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a b s t r a c t 

The AdaBoost.MH boosting algorithm is considered to be one of the most accurate algorithms for multi- 

label classification. AdaBoost.MH works by iteratively building a committee of weak hypotheses of de- 

cision stumps. In each round of AdaBoost.MH learning, all features are examined, but only one feature 

is used to build a new weak hypothesis. This learning mechanism may entail a high degree of compu- 

tational time complexity, particularly in the case of a large-scale dataset. This paper describes a way to 

manage the learning complexity and improve the classification performance of AdaBoost.MH. We propose 

an improved version of AdaBoost.MH, called RFBoost . The weak learning in RFBoost is based on filtering 

a small fixed number of ranked features in each boosting round rather than using all features, as Ad- 

aBoost.MH does. We propose two methods for ranking the features: One Boosting Round and Labeled 

Latent Dirichlet Allocation (LLDA), a supervised topic model based on Gibbs sampling. Additionally, we 

investigate the use of LLDA as a feature selection method for reducing the feature space based on the 

maximal conditional probabilities of words across labels. Our experimental results on eight well-known 

benchmarks for multi-label text categorisation show that RFBoost is significantly more efficient and effec- 

tive than the baseline algorithms. Moreover, the LLDA-based feature ranking yields the best performance 

for RFBoost. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

Boosting is an ensemble method for improving the performance

of any learning algorithm; it is considered to be one of the most

powerful machine learning methods introduced in the last two

decades [19] . The primary idea behind boosting is to combine the

outputs of multiple simple classifiers called weak learners (a.k.a.

weak hypotheses) into a powerful composite classifier called a

strong classifier (a.k.a. a final hypothesis) [6,34] . Boosting was first

proposed in the computational learning theory literature [15] . The

most common boosting algorithm produced in theory and in prac-

tice, by Yoav [16] , is Adaptive Boosting (AdaBoost). AdaBoost has

evolved over the last several years and has been widely used in

many applications as an accurate ensemble method, for example,

in clustering [32] and in instance selection [17] . Many boosting al-

gorithms have extended AdaBoost to solve problems in binary and

multi-class classification. A complete review of boosting algorithms

appears in [13] . 
∗ Corresponding author. Tel.: +60389216343, fax: + 60 389256732. 

E-mail addresses: bassamalsalmi@yahoo.com (B. Al-Salemi), shahrul@ukm. 
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Text categorisation (TC) is the task of automatically assigning

 given document to predefined categories based on its content

1] . The rapid daily increase in online texts makes TC an interest-

ng area for developing accurate classifiers and systems to auto-

atically categorise texts. Most state-of-the-art classifiers handle

ingle-label multi-class classification problems. However, by their

ery nature, texts may belong to more than one category. Many

tudies have proposed ways to adapt traditional classifiers for solv-

ng the multi-label classification problem; these include multi-

abel naïve Bayes classification [43] , ensemble learning [25,44] ,

parse logistic regression [26] , ML-KNN [44] , and MLCC [42] . An-

ther classifier that has proved effective for multi-label classifica-

ion is AdaBoost.MH [36] , a boosting algorithm that is an exten-

ion of AdaBoost for multi-label classification. AdaBoost.MH works

y iteratively building a committee of weak decision stump hy-

otheses and returning a composite strong classifier with a small

amming loss error. Using the idea of domain partitioning for

eak learning, all features are examined in each boosting round

f AdaBoost.MH learning to determine whether they are absent or

resent in each category. To minimise the Hamming loss, only one

eature, called the pivot feature, is then chosen from among the

xamined features and used to build a new weak hypothesis. This

echanism makes AdaBoost.MH’s learning time highly sensitive to

http://dx.doi.org/10.1016/j.knosys.2016.03.029
http://www.ScienceDirect.com
http://www.elsevier.com/locate/knosys
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he number of features and may lead to a high degree of learning

omplexity, particularly for large-scale datasets. 

Much research has been devoted to improving AdaBoost.MH’s

ffectiveness and managing its complexity since it first appeared

7,9,11,22,23,37,47–49] . There are essentially three ways to acceler-

te AdaBoost.MH, which can be grouped as follows. 

Dimension -reduction-based acceleration: Dimension reduction 

ethods involve a pretask which reduces the feature space of the

raining examples using feature selection techniques before learn-

ng. This is a general method for any supervised machine learning

lassification algorithm [8,12,41] . 

Representation-based acceleration: Most work on AdaBoost.MH 

or TC concerns the bag-of-words (BOW) representation model. Al-

alemi et al. [3] proposed LDA-AdaBoost.MH, in which a Latent

irichlet Allocation (LDA) [5] topics model is used instead of BOW

o extract latent topics as features to represent texts. Experimen-

al results proved that representing texts using a small number of

opics significantly accelerates AdaBoost.MH learning and improves

ts performance. This framework has been extended to involve the

ost well-known multi-label boosting algorithms for multi-label

C [2] . Although topics-based representation has proved to be effi-

ient in improving boosting algorithms in general, its classification

erformance is poor compared to BOW for imbalanced and large-

cale datasets [2] . Furthermore, the LDA topic model was essen-

ially proposed for textual data [5] , and the topics-based represen-

ation cannot be extended to other multi-label classification prob-

ems. Therefore, in this work we focus on improving the boosting

lgorithm using the BOW representation, as this is the simplest

epresentation model for general multi-label classification tasks. 

Weak-learning-based Acceleration : Weak-learning-based im- 

rovements of AdaBoost.MH can involve changing the number

f pivot terms used to build the weak hypotheses, changing the

ase learner, and reducing the search space of pivot terms in

ach boosting round. Sebastiani et al. [37] proposed using a set of

ivot terms in AdaBoost.MH 

KR ( AdaBoost.MH with k-fold real-valued

redications ). Rather than choosing only one pivot term in each

oosting round, as AdaBoost.MH does, AdaBoost.MH 

KR chooses the

 top-ranked features which have similar scores as pivot terms to

uild a new weak hypothesis, and it uses the mean of their scores

s a prediction for the hypothesis. Similarly, MP-Boost [11] selects

ultiple pivot terms, one for each label, in every iteration instead

f only once, as AdaBoost.MH does. Regarding the base learner,

e Comité et al. [9] used an alternating decision tree (ADTree) [14]

nstead of a decision stump as a base learner for AdaBoost.MH;

ach node of a multi-label ADTree is associated with a set of real

alues, one for each label. Busa-Fekete and Kégl [7] combined trees

nd products to model AdaBoost.MH’s base learner as sequences of

ecisions over the smaller partitioning used for stumps. Recently,

égl [22] adapted Hamming trees for learning in AdaBoost.MH to

onduct multi-class classification without a one-against-all inner

ransformation. 

To reduce the search space of pivot terms, Escudero et al.

10] proposed an accelerated version of AdaBoost.MH, LazyBoost-

ng, in which the search space is reduced to a fixed number of

eature terms which are selected randomly in each boosting round.

owever, random selection of the features without taking their im-

ortance into account may lead to poor performance. Busa-Fekete

nd Kégl [7] improved this algorithm by posing feature selection as

 multi-armed bandit (MAB) problem and using the Upper Confi-

ence Bound (UCB) bandit algorithm [4] to select only informative

eatures while retaining some exploration of new features. The idea

ehind this method is to associate a bandit arm with each feature,

iewing loss reduction as a reward. 

