dataset which
might contribute towards better predictions. More sophisticated multi-label classification
approaches do take advantage of these associations.

Approaches to multi-label classification can be broadly divided into two major cate-
gories: problem transformation and algorithm adaptation. Problem transformation methods
transform multi-label datasets so as to make them suitable for the application of stan-
dard multi-class classification algorithms (binary relevance can be considered as an example
within this category). Algorithm adaptation methods adapt or enhance existing multi-class
algorithms to work with multi-label datasets.

For the same reasons that they are interesting in multi-class classification scenarios,
instance-based and lazy learners are interesting for multi-label classification scenarios. These
include the advantage of delaying computation to query time to allow different hypothesis
to be modelled for each query, and the ease with which a model can be updated by simply
adding more datapoints to a training set without any need for retraining (Mitchell, 1997).
Instance-based learning approaches have been proposed in the multi-label context, for ex-
ample in Spyromitros et al. (2008); Younes et al. (2008); Cheng and Hullermeier (2009) and
Zhang and Zhou (2007).

Multi-label classification problems inherently face the problem of class imbalance as
labels are rarely evenly distributed within a dataset and it is quite common to have very
rare, or very frequent labels (Charte et al., 2015). The associations that exist between labels
can be exploited to improve the predictions and in the process also decrease the negative
effects of imbalanced labels. Taking a lazy learning approach is also advantageous as, should
any examples of the rare labels be seen in query data, they can be easily exploited by adding
them to the training set.

This paper introduces Stacked-MLENN, an improved instance-based lazy approach for
multi-label classification problems falling under the problem transformation category. The
performance of this new method is compared to other relevant instance-based state-of-the-
art approaches, some of which fall into the algorithm adaptation category and while others
are from the problem transformation category.

The remainder of the paper is structured as follows. First, some existing instance-based
multi-label classification approaches are briefly described in Section 2. Next, Section 3
presents the proposed method, Stacked-MLkNN. In Section 4 the setup of the experiments to
compare Stacked-MLKNN to existing and relevant state-of-the-art instance-based multi-label
classification methods are described. The results of these experiments are then presented
and discussed in Section 5. Finally, some directions for future work are discussed and the
paper is concluded in Section 6.

2. Background Information

This section describes current state-of-the-art instance-based learning approaches to multi-
label classification: BRKNN and MLKNN which are binary relevance type algorithms, and
DMLKNN, IBLR-ML and IBLR-ML+ which are in the algorithm adaptation category and
attempt to improve predictions by taking advantage of label associations. The performance
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of proposed method, Stacked-MLKNN, described in Section 3, will be compared to these
state-of-the-art approaches.

2.1. Binary Relevance k-Nearest Neighbours (BRkNN)

The binary relevance k-nearest neighbours algorithm proposed by Spyromitros et al. (2008)
is a binary relevance approach to multi-label classification that uses a separate k-nearest
neighbour (k-NN) model for each label independently. This means running the k-NN process
g times, once for each label. Spyromitros et al. (2008) show how efficiency can be gained
with respect to execution time by using a shared similarity matrix across the different k-NN
processes.

2.2. Multi-Label k-Nearest Neighbours (MLKNN)

Multi-label k-nearest neighbours (MLKNN) (Zhang and Zhou, 2007) was the first lazy ap-
proach proposed specifically for multi-label classification. This is also a binary relevance
approach which considers each label independently as a binary classification problem. In-
stead of a standard k-NN method, however, MLKNN uses the mazimum a-posteriori (MAP)
(Kelleher et al., 2015) approach combined with k-NN. First the prior probability of the rele-
vance of a label )\; is computed from the training dataset. Next, conditional probabilities on
the number of neighbours of a datapoint with A; as relevant, conditioned on whether or not
A; is relevant for the datapoint itself, is calculated, again based on the training data. The
relevance of )\; for a new datapoint x; is calculated using Bayes rule, utilising these prior
and conditional probabilities. This is performed for each label independently. It has been
shown that MLKNN performed better than several algorithms.

