
Unsupervised Forward Selection: A Method for Eliminating Redundant Variables

D. C. Whitley,*,† M. G. Ford,† and D. J. Livingstone†,‡

Centre for Molecular Design, Institute of Biomedical and Biomolecular Science, University of Portsmouth,
King Henry Building, King Henry I Street, Portsmouth, PO1 2DY, U.K., and ChemQuest, Delamere House,

1, Royal Crescent, Sandown, Isle of Wight, PO36 8LZ, U.K.

Received March 10, 2000

An unsupervised learning method is proposed for variable selection and its performance assessed using
three typical QSAR data sets. The aims of this procedure are to generate a subset of descriptors from any
given data set in which the resultant variables are relevant, redundancy is eliminated, and multicollinearity
is reduced. Continuum regression, an algorithm encompassing ordinary least squares regression, regression
on principal components, and partial least squares regression, was used to construct models from the selected
variables. The variable selection routine is shown to produce simple, robust, and easily interpreted models
for the chosen data sets.

1. INTRODUCTION

Computational chemistry has considerable potential for
drug design, but to assist in its rational use it would be helpful
to support the molecular modeling studies with mathematical
analyses of the relationships between the responses detected
by bioassays and appropriate sets of molecular properties
derived using computational methods. In the past this has
proved difficult due to the amounts of redundancy and
multicollinearity contained in typical data sets. This paper
offers a procedure to overcome this and, as part of a
structured approach to model building, produce statistical
models with good predictive power based on a small number
of relevant properties.

1.1. Relevance, Redundancy, and Multicollinearity.The
ability of molecular modeling packages to generate large
numbers of molecular descriptors and the development of
3-D QSAR procedures such as CoMFA and EVA has led to
the frequent occurrence of data matrices with many more
columns (descriptors) than rows (objects). This has resulted
in a much wider choice of variables for possible inclusion
in statistical models but has greatly increased the possibility
of chance correlation1 with data describing biological activity.
Three main issues arise when developing predictive models
for use in the design of new compounds or when investigat-
ing the relationship between biological data sets and chemical
descriptors: relevance, redundancy, and multicollinearity.
Relevance means simply that the variables included in the
model should contain information pertinent to the response
being modeled. Relevant descriptors have a statistically
significant correlation with the response variable and do not
have low variance; as variance tends to zero, so does the
information content of a variable. Redundancy is an exact
linear dependence between a subset of the columns in the
data matrix, so that at least one column in this subset
contributes no unique information. Redundancy implies that
the data matrix has maximal rank. Multicollinearity is the
existence of high multiple correlation between a subset of

linearly independent columns which, nevertheless, still
contribute some unique information. Multicollinearity implies
that the data matrix has at least one small, nonzero eigen-
value. Redundancy occurs in the limiting case when this
eigenvalue tends to zero, so that redundancy is the ultimate
multicollinearity. Whereas redundancy is always to be
avoided, multicollinearity that reflects the properties of the
population rather than the sample can be an important feature
of a successful model, for example reflecting characteristic
features of a series of related chemical structures.

1.2. Preprocessing Data.Such considerations lead to the
following preprocessing strategy for the derivation of models
for use in structure-activity relationships (QSARs): 1.
identify a subset of columns (variables) with significant
correlation to the response; 2. remove columns (variables)
with small variance; 3. remove columns (variables) with no
unique information; 4. identify a subset of variables on which
to construct a model; and 5. address the problem of chance
correlation. Attention to these points will result in parsimoni-
ous QSAR models that are more likely to generalize
successfully to new objects.

The increasing application of multivariate techniques2,3 to
the development of models for drug design has led to the
widespread use of “over-square” data sets and thus, in the
interests of minimizing chance correlation and improving the
quality of the sets, various approaches have been proposed
for data preprocessing. The identification and removal of
variables with low or zero variance is a commonly used
method. Indeed, this is almost a prerequisite in the analysis
phase of 3-D QSAR studies using CoMFA or EVA which
invariably result in over-square data sets with many variables
of low or, particularly in the case of EVA, zero variance.
Although useful, this approach normally removes only a
small number of variables from typical data sets generated
by molecular modeling packages and does nothing to address
problems such as redundancy and multicollinearity.