This paper presents an improved version of AdaBoost.MH,

alled the Rank-and-Filter-based Boosting algorithm (RFBoost). RF-

oost retains the simplicity and generality of AdaBoost with a new
ethod of accelerating the weak learning based on reducing the

earch space of pivot terms in each boosting round. Using the sug-

estion of Mukherjee and Schapire [29] that the weak hypothe-

es of AdaBoost.MH should only return a single multi-class pre-

iction per example, and similar to LazyBoosting, RFBoost filters

 fixed number of feature terms in each boosting round to build

 new weak hypothesis. The difference between RFBoost and Lazy-

oosting is that the features in LazyBoosting are selected randomly,

hereas RFBoost first ranks the features and then, in each itera-

ion, filters only the top k features among which the pivot term is

ost likely located to build a new weak hypothesis. The advantage

f ranking the features as a separate task before weak learning is

hat the feature space is directly reduced in each iteration without

sing an inner feature selection method such as MABs [7] . We em-

loy two methods to rank the features; one is based on the boost-

ng weights of the features obtained in the first boosting round and

he other uses a supervised topic model based on Gibbs sampling

38,39] . 

. AdaBoost.MH 

A multi-label classification algorithm assigns a set of target la-

els to each sample. Let χ be a finite set of examples and let Y =
( y 1 , .., y m 

) be a finite set of labels such that each example х i ∈ X 

elongs to multiple class labels in the set Y i , where Y i ⊆ Y . Let

 set of training examples S = { ( х 1 , Y 1 ) , . . ., ( х n , Y n ) } be given.

he machine-learning task is to induce from S a classifier f : χ → 2 y 

apable of estimating an unknown target function ϕ: χ → 2 y . The

ingle-label multi-class classification problem is a special case of a

ulti-label problem in which each example is assigned to only one

abel. 

To make this definition accord with the AdaBoost.MH formal

escription (as illustrated in Algorithm 1 ), the target function ϕ will

e defined as ϕ : X × Y → {±1 } m , in which ϕ( x,y ) = 1 if y is the

orrect label for х and ϕ( х , y ) = −1 otherwise. For each example,

he output of ϕ is a set of length m of the values +1 and −1 . This

etup converts the multi-class problem into a one-against-all binary

lassification problem . For simplicity, we denote the label index for

 in Y as l ; then ϕ( х , y ) is written as ϕ( х , l ) for l = 1 , . . . , m . 

The main goal of AdaBoost.MH is to infer a composite strong

lassifier (the final hypothesis) H : χ × Y → R from a set of weak

ypotheses ( h 1 ( х ) , . . . , h R ( х )) with a small Hamming loss. The

amming loss measuring the empirical risk (training error) is de-

ned as follows: 

ˆ 
 HL ( H , W ) = 

n ∑ 

i =1 

m ∑ 

l=1 

w i,l sign ( H ( х i , l ) ) � = ϕ ( х i , l ) , (1)

here W = [ w i,l ] n ×m 

is a uniform distribution matrix over the

raining examples and labels, and . is the indicated function, which

eturns 1 if the inequality is true and 0 otherwise—the comparison

s based on the fact that the output of the strong classifier H( х i , l )
s a positive or negative real value and ϕ( х i , l ) takes the value +1

r −1 , depending on the predefined category assignment. 

AdaBoost.MH builds the strong classifier with a small Hamming

oss by minimising the exponential-margin-based error , defined as

ollows: 

ˆ 
 EXP ( H , W ) = 

n ∑ 

i =1 

m ∑ 

l=1 

w i,l exp ( − H ( х i , l ) ϕ ( х i , l ) ) . (2) 

Given a training dataset S and an initial distribution of weights

 over the training examples (the initial distribution is discussed

n Section 3.2 ), AdaBoost.MH works by iteratively passing W along

ith S to a base learner and generating a set of weak hypothe-

es h (r) : χ × Y → R , r = 1 , . . . , R . In each round r , the goal is to
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minimise the base objective Z ( r ) , which is defined as 

Z ( r ) = 

n ∑ 

i =1 

m ∑ 

l=1 

w 

( r ) 
i,l 

exp 
(
−α( r ) h 

( r ) ( х i , l ) ϕ ( х i , l ) 
)
, (3)

where α(r) ∈ R 

+ is a positive real-valued base coefficient . 

In the next round, r + 1 , the distribution W 

( r+1 ) is updated

based on the predicted values of the current hypothesis h ( r ) ac-

cording to the rule 

w 

( r+1 ) 
i,l 

= 

w 

( r ) 
i,l 

exp 

(
−α( r ) h 

( r ) ( х i , l ) ϕ ( х i , l ) 
)

Z ( r ) 
, (4)

so that the weight assigned by h ( r ) to misclassified examples is in-

creased in order to be classified correctly in the following rounds. 

After generating the weak hypotheses, AdaBoost.MH builds the

final classifier as a composite of the weak hypotheses, defined as

follows: 

H ( х , l ) = 

R ∑ 

r=1 

h 

( r ) ( х , l ) . (5)

Schapire and Singer [36] proved that ˆ R EXP ( H , W ) ≤
R ∏ 

r=1 

Z (r) . 

In the case of single-label multi-class classification, the correct

label assigned to a given example х is the label which has obtained

the maximum estimated value: 

l H ( х ) = arg max H( х , l) , l = 1 , . . . , m. (6)

In contrast, for a multi-label corpus, the correct labels assigned

to х are those which have obtained a positive value, while those

with negative values are considered false labels: 

l H ( х ) = signH( х , l) , l = 1 , . . . , m. (7)

However, if all estimated values in Eq. (7) are negative, then

the given example would be treated as a misclassified example. To

avoid this in the present study, when all of the labels have neg-

ative values, the example is assigned to the label which has the

maximum value. This rule is used in all algorithms evaluated in

this paper. 

We now turn to AdaBoost.MH with real-valued predictions.

Schapire and Singer [35] proposed an efficient base learner for Ad-

aBoost.MH using binary features based on the idea of domain parti-

tioning . Given a training set S = { ( х 1 , Y 1 ) , . . ., ( х n , Y n ) } in which

х i ∈ X are textual documents, let T = { t 1 , . . . , t u } be the set of all

possible terms extracted from the training documents, and let each

document x i be represented as a vector 〈 x i 
1 
, . . . , x i u 〉 of u binary

weights such that x i 
k 

= 1 if t k occurs in x i and x i 
k 
= 0 otherwise. 

When generating a new weak hypothesis, AdaBoost.MH analy-

ses the absence or presence of each term t k in a document x i as

follows to decide whether it belongs to a label l : 

h 

( r ) ( x i , l ) = 

{
c 0 l i f x i 

k 
= 0 

c 1 l i f x i 
k 

= 1 

, (8)

where c 0 l and c 1 l are real-valued constants chosen during itera-

tion r according to the minimisation policy of the base objective

Z ( r ) . Using the idea of domain partitioning to calculate the decision

stump c ul (u ∈ {0, 1}) for term t k , the training example set X is

first divided into two subsets ( X 0 , X 1 ), as follows: 

X u = { x : x k = u } , u = 0 , 1 , (9)

so that X 1 is the set of all documents containing t k and X 0 is the

set of all documents which do not contain t k . Then, for each label l ,

the weights of all documents in X u which belong to l with respect

to the distribution matrix W 

( r ) are summed: 

 

+ 
ul 

= 

n ∑ 

i =1 

w 

( r ) 
i,l 

[[ x i k = u ]][[ ϕ ( х , l ) = +1]] (10)
The summation of the weights of documents which do not be-

ong to l is also calculated: 

 

−
ul 

= 

n ∑ 

i =1 

w 

( r ) 
i,l 

[[ x i k = u ]][[ ϕ ( х , l ) = −1]] . (11)

Thus, W 

+ 
0 l 

is the total weight of all documents which do not

ontain t k and belong to l , W 

+ 
1 l 

is the total weight of all documents

hich do contain t k and belong to l , W 

−
0 l 

is the weight of all docu-

ents which do not contain t k and do not belong to l , and W 

−
1 l 

is

he weight of all documents which do contain t k but do not belong

o l . 