2.3. Dependent Multi-Label k-Nearest Neighbours (DMLKNN)

Dependent multi-label k-nearest neighbours (DMLKNN) (Younes et al., 2008) modifies MLKNN
to take label associations into account. While predicting the relevance of a label \; for xy,
along with the label A;, DMLKNN utilises all the other labels \; € £L—{);} of the datapoints
in the neighbour of the new datapoint x;. In Younes et al. (2008) it was shown that with
respect to two datasets, DMLKNN was able to perform better than MLKNN over several
selected values of k.

2.4. Instance Based Learning by Logistic Regression for Multi-Label learning
(IBLR-ML)

Instance based learning by logistic regression for multi-label learning (IBLR-ML) by Cheng
and Hullermeier (2009) considers the labels of the neighbourhood of the query instance x; as
features. Then it derives the relevance of a label based on the influences of all of the labels
in this feature set using a logistic regression model. Unlike a standard logistic regression
model, where the log-odds ratio is modelled by a linear model, IBLR-ML defines the log-
odds ratio using an instance-based approach making the log-odds a function of the nearest
neighbours of the query datapoint. For a detailed derivation see Cheng and Hullermeier
(2009). The method IBLR-ML+ is an extension of the IBLR-ML method which includes
additional features to the input space of the regression models, where the additional features
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can be the original input space features, along with the label predictions. IBLR-ML and
IBLR-ML+ were found to perform well in Cheng and Hullermeier (2009) when compared to
MLKNN. Although the method is instance-based, the implementation is not strictly lazy, as
it requires to train a logistic regression model or a similar process to estimate the optimal
values of coefficients as explained in Cheng and Hullermeier (2009).

2.5. Stacked approaches

Stacking is an ensembling approach that uses a first-level ensemble of classifiers to generate

a second-level meta-dataset consisting of predictions from the first level, with the target
being the classes from the original dataset (Wolpert, 1992). A classifier is used to extract a
model from the second-level meta-dataset, to create the overall output from the model.

Previously stacking based approaches to the multi-label context were explored in Tsoumakas

et al. (2009); Godbole and Sarawagi (2004), but not in the context of instance-based learn-
ers. Tsoumakas et al. (2009) uses multiple folds to generate the stacked layer dataset, which
requires training models and predictions, equal to the number of folds, just to generate the
second-level dataset. In Godbole and Sarawagi (2004), the second layer also includes the
original input space.

3. The Stacked-MLKkNN Method

The instance-based learning approaches to multi-label classification MLKNN and BRkKNN
do not exploit label associations which can lead to better modelling of labels and should be
especially advantageous when labels are imbalanced. Although IBLR-ML and IBLR-ML-+
do exploit label associations, and are instance-based, they rely on training linear models for
each label and therefore cannot be considered strictly lazy approaches. Therefore, adding
new datapoints would require retraining these models.

To overcome these problems and improve the performance of MLKNN by taking the
label associations into account but still keeping the method lazy, this paper proposes a stack
based modification to MLKNN, Stacked-MLENN.

Stacked-MLkNN is a two layer stack-like approach. The first layer predicts the probabil-
ity of the labels as in MLKNN, whereas the second layer takes the predicted probabilities of
each label from the first layer and revises these prediction to take into account associations
with predictions for other labels.

The original dataset DY) = {(x;,y:)|1 < i < n}, is used in the first layer. A dataset
D@ for the second layer is generated from D) using the first layer. For each datapoint

x; € DU the predicted probability of relevance, p(};i)(l), for each label is found based on

the training set. The second layer dataset is constructed as D@ = {(p(3;¢)(1),y2-)\1 <i<n}.
Essentially, the predicted probability of the training set based on the training set itself is
taken as the input space of the second level. Therefore, in the second level, each target label
is made dependent on all the other labels. The second layer also uses MLKNN to perform
the final prediction. In the terms of the MLKNN algorithm, for a datapoint x;, the second
layer decides the relevance of a label \; based on the how many predictions similar to p(ygl))
have the label \; as relevant.
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Figure 1: Stacked-MLKNN high level diagram
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The dataset D) is generated in a different way from the works mentioned in Section
2.5. Stacked-MLKNN does not use the input space features as described in Godbole and
Sarawagi (2004), thus reducing the dimensionality of D). Also, it does not use multiple
folds to generate the second layer dataset as in Tsoumakas et al. (2009), therefore saving
time to generate D). Therefore the generation of D) takes less time and consists of less
attributes, and was found to perform well in the present context.