A technique that does set out to remove redundancy, on
the basis of pairwise correlation, is known as CORCHOP.4

This procedure is unsupervised, in the sense that it depends
only on the independent variables, and the response variable
plays no role in the selection process. CORCHOP identifies
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variables whose correlation with one other variable is greater
than some pre-set limit and suggests an appropriate member
of the pair to remove. After the identification of such sets
of variables the algorithm then identifies variables on the
basis of the count of their pairwise correlation with others.
The intention here is to remove the smallest number of
variables while breaking the largest number of pairwise
collinearities. Others have proposed similar procedures,5-7

and neural network pruning8,9 allows a nonlinear estimate
of variable importance as recently reviewed.10 However, for
generalization, QSAR equations should be of low dimension
with as few variables as possible.

1.3. Aims and Objectives.This paper presents an un-
supervised forward selection (UFS) routine that reduces over-
square matrices to a size for which specification of robust
models is possible. This algorithm was designed specifically
to meet items 2 and 3 above but also deals partially with
items 4 and 5. Rather than starting with all the variables
and removing correlated columns in the manner of COR-
CHOP, UFS starts with the two variables which are least
well correlated and selects additional variables on the basis
of their multiple correlation with those already chosen, thus
building a subset of variables that is as close to orthogonality
as possible. Three examples are presented to demonstrate
the utility of UFS as part of a QSAR model building
procedure designed to address all the issues listed above.

2. THE UFS ALGORITHM
This section describes the unsupervised forward selection

algorithm, applied to ann × p matrix X ) (xij), wherexij is
the value of thejth variable for theith compound. LetXj )
(xij, ...,xnj)T denote thejth column ofX. The selection process
halts when theR2 value of each remaining variable with those
already selected exceeds some preassigned limitRmax

2 < 1.
1. Mean-center the columns ofX

where

2. Reject columns with length

for some smallε > 0. These columns have small standard
deviation and contribute no significant information.

3. Normalize the remaining columns to unit length:

4. Calculate the correlation matrix (rij) ) XTX. Select as
the first two columns those with the smallest squared
correlation coefficientrij

2 and reject columns whose squared
correlation coefficient with either exceedsRmax

2 .
5. Choose an orthonormal basis{c1, c2} for the subspace

of RP spanned by the first two columns. (For example, follow

the Gram-Schmidt procedure: if the first two columns are
XR andXâ, takec1 ) XR andc2 ) Y/|Y|, whereY ) XR -
(Xâ‚XR)XR.)

The remaining steps of the algorithm are repeated until
each column is either selected or rejected. Suppose thatl g
2 columns have been selected, and let{c1, ..., cl} be an
orthonormal basis for the subspace ofRP spanned by these.

6. For each remaining columnXj calculate its squared
multiple correlation coefficientRj

2 with the selected col-
umns. This is the length of the orthogonal projection ofXj

onto the subspace spanned by{c1, ..., cl}:

7. Reject columnsXj with Rj
2 > Rmax

2 and select from
those remaining the column with the smallestRj

2.
8. If any columns remain, choose an orthonormal basis

for the subspace spanned by the selected columns and return
to step 6. (For example, usec1, ...,cl andcl+1 ) Y/|Y| where

andXω is the column selected at step 7.)
Figure 1 provides a flowchart for the major steps in this

process. Source code implementing this algorithm is available
from http://www.cmd.port.ac.uk. The algorithm as presented
gives the user no control over the variables to be selected.
Clearly it could be implemented as an interactive process,
with theR2 values for the unselected variables presented to
the user at each stage, and allowing the user to over-ride the
automatic choice of the variable with the smallestR2, forcing
the entry of favored variables (logP, etc.) into the data set.