Then, for each term t k , c ul is calculated as follows for u = 0 , 1 :

 ul = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 

2 

ln 

W 

+ 
0 l 

W 

−
0 l 

i f x k = 0 

1 

2 

ln 

W 

+ 
1 l 

W 

−
1 l 

i f x k = 1 . 

(12)

By choosing α(r) = 1 [36] , we have: 

 

( r ) = 2 

∑ 

u ∈ { 0 , 1 } 

m ∑ 

l=1 

√ 

W 

+ 
ul 

× W 

−
ul 

. (13)

The term which obtains the smallest value of Z ( r ) , which is the

ivot term , is then used to build the weak hypothesis h ( r ) according

o Eq. (8 ), and the distribution matrix W 

( r+1 ) is generated for the

ext iteration according to Eq. (4 ). 

To avoid division by zero, the values in Eq. (12 ) are smoothed

y a small value ε in both the denominator and the numerator.

herefore, Eq. (12 ) will now take the form 

 ul = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 

2 

ln 

W 

+ 
0 l 

+ ε

W 

−
0 l 

+ ε
i f x k = 0 

1 

2 

ln 

W 

+ 
1 l 

+ ε

W 

−
1 l 

+ ε
i f x k = 1 , 

(14)

here ε = 1 /mn [36] . 

Algorithm 2 presents AdaBoost.MH’s weak learning with real-

alued predictions using binary features. 

Even this weak learning method is effective; however, a prob-

em that arises is the computational complexity of the learning.

his is because in each boosting round, the base learner uses all

ossible binary feature terms in a given feature term index T to

elect the single pivot term and build a new weak hypothesis; this

s the main disadvantage of AdaBoost.MH learning [11] . 

. Weighting policy 

One of the most important factors which affect boosting algo-

ithm performance is how the distribution W is weighted over the

raining examples and labels. Weighting policies involve initialis-

ng the distribution to serve as an input for the boosting algorithm

nd then normalising the distribution after updating the examples’

eights in each boosting round during weak learning. In lieu of

sing the formal weight initialisation [35] , we propose a novel ini-

ialisation method for the weight distribution which is based on

he supervised topic model LLDA. Before presenting our proposed

nitialisation method, we first describe LLDA. 

.1. Labeled LDA 

Latent Dirichlet Allocation (LDA) [5] is a generative probabilis-

ic model for identifying the latent topics in a set of documents.

n LDA, each document is represented as a combination of a fixed

umber of topics, while each topic is represented as a combina-

ion of words. The combination distributions are assumed to be
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irichlet-distributed random variables and must be inferred from

he data. 

LDA is an unsupervised model, that is, it does not take the cat-

gorical structure of the documents into account when extracting

atent topics. Several modifications of LDA to incorporate super-

ision have been proposed [27, 31, 46] . The first supervised LDA

odel, proposed by McAuliffe and Blei [27] , was essentially de-

igned for single-label corpora. It limits the assignment of a docu-

ent to only one class label. Ramage et al. [31] proposed a super-

ised LDA model called Labeled LDA (LLDA) for multiple-labelled

orpora. LLDA restricts the number of topics to the number of

nique labels (categories). The major modification which differen-

iates LLDA from LDA is that in LLDA, the definitions of the topics

ssigned to a document are restricted to the multiple labels which

he document belongs to. To estimate the latent topics in LLDA,

ibbs sampling [18,20] is employed, as follows. 

Given a training set S and the word index T extracted from S ,

he probability of a label l i being assigned to a word t i in document

 given all other label assignments to all other words is sampled

rom the following multinomial distribution: 

p ( l i = k | L −i , х ) ∝ 

n 

( −i ) 
k,t 

+ βt ∑ 

t ′ n 

( −i ) 
k,t ′ + βt ′ 

n 

( −i ) 
х ,k + αk ∑ 

k ′ n 

( −i ) 
х ,k ′ + αk ′ 

(15) 

here L −i denotes all label assignments except for the current la-

el l i , n 
( −i ) 
k,t 

is the number of times the word t is assigned to label l

xcept for the current assignment, 
∑ 

t ′ n 
( −i ) 
k,t ′ is the total number of

ords assigned to label l except for the current assignment, n ( −i ) 
х ,k is

he total number of words in document х assigned to label l except

or the word t i , 
∑ 

k ′ 
n ( −i ) 
х ,k ′ is the total number of words in document

 assigned to all labels except for the current label k , and α and β
re real-valued constants such that 0 < α, β < 1. 

In our case, where the dataset is supervised, the set of labels L

n Eq. (15 ) given with the document х is extracted from the pair

( х , Y ) in S . After a few resampling iterations, the label index as-

ignment for all of the words in the training corpus is obtained.

hen this label index assignment is used to obtain the label–word

istribution � and the document–label distribution � according to

he following formulas: 

l,t = p ( t| l ) = 

n l,t + βt ∑ 

t ′ ( n l,t ′ + βt ′ ) 
(16) 

х ,l = p ( х | l ) = 

n х ,l + αl ∑ 

l ′ ( n х ,l + αl ′ ) 
(17) 

here n l, t is the number of times label l is assigned to the word

oken t and n х ,l is the number of times label l is assigned to some

ord token in document х . Therefore, �n ×m 

= { θх ,l } , where n is

he total number of documents and m is the total number of single

abels, and �m ×v = { φl,t } , where v = |T | is the vocabulary size. 

The reason for using LLDA in this study is to obtain the

ocument–label distribution � and the label–word distribution �.

he document–label distribution will be used to initialise the dis-

ribution matrix for weak learning ( Section 3.2 ), and the label–

ord distribution will be used to obtain a weighted and ranked

eatures index as an input for the RFBoost algorithm and as a fea-

ure reduction method ( Section 5 ). 

.2. Distribution initialisation based on LLDA 

Instead of random guessing, Schapire and Singer [36] gave an

nitial weight to each example x as follows: 

 i,l = 

1 

f or i = 1 , . . . , n ; l = 1 , . . . , m. (18)

mn 
Thus, the initial weight given to all examples is the same,

amely, 1/ mn . To distinguish between this initial distribution ini-

ialisation policy and the one we propose in this section, we will

all the former the formal initialisation policy. 

In place of the formal weighting policy defined in Eq. (18 ),

e propose a new weighting method using LLDA. As mentioned

n the previous section, our goal in using LLDA is to obtain the

ocument–label distribution � and the label–word distribution �.

or weighting the initial distribution matrix W , we are interested

n the document–label distribution �. However, � is a multino-

ial distribution, meaning that for each document х , the distri-

ution of х over the set of labels L is a uniform distribution:
 

l θх ,l = 1 . But then assigning w х ,l directly to θх ,l will lead to a

on-uniform distribution because the summation of w х ,l for all

ocuments and their label assignments in the training set will be

 

x 

∑ 

l 

w x,l = 

∑ 

x 

∑ 

l 

θx,l = 

∑ 

x 

1 = n. (19)

Therefore, to normalise W to be a uniform distribution, we sim-

ly divide the document–label weights by 

 х ,l = 

θх ,l 
n 

, ∀ х ∈ X and l = 1 , . . . , m. (20)

The purpose of this initialisation is to obtain a perfect distri-

ution; the weight given to a document х assigned to predefined

abels l is greater than the weight which is given if х does not be-

ong to l , depending on the terms occurring in х . 