The prediction for a new datapoint x; is performed as follows: The first layer predicts

~ (1
probabilities for each label p(yt)( ) for the datapoint x; using MLKNN, based on DD, The

second layer then uses p(};t)(l) for all \; to decide the final label relevance p(};t)@) based on
D) using MLKNN. This process is shown in Figure 1.

As the method uses MLKNN in both the layers, there are two parameters which need
to be tuned: k; and ks the number of nearest neighbours used in MLkNN at the first and
second layer of the algorithm respectively.

4. Experiment

To assess the effectiveness of Stacked-MLKNN, experiments were performed using 12 well
known multi-label datasets, listed in Table 1. For this experiment all the attributes of
each dataset were rescaled between 0 and 1. The columns of the table show the different
label properties (Herrera et al., 2016) of the datasets. Instances, Inputs and Labels indicate
the total number of data points, the number of predictor variables, and the number of
potential labels (¢), in each dataset respectively. Total labelsets give the number of unique
combinations of relevant labels, where each such unique label combination is a labelset.
Single Labelsets indicate the number of data points having a unique combination of relevant
labels. Cardinality indicates the average number of labels assigned per data point, and
Density is a normalised dimensionless form of cardinality. MeanIR (Herrera et al., 2016)
indicates the average degree of label imbalance in the multi-label dataset—a higher value
indicates more imbalance.

The implementations for BRKNN, DMLKNN, IBLR-ML and IBLR-ML+ were from the
MULAN library (Tsoumakas et al., 2011), whereas MLKNN and the Stacked-MLKNN im-
plementations were by the authors in R!.

1. Implementation is available at: https://github.com/phoxis/stack mlknn
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Table 1: The datasets used in the experiments described in this paper and their properties
Total Single
Dataset  Instances Inputs Labels Labelsets Labelsets Cardinality Density MeanlR

yeast 2417 103 14 198 77 4.237 0.303 7.197
scene 2407 294 6 15 3 1.074 0.179 1.254
emotions 593 72 6 27 4 1.869 0.311 1.478
medical 978 1449 45 94 33 1.245 0.028 89.501
enron 1702 1001 53 753 573 3.378 0.064 73.953
birds 322 260 20 89 55 1.503 0.075 13.004
genbase 662 1186 27 32 10 1.252 0.046 37.315
cal500 502 68 174 502 502 26.044 0.150 20.578
llog 1460 1004 75 304 189 1.180 0.016 39.267
slashdot 3782 1079 22 156 56 1.181 0.054 17.693
corelbk 5000 499 374 3175 2523 3.522 0.009 189.568
bibtex 7395 1836 159 2856 2199 2.402 0.015 12.498

To measure the performance of the algorithms, the label based macro averaged F-score
(Zhang and Zhou, 2014) (MAF) is used. This is defined as:

P EZQ:Q " Prec?s?onl x Recall;
q1= Precision; + Recall;

where Precision; and Recall; are the precision and recall scores respectively for the label
A, and ¢ is the number of labels. The predicted probabilities were thresholded at 0.5 to
determine the label relevance.

In many other studies of multi-label classification (e.g. Spyromitros et al. (2008), Zhang
and Zhou (2007), and Cheng and Hullermeier (2009)), Hamming loss is used to measure
algorithm performance. However, in the presence of imbalanced labels, Hamming loss suffers
from the same problems that simple classification accuracy suffers from when used in multi-
class problems with imbalanced classes — the performance of models on the majority classes
overwhelms performance on minority classes (Kelleher et al., 2015). This is why the macro
averaged F-score was chosen over Hamming loss for evaluation.