3. APPLICATIONS OF THE UFS ALGORITHM TO
DRUG DESIGN

To illustrate the use of the algorithm, we describe three
applications to QSAR model building: a CoMFA data set
used to model the relationship between a series of 21 steroid
compounds and their testosterone binding globulin affinity;11

a data set containing 70 descriptors used to model the
biological activity of 19 pyrethroid insecticides;12 and a data

Figure 1. Unsupervised forward selection.
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set containing 53 descriptors used to model the biological
activity of 31 antifilarial antimycin analogues.13 The data
sets used are available on the Centre for Molecular Design
web site (http://www.cmd.port.ac.uk). The pyrethroid and
Selwood data were mean-centered and normalized to unit
length prior to analysis.

3.1. Model Specification Protocol.The modeling proce-
dure adopted in each case was designed to address the issues
of relevance, redundancy, and multicollinearity identified in
the Introduction (section 1.1). First, variables whose cor-
relation with the response variable was not significant at the
5% level were removed. Second, variables with small var-
iance were removed. The UFS procedure was then applied
repeatedly using values ofRmax

2 stepping from 0.1 to 0.9
with an increment of 0.1, together withRmax

2 ) 0.99. In
each case models were built from the subset of variables
identified by UFS using the Portsmouth formulation of
Continuum Regression (CR),14 a procedure in which the
model selection criterion depends on a continuous parameter
R in the range 0e R e 1.5. CR is equivalent to Ordinary
Least Squares (OLS) whenR ) 0, Partial Least Squares
(PLS) whenR ) 0.5, and Principal Components Regression
(PCR) whenR ) 1. The CR calculations were performed
with the in-house PARAGON15 software using values ofR
stepping from 0 to 1.5 with an increment of 0.1. To address
the issue of chance correlation, an optimal model was chosen
to have values ofRmax

2 andR maximizingQ2, the leave-one-
out cross-validatedR2. At this stage the correlations between
the residuals and the variables removed on the grounds of
having an insignificant correlation with the response variable
may be examined. Any variable found to have a significant
correlation with the residuals may be added to the set of
variables used to specify the model and CR repeated as
above. This protects against committing a Type I error during
the model specification procedure. As a final check against
chance correlation, the optimal models were analyzed using
(i) n-fold cross-validation for a range of values ofn, where
n is the number of cross-validation groups; and (ii) a random-
ization test that involved 1000 permutations of the y scores.

3.2. Steroid Data Set.The first application of UFS is to
the data set of 21 steroid compounds used in the SYBYL
CoMFA tutorial11,16to model their binding affinity to human
testosterone binding globulin (TBG). A CoMFA column was
calculated in SYBYL using the parameters recommended
in the tutorial example, and the steric and electrostatic field
values at each lattice point were extracted. After removing
those lattice points whose field values exceeded the recom-
mended 30 kcal/mol cutoff, this resulted in a dataset with
1248 columns. From this set, 858 columns not significantly
correlated with the response variable TBG at the 5% level
were removed, leaving a set of 390 columns. A further 367
columns with variance below 1.0 kcal/mol were removed
as recommended,16 leaving 23 columns. UFS and CR were
then applied with the range ofRmax

2 andR values described
above. For each value ofRmax

2 the value ofR giving the
largestQ2 is shown in Table 1, along with the number of
variables selected by UFS, the number of components in the
CR model, and the fitR2.

The number of variables selected by UFS always increases
in a stepwise fashion with the value ofRmax

2 , used as a
stopping criterion, rising in this instance to a maximum of

11 at Rmax
2 ) 0.99. This reflects the increasing degree of

multicollinearity observed as the number of selected variables
increases. Table 1 shows that the number of selected vari-
ables is constant for 0.1e Rmax

2 e 0.2 and 0.3e Rmax
2 e

0.5. Over each of these ranges the same set of variables is
provided to CR, and so identical models are generated. For
this data set the number of components in the models found
by CR tends to rise withRmax

2 . The overall optimal model is
a 3-variable, 1-component model withQ2 ) 0.83 andR2 )
0.85 that is found over a range of values ofRmax

2 . The value
of R ) 0.3 is determined from the plot ofQ2 versusR and
Rmax

2 shown in Figure 2.