.3. Distribution normalisation 

In each boosting round r , the distribution matrix W 

( r+1 ) 

s updated according to Eq. (4 ) and normalised by Z ( r ) (de-

ned in Eq. (3 )). The normalisation factor Z ( r ) is simply the

ummation of the cumulative exponential-margin-based errors, 
 

l 

w х ,l exp( −α(r) h (r) ( х i , l ) ϕ( х i , l ) ) , for all documents in the train-

ng set. However, although using such a normalisation policy—

hich we will call per-document normalisation—is straightforward,

t ignores the nature of the dataset, in which some categories may

nly have a small number of documents. Accordingly, we pro-

ose a new normalisation, which we call per-category normalisa-

ion. Algorithm 3 describes per-category normalisation for a given

istribution matrix W . First, for each label l , the total weight of

ll documents w l is calculated. Then, to ensure that W is uniform,

 l is multiplied by the number of categories m . After that, each

eight w i, l is normalised by w l . Thus, the output is a normalised

niform distribution of weights. The purpose of Algorithm 3 is not

erely to normalise the distribution by category; rather, it ensures

hat the exponential-margin-based error is minimised for each cat-

gory. 

. Proposed boosting algorithm: RFBoost 

Algorithm 2 shows how weak learning is performed using Ad-

Boost.MH based on domain partitioning. Given a feature index T ,
n each boosting round r , AdaBoost.MH examines all features in T 
o select only one pivot feature for building a new weak hypothesis

n which Z ( Eq. (13 )) is minimal. Here we are concerned with how

his will work if T contains a very large number of features. Us-

ng the same weak learning mechanism may lead to serious com-

utational complexity. We propose RFBoost to tackle this problem

ithout losing the generality of boosting theory. The letters RF in

FBoost stand for Rank and Filter . RFBoost’s weak learning is based

n filtering a set of ranked features T ′ from T , sorted by weights.

hen, in each boosting round r , only the top k ranked features in

 

′ —where the pivot term is most likely located—are used to obtain
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Fig. 1. RFBoost weak learning. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.) 
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the pivot term and build a new weak hypothesis. In this section,

we describe RFBoost’s weak learning on the assumption that the

features have already been ranked. In the next sections, we will

describe in detail our proposed methods for ranking the features

as a pre-task for RFBoost. 

In Algorithm 4 , the ranked features index T ′ and the number of

filtered features k are given as inputs. In line 2, a list called Filter-

dList is created to include the top k features in the ranked features

index T ′ . Then, for the first iteration, one feature from FilterdList ,

the pivot term , is obtained (lines 3–12). After obtaining the pivot

term, generating the new weak hypotheses and updating the dis-

tribution for the current iteration r , the pivot term is eliminated
rom FilterdList and the next feature in the ranked features index

 

′ , t ′ 
( k + r ) 

, is added to FilterdList. Thus, the search domain for the

ivot terms in each boosting round always has the same length,

 , and the term chosen as the pivot term is excluded during the

ollowing iterations. 

Fig. 1 illustrates this process with a graphical example. After

anking the features, RFBoost filters the top k ranked features in

 

′ for the weak learning. Then, for the first boosting iteration, the

ltered k features are examined to obtain the pivot term. Assum-

ng that the pivot term is t ′ 
1 
, the first weak hypothesis is generated

ased on the real-valued predictions for t ′ 1 ( Eq. (14 )). Then, for the

ext iteration, t ′ is removed from the top k features and replaced

1 
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Table 1 

The pivot terms obtained during the first 14 iterations of weak learning on Reuters-21578 . 

Iteration Ranked features based on OBR weights Pivot Pivot position 

1 102 , 4879 , 9009 , 92, 91, 15,182, 6972 , 9004 , 

1761 , 9987, 2191, 320 , 15,179, 632, 8070 , 24 , 

710, 417 , 15,199, 11,809, 157, 380, 12, 288 , 

2114, 332, 30, 15,207, 7663, 11, 2478 , 46, 

12,684, 15183, 647, 14, 231, 4580, 5888, 36, 

872, 11,754, 283, 331, 5222 , 526, 5893, 16, 

15,180, 9005, 2506, 1343, 1379, 2509, 13, 2562, 

90, 524, 5108, 4852, 1267, 3702, 11746, 8878 , 

866, 15,056, 6077, 2341, 1398, 757, 707, 594, 

605, 1821, 1866, 1401, 10,584, 23, 2080, 1751, 

1246, 314, 2442, 570, 71, 341, 5892, 1022, 145, 

5228, 421, 3356, 162, 559, 704, 1469, 178, 708, 

6333, 11,822, 15,313, 716, 5570, 610, 249, 

12,102, 321, 12,339, 2853, 12,508, 10,043, 718, 

578, …

102 1 

2 9009 3 

3 320 12 

4 9004 8 

5 1761 9 

6 24 16 

7 6972 7 

8 4879 2 

9 288 24 

10 8070 15 

11 2478 31 

12 417 18 

13 8878 51 

14 5222 45 

Note : The second column contains the features ranked according to their OBR weights, and the features 

written in bold and underlined are the pivot terms which were selected during the first 14 boosting 

iterations of weak learning. The third column lists the pivot terms selected during each iteration. The 

fourth column lists the index of the selected pivot term in the features index. 
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y the next feature in T ′ which is t ′ 
( k + 1 ) 

, the feature in red. This

rocess is repeated in the following iterations, and the size of the

ltered set of ranked features in each boosting round is always k . 

The main advantage of RFBoost is that the domain search space

or selecting the pivot term is reduced from the size |T | , which

ay be hundreds of thousands, to a subset of T of size k , where

 is a small fixed number given as input. This mechanism dramat-

cally decreases the computational time for weak learning. In addi-

ion, using weighted features rather than binary ones may yield a

ore accurate classification. 

.1. One-boosting-round feature ranking 

Suppose that T = { t 1 , . . . , t V } is the extracted feature index for

 given training set S and let W be the initial distribution ma-

rix drawn from the set of examples in S . By performing only one

oosting round on S using T and based on W ( Eqs. (9 )–( 14 )), we

btain a set of normalisation factors Z = ( Z 1 , . . . , Z V ) , one for each

eature in T . Hence, Z i measures the Hamming loss error for fea-

ure term t i . Given that a smaller value of Z i means that t i is

ore important, the values of Z i can be used as a measure of each

erm t i ’s importance. We propose calling the values of Z the One-

oosting-Round (OBR) weights of the features in T ; these weights

ill be used to directly rank the extracted features as an input

or RFBoost without using an external ranking method. However,

e need to prove that the OBR weights are capable of ranking

he extracted features. For this purpose, we performed an exper-

mental analysis on real data using the benchmark dataset Reuters-

1578 . The purpose of this analysis was to understand how the

ivot terms were chosen and the relationship between the pivot

erms and the features ranked by their OBR weights. 