For each algorithm, a wide range of hyper-parameters were explored to attain the best
performance. For each hyper-parameter combination, a 2 x 5-fold cross-validation was per-
formed for each dataset, and the best mean macro averaged F-score was recorded. The
range of hyper-parameter combinations used for each algorithm is described as follows. For
BRKNN, MLKNN, IBLR-ML and IBLR-ML-, a total of 12 values of k were explored, where
ke {4,6,8,...,26}. DMLKNN has two parameters, k and §, where § determines the degree
of approximate neighbour count as explained in Younes et al. (2008). The hyper-parameter
combination explored for DMLKNN was, (k,d) € {4,6,8,...,26} x {0,2,4,...,16}. There-
fore, for this case, 108 hyper-parameter combinations were explored. The smoothing pa-
rameter s, for MLKNN and DMLKNN as explained in Zhang and Zhou (2007); Younes et al.
(2008), was set to 1.

Stacked-MLkNN has two hyper-parameters, k; and k2, to be selected. Two experiments
were performed to select the hyper-parameters. First, a greedy search was performed to
first select the ki value as the best k value for MLKNN from the set {4,6,8,...,26}, via
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cross-validation. With &y selected and fixed, the best ko value was selected from the set
{4,6,8,...,26}, again using cross-validation experiments. Therefore this experiment ex-
plored 24 hyper-parameter combinations. As k; was first fixed as the best k value for
MLKNN, an improvement in the results in Stacked-MLKNN will directly indicate the effec-
tiveness of the stack layer. This tuning was mainly performed to evaluate the effectiveness
of the stacked layer and will be discussed in Section 5.

A grid search was also performed over k; and ko where (ki,k2) € {4,6,8,...,26} X
{4,6,8,...,26}, with the best parameters selected based on macro-averaged F-score. This
process explores a total of 142 hyper-parameter combinations. The main results for Stacked-
MLKNN discussed in the next section and presented in Table 2 are based on the hyper
parameters chosen via this grid search.

This work isolates the focus on exploiting the label associations in a stacked approach in
an instance-based lazy learning context, and therefore does not use kernel methods and/or
imbalance reducing pre-processing techniques which may further improve the results.

5. Results

The performance of the Stacked-MLKNN can be assessed in two ways. Firstly, to see if the
stack layer did improve the results of the base MLKNN approach. Secondly, to see how it
performed compared to the other algorithms mentioned in Section 2.

To show the impact of adding the stacked layer, a greedy approach to find the k1 and ko
values was performed as explained in Section 4. Figure 2 shows the macro-averaged F-score
for MLKNN as the value of k varies for each dataset. Figure 3 shows the improvement of
the Stacked-MLKNN method compared to MLKNN with respect to the values of ko, when
k1 was fixed as the best value from Figure 2. In Figure 3, the red horizontal line indicates
the cross-validated macro-averaged F-score for the best value of k; for MLKNN from Figure
2 for the corresponding dataset. The black line shows how the performance changes as the
values of k2 change in the second level of Stacked-MLkKNN, when the value of k; is fixed to
make MLKNN perform the best. For each dataset, the y-axis ranges of Figure 2 and 3 are
kept the same, such that a direct visual comparison could be done. Except for the genbase
dataset, the second level was able to improve the results of MLKNN. As the best parameter
for standard MLKNN was used with the first layer of the Stacked-MLKNN method, and
then the parameter for the second layer was found, an improvement in the Stacked-MLKNN
clearly indicates an improvement over MLKNN’s best predictions.

To compare Stacked-MLKNN with the other methods, the values for k; and ko were
selected using a grid search, as explained in Section 4. Table 2 shows the macro averaged
F-scores, averaged over the folds for the algorithms mentioned in Section 2 (where a higher
value indicates better result). The integer in braces indicates the ranking for that specific
dataset over the different algorithms for a specific dataset (where a lower value indicates
better rank). The last row shows the average rank for each algorithm over all the datasets.
The columns of Table 2 are sorted from best to worst overall average ranking. The values
for Stacked-MLKNN shown in the Table 2 are the cross-validated macro averaged F-scores
for the best k1 and ko values selected based on the grid search experiment.