Table 1 shows the pivot terms used to build the weak hypothe-

es in the first 14 iterations of weak learning on Reuters-21578 . The

econd column is the list of the top-ranked features sorted in de-

cending order based on their OBR weights. The third column con-

ains the pivot terms which were obtained in each round. The last

olumn contains the index of each pivot term in the ranked feature

ist. For example, the pivot term 102, obtained in the first boosting

ound, is located in the first position of the ranked features list;

he pivot term 9009, which prevailed in the second iteration, is lo-

ated in the third position of the ranked features list; and so on.

he 14 pivot terms for the first 14 iterations were all positioned

mong the top 51 features in the ranked features list, based on

heir boosting weights obtained in the first boosting round. 
This analysis confirms that OBR is capable of ranking the fea-

ures, and the pivot terms obtained in the next iterations are lo-

ated at the top of the ranked feature index using OBR weights.

his analysis emphasises that after performing one boosting round

n a given training set, sorting the training features in T in de-

cending order based on their OBR weights, and storing them in

 new index T ′ , the ranked features index T ′ can be used as an

nput for RFBoost. The procedure for OBR-based feature ranking is

resented in Algorithm 5 . 

.2. LLDA for feature ranking 

As described in section 3.1 , the goal in LLDA is to obtain the

ocument–label distribution � and the label–word distribution �.

ere we are concerned with the label–word distribution �, which

ontains the conditional probabilities of the words being assigned

o each label. These probabilities are used as weights for ranking

he features. To obtain the ranked features index T ′ , all of the

erms in T are sorted in ascending order based on their conditional

robabilities φl, t as weights and then stored in T ′ . In lines 4–8

f Algorithm 6 , the maximum probabilities among all label–word

onditional probabilities are obtained and are then stored along

ith the associated feature in T ′ in line 9. Next, the weighted fea-

ure index T ′ is sorted according to those weights and returned as

utput. The ranked features index T ′ using LLDA will be used as

n input for RFBoost. 

. LLDA-based feature selection 

The unsupervised LDA topic model has been employed for fea-

ure selection in TC. A study conducted by Zhang and colleagues

45] used unsupervised LDA with Gibbs sampling [18] as a feature

election method for TC. They used a label–word distribution ma-

rix to select the words with lower entropy, and then they used a

tate-of-the-art classifier for classification. A similar study was con-

ucted by Tasci and Gungor [39] ; however, they used variational

xpectation maximisation [5] for the estimation instead of Gibbs

ampling. 

In this study, we use the label–word distribution �, obtained

sing the supervised topic model LLDA. In our case, the topics

ere the predefined labels. After obtaining the topic–word distri-

ution �, the top words were simply selected based on the max-

mal conditional probabilities of the words across the predefined

abels. Algorithm 7 presents the procedure. 
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Table 2 

The contingency table. 

Category l Predefined assignment 

True False 

Estimated assignment True TP l FP l 
False FN l TN l 
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Fig. 2. AdaBoost.MH performance on the R10 dataset for all boosting rounds. 
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2 http://disi.unitn.it/moschitti/corpora/Reuters21578-Apte-90Cat.tar.gz . 
3 http://web.ist.utl.pt/acardoso/datasets/ . 
4 http://qwone.com/ ∼jason/20Newsgroups/ . 
6. Evaluation measures 

The output of learning for both AdaBoost.MH and RFBoost is a

strong classifier of the form H : χ × Y → R . In the case of a single-

label dataset, the true estimated category of a given document is

the one that has the maximum predicted value of H , whether it is

positive or negative ( Eq. (6 )). If the dataset is multi-labelled, then

the true estimated categories are all the categories with positive

values ( Eq. (7 )). Those categories that have negative values are con-

sidered false labels. To obtain the contingency table, the categories

of each document in the test set are estimated and compared to

the predefined categories, and the value of TP, FP, FN , or TN is in-

cremented by 1 depending on the comparison, as shown in Table

2 . T and F represent "True" and "False", respectively.The most com-

mon performance measures which are widely used to evaluate TC

systems are precision ( p ) and recall ( r ). For a category l , the p and r

measures are calculated as 

r l = 

T P l 
T P l + F N l 

, (21)

p l = 

T P l 
T P l + F P l 

. (22)

There is a trade-off between precision and recall: if the predic-

tion of each category is true for each test example, then the classi-

fier will obtain perfect precision and low recall. Therefore, we em-

ploy another measure, called the F 1 -score [33] , which measures the

performance as a harmonic mean of r and p. F 1 for a category l is

therefore calculated as 

F 1 l = 2 

r l × p l 
r l + p l 

= 2 

T P l 
2 T P l + F N l + F P l 

. (23)

For the global classifier performance overall, two measures—

Macro-averaged F1 and Micro-averaged F1—are the most widely

used, particularly for measuring multi-label classification perfor-

mance. For simplicity, we call these measures MacroF1 and Mi-

croF1 , respectively. MacroF1 is the mean of F1 over all categories:

MacroF1 = 

1 

M 

∑ 

l 

F 1 l , (24)

while MicroF1 is calculated as the global F1 for the total TP, FP , and

FN values, as follows: 

MicroF1 = 2 

∑ 

l T P l 
2 

∑ 

l T P l + 

∑ 

l F N l + 

∑ 

l F P l 
. (25)

In this study, we use MacroF1 and MicroF1 to evaluate classifi-

cation performance. 

7. Experiments and results 

7.1. Datasets 

Reuters-21578: The Reuters- 21578 benchmark is widely used for

TC evaluation. For this study, we used ModApte split, 1 which in-

cludes 12,902 documents divided into 3299 for testing and 9603
1 http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html . 

d

or training. Of the 135 potential categories, we used only the 90

ategories for which there was at least one training document and

ne testing document. This set was prepared by [28] . 2 For simplic-

ty, we refer to the Reuters- 21578- ModApte -90cat as “R90”. In addi-

ion, we adopted a subset of R90, R10, which includes the ten most

requent categories: wheat, acq, trade, ship, interest, grain, crude,

arn, money-fx , and corn . 

WebKB: This is a multi-label benchmark used for evaluating TC

ystems. WebKB is a collection of Web pages collected from uni-

ersity computer science departments, including the departments

t Cornell University, University of Texas, University of Wash-

ngton, and University of Wisconsin. The Web pages have been

anually classified into the following categories: student, faculty,

taff, course, project, department, and other. In this paper, we

se a WebKB-Top4 subset 3 (W4) which contains 4199 pages of the

our most populous entity-representing categories: student, faculty,

ourse , and project . 

20-Newsgroups (20NG): This is a collection of approximately

0,0 0 0 documents which are evenly partitioned across 20 differ-

nt newsgroups. 20NG is a popular benchmark for experiments in

ext applications of machine learning techniques, such as TC and

ext clustering. In this paper, we use the “by date” version, 4 which

ontains 18,825 5 documents sorted by date into training (60%) and

est (40%) sets. 

OHSUMED: This set includes medical abstracts from the MeSH9

ategories for the year 1991. Joachims [21] used the first 20,0 0 0

ocuments, which were divided into 10,0 0 0 for training and

0,0 0 0 for testing The particular task was to categorise the 23 car-

iovascular disease categories. After selecting this category subset,

he number of documents reduces to 13,929 (6286 for training and

643 for testing). In this study, we used the version prepared by

28] . 

Medical: The Medical dataset [30] is composed of documents

ith free-text summaries of patient symptom histories and prog-

oses which are used to predict insurance codes. We used the pre-

rocessed version of this dataset by [40] in this experiment. 

TMC2007: This is a text dataset for the SIAM Text Mining Com-

etition 2007. It contains 28,596 text samples, each of which be-

ongs to one or more of 22 categories. 

RCV1-v2: This is a popular benchmark for TC which consists of

04,414 news stories produced by Reuters between 20 August 1996

nd 19 August 1997 [24] . In this experiment, we used the RCV1-

ubset1 6 prepared by [40] , which consists of 60 0 0 examples be-
5 The dataset size reported in http://qwone.com/ ∼jason/20Newsgroups/ is 18,846 

ocuments, but the actual size is 18,825 documents. 
6 http://mulan.sourceforge.net/datasets-mlc.html . 

http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html
http://disi.unitn.it/moschitti/corpora/Reuters21578-Apte-90Cat.tar.gz
http://web.ist.utl.pt/acardoso/datasets/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://mulan.sourceforge.net/datasets-mlc.html


B. Al-Salemi et al. / Knowledge-Based Systems 103 (2016) 104–117 111 

0.92

0.925

0.93

0.935

0.94

0.945

10 20 30 50 80 100

AdaBoost.MH

RFBoost|LLDA

RFBoost|OBR

MPBoost

R10

0.75

0.77

0.79

0.81

0.83

0.85

0.87

10 20 30 50 80 100

AdaBoost.MH

RFBoost|LLDA

RFBoost|OBR

MPBoost
R90

0.6

0.63

0.66

0.69

0.72

0.75

10 20 30 50 80 100

AdaBoost.MH

RFBoost|LLDA

RFBoost|OBR

MPBoost
RCV1

0.65

0.67

0.69

0.71

0.73

0.75

10 20 30 50 80 100

AdaBoost.MH

RFBoost|LLDA

RFBoost|OBR

MPBoost20NG

0.7

0.72

0.74

0.76

0.78

0.8

0.82

10 20 30 50 80 100

AdaBoost.MH

RFBoost|LLDA

RFBoost|OBR

MPBoostMedical

0.5

0.52

0.54

0.56

0.58

0.6

0.62

10 20 30 50 80 100

AdaBoost.MH

RFBoost|LLDA

RFBoost|OBR

MPBoostOHSUMED

0.61

0.616

0.622

0.628

0.634

10 20 30 50 80 100

Features size % for AdaBoost.MH & MPBoost

Search space × 100 for RFBoost

AdaBoost.MH

RFBoost|LLDA

RFBoost|OBR

MPBoost
TMC2007

0.84

0.86

0.88

0.9

0.92

0.94

10 20 30 50 80 100

Features size % for AdaBoost.MH & MPBoost

Search space × 100 for RFBoost

AdaBoost.MH

RFBoost|LLDA

RFBoost|OBR

MPBoost
W4

Fig. 3. The MicroF1 results for all datasets. 
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Table 3 

Dataset statistics. 

Size/number of R10 R90 W4 20NG OHUSMED Medical TMC2007 RCV1 

Training set 7,194 9,603 2,803 9,840 6,286 333 21,519 3,0 0 0 

Test set 2,787 3,299 1,396 6,871 7,643 645 7,077 3,0 0 0 

Labels 10 90 4 20 23 45 22 101 

Features 23,578 25,913 7,154 117,227 29,422 1,449 49,060 47,236 

Table 4 

The best MicroF1 results (%) with and without using LLDA-based feature selection. 

Dataset AdaBoost.MH MPBoost 

With FS BOW% Without FS With FS BOW% Without FS 

R10 93 .77 30 93 .52 93 .3 10 93 .25 

R90 82 .95 10 82 .1 86 .16 30 85 .85 

RCV1 71 .42 30 70 .66 72 .7 80 72 .74 

20NG 71 .78 30 71 .11 72 .21 30 72 .21 

MEDICAL 80 .05 20 77 .76 77 .37 80 77 .73 

OHSUMED 58 .34 10 55 .21 59 .37 30 57 .59 

TMC2007 62 .91 10 62 .66 62 .87 20 62 .55 

W4 91 .83 20 90 .54 89 .11 20 88 .33 
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longing to 101 categories; the examples are divided into 30 0 0 for

training and 30 0 0 for testing. 

The datasets are summarised in Table 3 . 

7.2. Experimental settings 

Text preprocessing is a key component in a typical TC frame-

work. The typical text preprocessing tasks which we performed in

this study include tokenisation, normalisation, stemming, and stop-

word removal. Then the weak learning was performed for each

boosting algorithm, up to a maximum of 20 0 0 iterations. 

The performance of RFBoost with the proposed methods for

feature ranking were compared with the original AdaBoost.MH and

MPBoost [11] , an improved version of AdaBoost.MH which returns

multi-pivot terms in each boosting round. A recent comparative

study [2] showed that MPBoost is the most effective and efficient

algorithm among eight boosting algorithms when BOW is used for

text representation and, as mentioned earlier, we used BOW for

the text representation in this study. We developed a boosting-

based TC system in Java which includes AdaBoost.MH, RFBoost,

text preprocessing, and all algorithms presented in this paper. We

evaluated MPBoost using MP-Boost ++ , C ++ software developed by

Esuli et al. [11] which is available online. 7 We used our proposed

weighting policies for RFBoost and the default weighting policies

for both AdaBoost.MH and MPBoost. 

Our evaluation studied the impact of using LLDA-based feature

selection on the classification performance and learning times of

AdaBoost.MH and MPBoost, with different percentages used to de-

termine the number of top-ranked features: 10%, 20%, 30%, 50%,

80%, and 100% of the total number of features for each dataset.

In the case where 100% of the total features were used, no fea-

ture reduction was performed. We evaluated RFBoost with differ-

ent sizes for the weak learning search space: 10 0, 20 0, 30 0, 50 0,

80 0, and 10 0 0 ranked features, corresponding to each subset of

features used for the other two algorithms. 

We measured the classification performance using both MicroF1

and MacroF1. For the comparative evaluation, we used the best re-

sult obtained by any boosting round during the 20 0 0 iterations. For

example, AdaBoost.MH’s MacroF1 and MicroF1 results from 50 to

20 0 0 iterations for the R10 dataset are illustrated in Fig. 2 . The re-

sult at each iteration r is obtained using a subset of weak hypothe-
7 http://www.esuli.it/software/mpboost/ . 

 

s  

a  
es of size r , starting with the first hypothesis at the first boosting

ound. It is clear that the best results were not obtained at exactly

0 0 0 iterations. Therefore, for all algorithms, we sorted the results

or all boosting rounds and only used the best results for the eval-

ation. 

.3. Results and discussion 

Figs. 3 and 4 illustrate the MicroF1 and MacroF1 results, re-

pectively, of the boosting algorithms on all datasets, using varying

umbers of selected features for AdaBoost.MH and MPBoost and

ifferent sizes of the search space for RFBoost weak learning. Re-

arding the MicroF1 results, as Fig. 3 shows, on average RFBoost

ith LLDA-based feature ranking outperformed the other boosting

lgorithms on all datasets except for R9 , where MPBoost achieved

he best results. RFBoost with OBR-based feature ranking exhibited

he worst performance in general, except for the R10, Medical , and

4 datasets, where it slightly outperformed MPBoost, while Ad-

Boost.MH exceeded the performance of RFBoost with OBR-based

eature ranking on all datasets. AdaBoost.MH performed well on

verage, while MPBoost outperformed it on the R90, 20NG, RCV1 ,

nd OHSUMED datasets. The MacroF1 results in Fig. 4 support

hese findings. RFBoost with LLDA-based feature ranking obtained

he best MacroF1 results on all datasets except for R90 , where

PBoost outperformed it. RFBoost with OBR-based feature rank-

ng performed well with respect to MacroF1. It outperformed MP-

oost on the R10, RCV1 , and W4 datasets, and it outperformed Ad-

Boost.MH on the R10 and RCV1 datasets. 