From Table 2 it is clear that the Stacked-MLKNN (average rank 2.12) performs better
than the standard MLKNN (average rank 4.08). When compared with the other state-of-the-
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Table 2: Multi-label macro averaged F-scores illustrating performance of the different al-
gorithms compared in this study across the different datasets used. Integers in
brackets indicate relative ranking of the algorithms.

Stacked-MLkNN IBLR-ML+ IBLR-ML MLKNN BRKNN DMLKNN

yeast 0.4188 (2) 0.4326 (1) 0.3965 (3) 0.3807 (6) 0.3936 (4) 0.3814 (5)
scene 0.7519 (1.5) 0.6555 (6) 0.7501 (3) 0.7400 (4) 0.6957 (5) 0.7519 (1.5)
emotions 0.6430 (2) 0.6240 (6) 0.6619 (1) 0.6353 (4) 0.6334 (5) 0.6415 (3)
medical 0.5674 (2) 0.5998 (1) 0.4478 (6) 0.5346 (3) 0.4756 (5) 0.5092 (4)
enron 0.2069 (1) 0.1965 (2) 0.1521 (6) 0.1658 (5) 0.1819 (3) 0.1712 (4)
birds 0.3012 (1) 0.2559 (5) 0.2838 (3) 0.2708 (4) 0.2924 (2) 0.2271 (6)
genbase 0.8146 (5) 0.9393 (1) 0.9059 (2) 0.8279 (4) 0.8401 (3) 0.7987 (6)
cal500 0.1252 (4) 0.1827 (1) 0.1766 (2) 0.1022 (6) 0.1335 (3) 0.1143 (5)
llog 0.2719 (1) 0.2239 (5) 0.1115 (6) 0.2599 (2) 0.2573 (4) 0.2585 (3)
slashdot 0.3176 (2) 0.3407 (1) 0.2269 (3) 0.1848 (5) 0.1623 (6) 0.2134 (4)
corel5k 0.2041 (1) 0.1615 (5) 0.0823 (6) 0.1901 (2) 0.1806 (4) 0.1844 (3)
bibtex 0.1416 (3) 0.1453 (2) 0.1607 (1) 0.0747 (4) 0.0602 (5) 0.0415 (6)
Average Rank 2.12 3.00 3.5 4.08 4.0 4.21

art instance-based methods, it can be seen that the Stacked-MLKNN performed better than
all others. When compared against the next best approach, IBLR-ML+ (with an average
rank of 3.00), Stacked-MLKNN attained rank 1 an equal number of times as IBLR-ML+,
but managed to consistently achieve strong ranks when not at the top position.

To assess the degree of difference between the performances of the instance-based meth-
ods considered, non-parametric statistical significance tests were performed. Following the
recommendation by Garcia et al. (2010), a Friedman aligned rank test was performed as the
number of algorithms compared is low. The significance test indicated a difference among
the algorithms with a significance level of & = 0.05. Next, a pairwise post-hoc Friedman
aligned rank test was performed to explore which algorithms had differed significantly.

The comparisons between algorithms and the p-values from the pairwise post-hoc Fried-
man aligned rank tests are shown in Table 3 which is partitioned in two halves. A cell in
the upper-diagonal of the table indicates the win/lose/tie counts of the algorithm in the
corresponding row with respect to the algorithm in the corresponding column. This is in-
cluded for a direct comparison between the algorithm pairs. For example, Stacked-MLKNN
has performed better than MLKNN in 11 of the datasets and worse in 1 dataset. The lower
diagonal part of the Table 3 shows the p-values of the post-hoc Friedman aligned rank tests.
The asterisk (*) shows if the comparison was found to be significantly different. The dif-
ferent levels of significance («) are indicated by the number of asterisks, where *
o = 0.10, ** indicates o = 0.05 and *** indicates o = 0.01.