Regarding the use of LLDA-based feature selection for improving

he classification performance of both AdaBoost.MH and MPBoost,

able 4 summarises the best MicroF1 results for both algorithms

n all datasets with and without LLDA-based feature selection. It is

lear that using feature selection yielded AdaBoost.MH’s best per-

ormance on all datasets. For MPBoost, the use of feature selec-

ion led to the best performance in general, while for the RCV1 and

edical datasets, MPBoost achieved the best performance without

sing LLDA-based feature selection. Although the use of feature se-

ection slightly improves the classification performance, the signifi-

ant impact of using it is amply demonstrated in the learning time,

s will be discussed at the end of this section. 

Tables 5 and 6 summarise the best MicroF1 and MacroF1 re-

ults, respectively, for all of the evaluated boosting algorithms on

ll datasets. RFBoost with LLDA-based feature ranking achieved

http://www.esuli.it/software/mpboost/
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Fig. 4. The MacroF1 results for all datasets. 
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o  
he best classification performance on all datasets except for R90 ,

here MPBoost outperformed it as measured by both the MicroF1

nd MacroF1 results, and W4 , where AdaBoost.MH obtained the

est results among all the algorithms. AdaBoost.MH ranked second
n terms of MicroF1, behind MPBoost. RFBoost with OBR ranked

he worst overall. 

In order to statistically validate the significant improvement of

ur proposed approach as shown in Table 5 and 6 , we used the
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Algorithm 1 AdaBoost.MH. 

INPUT : A training set S , probability distribution matrix W , and number of iterations R 

OUTPUT : The final hypothesis H( х , l ) = 

R ∑ 

r=1 

α(r) h (r) ( х , l ) 

1: set W 

(1) ← W 

2: for r ← 1 to R 

3: pass ( S , W 

(r) ) to a base learner 

4: get weak hypothesis h (r) : χ × Y → R 

5: choose α(r) ∈ R + 
6: update W 

( r+1 ) ( Eq. (4 )) 

Table 5 

The best MicroF1 results (%) overall. 

Dataset AdaBoost.MH RFBoost|LLDA RFBoost|OBR MPBoost 

R10 93 .77 (2) 93 .93 (1) 93 .52 (3) 93 .30 (4) 

R90 82 .95 (3) 83 .00 (2) 82 .26 (4) 86 .16 (1) 

RCV1 71 .42 (3) 72 .84 (1) 71 .27 (4) 72 .74 (2) 

20NG 71 .78 (3) 74 .09 (1) 70 .87 (4) 72 .21 (2) 

MEDICAL 80 .05 (2) 80 .61 (1) 77 .78 (3) 77 .73 (4) 

OHSUMED 58 .34 (3) 59 .91 (1) 56 .32 (4) 59 .37 (2) 

TMC2007 62 .91 (2) 62 .98 (1) 62 .82 (4) 62 .87 (3) 

W4 91 .83 (2) 92 .05 (1) 91 .26 (3) 89 .11 (4) 

Mean of rank 2 .5 1 .125 3 .625 2 .75 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 

The best MacroF1 results (%) overall. 

Dataset AdaBoost.MH RFBoost|LLDA RFBoost|OBR MPBoost 

R10 88 .22 (3) 88 .83 (1) 88 .71 (2) 88 .11 (4) 

R90 41 .76 (4) 53 .22 (2) 42 .31 (3) 55 .02 (1) 

RCV1 38 .00 (4) 41 .01 (1) 40 .85 (2) 40 .39 (3) 

20NG 71 .78 (2) 73 .86 (1) 70 .52 (4) 71 .54 (3) 

MEDICAL 53 .19 (2) 54 .35 (1) 51 .74 (4) 52 .89 (3) 

OHSUMED 52 .14 (3) 55 .88 (1) 50 .32 (4) 55 .64 (2) 

TMC2007 55 .35 (4) 56 .86 (1) 56 .12 (3) 56 .44 (2) 

W4 91 .34 (2) 91 .79 (1) 90 .56 (3) 88 .10 (4) 

Mean of rank 3 1 .125 3 .125 2 .75 

Table 7 

Pairwise comparisons using the two-tailed Bonferronni–Dunn test 

after the Friedman test with α = 0 . 05 and critical value = 7 . 815 . 

MicroF1 MacroF1 

Friedman test p -value 0 .001 0 .006 

RFBoost|LLDA–AdaBoost.MH 0 .015 0 .001 

RFBoost|LLDA–MPBoost 0 .004 0 .004 

RFBoost|LLDA–RFBoost|OBR < 0 .0 0 01 0 .0 0 04 

AdaBoost.MH–MP-Boost 0 .660 0 .980 

AdaBoost.MH–RFBoost|OBR 0 .048 0 .660 

MPBoost–RFBoost|OBR 0 .123 0 .509 

Bonferroni-corrected significance level 0 .0083 0 .0083 

Algorithm 3 Per-category normalisation procedure. 

INPUT : A non-normalised distribution matrix W 

OUTPUT : A normalised distribution matrix W 

1: for l ← 1 to m do 

2: set w l ← 0 

3: for i ← 1 to n do 

4: w l ← w l + w i,l 

5: end for 

6: end for 

7: w l ← w l ∗m 

8: for i ← 1 to n do 

9: w i, l ← w i, l / w l 

10: end for 

a  

e  

w

 

t  

v  

o  

F  
Friedman test . The Friedman rank test is defined as follows: 

X 

2 
F = 

12 N d 

k ( k − 1 ) 

[ ∑ 

j 

R 

2 
j − k ( k + 1 ) 

2 

4 

] 

, (26)

where N d is the number of datasets, k is the number of classifica-

tion algorithms, and R j is the average rank of each algorithm. 

After performing the Friedman test on the given ranks in Tables

5 and 6 and obtaining the distribution according to Eq. (26) with

k − 1 degrees of freedom, the p -values using MicroF1 and MacroF1

are 0.001 and 0.006, respectively, at the 5% significance level. This

means that there are significant differences between the methods,

and thus the null hypothesis that the methods have the same per-

formance can be rejected. 

Having rejected the null hypothesis through the Friedman test,

we proceeded with multiple pairwise comparisons of the boosting

algorithms. We performed a two-tailed Bonferronni–Dunn test to

compare pairs of methods. Table 7 shows the p- values of the com-

pared pairs using the Bonferronni–Dunn test, with boldface indi-

cating strong significant differences. The results demonstrate that

RFBoost with LLDA-based feature ranking differs significantly from

the other algorithms in terms of the MacroF1 results. The results

showed similar findings for MicroF1, with the exception of Ad-
Algorithm 2 AdaBoost.MH with real-valued p

INPUT : A training set S , distribution matrix W

term index T 
OUTPUT : The final hypothesis H( х , l ) ← 

∑ R 
r=1

1: set W 

(1) ← W � start with an in

2: for r ← 1 to R do � for each boos

3: set pt ← t 1 � initialise the pi

4: set Z min ← 99, 999 � initialis

5: for i ← 1 to |T | do � for e

6: calculate Z (r) 
i 

� Eqs. (9) –( 1

7: if Z (r) 
i 

< Z min then 

8: Z min ← Z (r) 
i 

9: pt ← t i 
10: end if 

11: end for 

12: return h ( r ) � build the new

13: predictions ( Eq

14: update W 

( r+1 ) � update the d

15: end for 
Boost.MH. For the rest of the pairs, there are no significant differ-

nces in terms of MacroF1 and MicroF1 for AdaBoost.MH, RFBoost

ith OBR-based feature ranking, and MPBoost. 

Finally, we turn to computational cost. Let n be the number of

raining examples, m the number of categories, and v the training

ocabulary size. For AdaBoost.MH, the training time for performing

ne boosting round and building a new weak hypothesis is O ( nmv ).

or RFBoost, the number of features examined at each round is k ,
redictions. 