It can be seen that Stacked-MLKNN performed better over all datasets than BRKNN
and DMLKNN with a significance level of 0.01, and better than MLkNN with a significance
level of 0.05. The null hypothesis could be rejected with a significance level of e = 0.1 for
IBLR-ML, but for IBLR-ML+ the null-hypothesis could not be rejected.

Overall, the results indicate that Stacked-MLkNN was able to perform better than
BRKNN, MLkKkNN and DMLKNN, and it was found not to be very different than IBLR-

indicates
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Table 3: Significance test
Upper diagonal: win/lose/tie. Lower diagonal: post-hoc Friedman Aligned Rank
Test p-values. Significance levels: * : o = 0.1, ** : a = 0.05, ***: o = 0.01

Stacked-MLkKNN IBLR-ML+ IBLR-ML DMLKNN MLKNN BRkNN

Stacked-MLKNN 6/6/0 8/4/0 11/0/1  11/1/0 10/2/0
IBLR-ML+ 0.6292 8/4/0 8/4/0  7/5/0  7/5/0
IBLR-ML * 0.0660 0.1752 7/5/0  8/4/0  7/5/0
DMLKNN 6K 0.0061  F* 0.0240 0.3670 6/6/0  6/6/0
MLKNN £ 0.0166 * 0.0559 0.5782 0.7292 7/5/0
BRKNN #£.0.0083  ** 0.0311 0.4238 0.9184  0.8074

ML and IBLR-ML+, based on this test. Stacked-MLKNN attained the best average rank
and is a strictly lazy approach while the other two are not.

It is worth noting that there are non-instance-based and non-lazy learners perform bet-
ter than the instance-based and lazy learners. For example classifier chains (Read et al.,
2011) from the problem transformation category, used with support vector machines using
radial basis function kernels, and also a neural network based algorithm adaptation method
BPMLL (Zhang and Zhou, 2006). However, as these are not instance-based lazy approaches,
and do not have the advantages associated with lazy learning, they are not included in this
study. A comparison of various multi-label methods including several instance-based meth-
ods can be found in Pakrashi et al. (2016).

6. Summary and Conclusion

In this paper a stack-like two-layer approach to improve MLKNN for multi-label classifi-
cation, Stacked-MLKNN, was proposed. The second layer of Stacked-MLkKNN predicts the
relevance of a label based of the independent label relevance probabilities predicted by
MLKNN in the first layer, hence taking the label associations into account. The second
layer dataset generation is fast and simple although found to be effective, as the method
was able to improve the best results of MLKNN for every dataset (except one). Statisti-
cal significance tests indicate that the proposed method was able to perform significantly
better than MLKNN and BRKNN which are binary relevance based methods, and also DM-
LkNN. Stacked-MLKNN seems to also be better than IBLR-ML, but only marginally, where
its performance was similar to IBLR-ML+. IBLR-ML and IBLR-ML+ are instance-based,
but not strictly lazy approaches, however, and so Stacked-MLKNN has this advantage over
them. Given the instance-based nature of Stacked-MLKNN, updating it with new datapoints
would be straight forward. This requires adding the new datapoints in the first layer, and
the predictions of the first layer of these new datapoints in the second layer dataset.

It also should be noted that there are other non-lazy and non-instance-based algorithms
which perform better in general than the lazy variants. However, this is seen as an indication
of the room left for improvement in instance-based lazy approaches.

The experiments isolate the focus on the effectiveness of the stacked layer of Stacked-
MLKNN, which exploits the label associations in an instance-based lazy learning context.
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Figure 2: k vs MAF for MLKNN
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Figure 3: ko vs MAF for second layer of Stacked-MLKNN. The red line indicates the best
MAF value for MLKNN from Figure 2
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The results in Section 5 indicate that the Stacked-MLKNN did improve MLKNN and therefore
it would now be interesting to further explore Stacked-MLkKNN with the focus of improving
the predictions.

The results motivate the authors to extend the method towards better prediction quality
by investigating the effects of the inclusion of a subset of the input space features along with
the labels in the second layer of Stacked-MLKNN; using kernels to improve the prediction
quality and also exploring pre-processing methods to improve the label imbalance, while still
keeping the process instance-based and lazy.
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