 , number of iterations R, and feature 

 

h (r) ( х , l ) 
itial distribution of weights 

ting round r 

vot term 

e Z to a large positive number 

ach feature in T 
4 ) 

 weak hypothesis based on pt 

. ( 8 )) 

istribution matrix ( Eq. (4 )) 
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Algorithm 4 RFBoost. 

INPUT : A training set S , distribution matrix W , number of iterations R, ranked 

feature term index T ′ , and number of filtered features k 

OUTPUT : The final hypothesis H( х , l ) ← 

∑ R 
r=1 h (r) ( х , l ) 

1: set W 

(1) ← W � start with an initial distribution of weights 

2: set FilterdList ← ( t ′ 1 , . . . , t ′ 
k 
) � filter the top k ranked features 

3: for r ← 1 to R do � for each boosting round r 

4: set pt ← t ′ 1 � initialise the pivot term 

5: set Z min ← 99, 999 � initialise Z to a large positive number 

6: for k ← 1 to k do � for each feature in FilterdList 

7: calculate Z (r) 
k 

� Eq. (9) to ( 14 ) 

8: if Z (r) 
k 

< Z min then 

9: Z min ← Z (r) 
k 

� select the pivot term, the one with the smallest Z 

10: pt ← t ′ 
k 

11: end if 

12: end for 

13: return h ( r ) � build the new weak hypothesis based on pt predictions 

14: update W 

( r+1 ) � update the distribution matrix 

15: FilterdList ← FilterdList − pt � remove the current pivot term 

16: FilterdList ← FilterdList + t ′ 
k + r � add t ′ k + r , the next feature in T ′ 

17: end for 

1

101

201

301

401

501

601

701

801

10 20 30 50 80 100

ti
m

e 
in

 s
ec

o
n

d
s.

BOW size % for AdaBoost.MH and MPBoost

Weak learning search space × 100 for RFBoost

AdaBoost.MH

RFBoost

MPBoost

Fig. 5. The training time averages for all datasets. 

Algorithm 5 The feature-ranking procedure based on one boosting round. 

INPUT : A training set S , distribution matrix W , and feature term index T 
OUTPUT : The ranked feature term index T ′ 

1: set ε ← 1 \ mn 

2: define an empty index T ′ 
3: for k ← 1 to |T | do 

4: for l ← 1 to m do 

5: for u ← 0 to 1 do 

6: divide X into X 0 , X 1 ( Eq. (9 )) 

7: for b ← −1 , +1 do 

8: calculate W 

b 
ul 

( Eqs. (10 ) and (11 )) 

9: calculate Z k ( Eq. (13 )) 

10: add the pair ( t k , Z k ) to T ′ 
11: end for 

12: end for 

13: end for 

14: end for 

15: sort T ′ based on the values of Z 

t  

c  

t  

n  

a  

i  

L  

o  

i  

i  

s  

Algorithm 6 The feature-ranking procedure based on LLDA. 

INPUT : A training set S , feature terms index T , and label–word distribution �

OUTPUT : The ranked feature terms index T ’ 

1: define an empty index T ’ 

2: for k ← 1 to |T | do 

3: set φmax, t k ← φ1 , t k 

4: for l ← 2 to m do 

5: if φl, t k 
> φmax, t k 

6: φmax, t k ← φl, t k 

7: end if 

8: end for 

9: add the pair ( t k , φmax, t k ) to T ′ 
10: end for 

11: sort T ′ based on φmax, t ∀ t ∈ T 

i  

r  

t  

fi  

u  

m  

r  

s

8

 

o  

l  

t  
he number of top-ranked features, which is a very small number

ompared to the training vocabulary size v . Therefore, RFBoost’s

raining time for performing one boosting round and building a

ew weak hypothesis is O ( nmk ). Fig. 5 illustrates the learning time

verage for all algorithms on all datasets. It is clear that RFBoost

s dramatically faster than both AdaBoost.MH and MPBoost. Using

LDA-based feature selection dramatically accelerates the learning

f both AdaBoost.MH and MPBoost, as shown by the last columns

n Fig. 5 , where the feature size of 100% indicates that all train-

ng features have been used, without any reduction. MPBoost is

lightly faster than AdaBoost.MH. However, theoretically, MPBoost
s slower than AdaBoost.MH. That is, in MPBoost the weak learner

eturns multi-pivots, one for each label, which makes it slower

han AdaBoost.MH. The reason behind the slight differences in ef-

ciency is due to the different programming languages that are

sed, Java and C ++ , as mentioned in Section 7.2 . It is also worth

entioning that RFBoost was evaluated without using any feature

eduction, as it is expressly designed to handle the feature dimen-

ionality by itself. 

. Conclusions 

In this study, we have proposed RFBoost, an improved version

f AdaBoost.MH, the well-known boosting algorithm for multi-

abel classification. The idea behind RFBoost is to rank the fea-

ures extracted from the training set as a pre-task before weak
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Algorithm 7 LLDA-based feature selection. 

INPUT : A training set S , feature term index T , label–word distribution �, and number of top words u 

OUTPUT : A sorted and weighted feature term index T ′′ 
1: define a temporary index T ′′ tmp 

2: define an empty index T ′′ 
3: for k ← 1 to | T | do 

4: set φmax, t k ← φ1 , t k 

5: for l ← 2 to m do 

6: if φl, t k 
> φmax, t k then 

7: set φmax, t k ← φl, t k 

8: end if 

9: end for 

10: add the pair ( t k , φmax, t k ) to T ′′ tmp 

11: end for 

12: sort T ′′ tmp based on φmax, t ∀ t ∈ T 
13: for i ← 1 to u do 

14: add ( t i , φmax, t i ) to T ′′ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

learning. Then a small fixed number of top-ranked features are fil-

tered from all the ranked features, and only these are examined

during each boosting round—rather than examining all of the fea-

tures, as AdaBoost.MH does. We have proposed two methods for

ranking the features: one boosting round (OBR) and Labeled Latent

Dirichlet Allocation (LLDA). The former is based on performing one

boosting iteration on a given initial distribution and then weight-

ing and sorting the features according to their boosting weights .

The latter is based on performing LLDA based on Gibbs sampling

to obtain two indexes, the label–word assignment index and the

document–label assignment index. Then the words are ranked ac-

cording to their conditional probabilities in the label–word assign-

ment index. In addition, we have proposed new weighting policies

for initialising a distribution of weights over the training exam-

ples and for normalising the distribution at each boosting round.

To initialise the distribution, we used the conditional probabili-

ties of the documents in a document–label assignment index ob-

tained by LLDA as the initial weights. For normalising the distri-

bution, we used per-category normalisation rather than the usual

per-document normalisation. We also investigated the use of LLDA

as a feature selection method by simply using the top-weighted

words based on the maximal conditional probabilities of the words

across the labels in the label–word assignment index. 

The experimental results for eight benchmarks prove that RF-

Boost is more efficient than AdaBoost.MH and MPBoost. In terms

of the classification performance, the results demonstrate that RF-

Boost with the new weighting policies and the LLDA-based feature

ranking significantly outperformed all other evaluated algorithms,

while OBR-based feature ranking yielded the worst performance

overall. However, the advantage of OBR-based feature ranking is

that the features are ranked within the weak learner and there is

no need to use external ranking methods. In the future, we will in-

vestigate the use of RFBoost to solve other multi-label classification

problems. In addition, we will investigate the use of other feature

ranking methods, as feature ranking is the core idea for improving

RFBoost’s effectiveness. 
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