This produces the optimized QSAR model (Rmax
2 ) 0.3,R

) 0.3):

Table 1. Optimal Models for the Steroid Data Set

Rmax
2 R variables components Q2 R2

0.1 1.0 2 1 0.7528 0.7617
0.2 1.0 2 1 0.7528 0.7617
0.3 0.3 3 1 0.8277 0.8535
0.4 0.3 3 1 0.8277 0.8535
0.5 0.3 3 1 0.8277 0.8535
0.6 0.0 4 1 0.7915 0.8949
0.7 0.3 5 2 0.7853 0.8891
0.8 0.3 6 2 0.7576 0.8802
0.9 1.0 7 4 0.8200 0.8911
0.99 0.7 11 3 0.8090 0.8860

1-Component Model (Rmax
2 ) R ) 0.3)

Analysis of Variance
DF SS MS F-ratio Prob>F

model 1 17.0700 17.0700 110.6943 0.0000
error 19 2.9300 0.1542
total 20 20.0000
S 0.3927
R2 0.8535
adjustedR2 0.8535

Bootstrap 95.0% Confidence Limits
(Based on 5000 Bootstraps)

lower median upper mean stderr

E225 -0.6310 -0.4346 -0.2199 -0.4361 0.0985
E249 0.2955 0.5176 0.7076 0.5138 0.1075
S465 -0.6557 -0.4252 -0.2511 -0.4332 0.1010

Figure 2. Maximizing Q2 for the steroid data set.

TBG) 0.83C1
((0.08)
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where

so that

HereE225) electrostatic field atx ) -1.77,y ) 0.19,z )
-5.09;E249) electrostatic field atx ) 6.23,y ) 4.19,z )
-5.09; andS465) steric field atx ) -1.77,y ) -5.81,z
) 0.91 are standardized variables (µ ) 0, σ ) 1), and the

standard errors in eq 2 are estimated by bootstrapping17 using
a sample size of 5000 (Table 1). It is worth noting that pairs
of field points share common coordinates (x ) -1.77 for
E225andS465, and z) -5.09 forE225andE249). In terms
of the original unstandardized variables eq 2 becomes

As a final check that chance correlation has been avoided
and that the model is likely to generalize to new objects,
n-fold cross-validation was carried out forn ) 2, 6, 10, 15
and 20, followed by permutation of the y scores. The results
of 40 cross-validations for each value ofn are shown in
Figure 3. Apart from a single low value ofQ2 when only 2
cross-validation groups were used, all the cross-validations
produced values ofQ2 > 0.6, and whenn > 2, Q2 > 0.75.
A randomization test for this model, using 1000 permutations
of the response variable, produced tail probabilities less than
0.0001 for fit and 0.0012 for prediction.

By comparison, the SYBYL tutorial produces a 5 com-
ponent model withQ2 ) 0.6 andR2 > 0.98, an example of
overfitting. The results ofn-fold cross-validation of this mod-
el, shown in Figure 4, are generally weaker than those for
the UFS/CR model in Figure 3, with a wider spread of lower
values ofQ2 for each group sizen.

Figure 5 shows the variables in eq 2 plotted with a repre-
sentative structure (aldosterone). All three variables lie on
the same side of the structure, and their common coordin-
ates lead to them being approximately equidistant from the
central plane of the structure. This illustrates how the model-
ing procedure followed here may lead to potential pharma-
cophores.

3.3. Pyrethroid Data Set.The second example is a data
set consisting of 70 physicochemical descriptors used to
model the killing activity (KA) of 19 pyrethroid insecti-
cides.12 Only 6 of these descriptors are significantly cor-
related with KA at the 5% level. In this case no variables
were removed on the grounds of small variance. The results
of the UFS/CR procedure are shown in Table 2. The optimal
model, as chosen by maximalQ2, is a 4-variable, 2-compo-
nent model withR2 ) 0.775 andQ2 ) 0.773 obtained when
Rmax

2 ) 0.7 andR ) 1.2 (Figure 6):

Figure 3. n-fold cross-validation for the optimal model from the
steroid data set.

Figure 4. n-fold cross-validation for the SYBYL tutorial model
from the steroid data set.

Figure 5. Putative pharmacophore for TBG affinity for steroids,
illustrated for aldosterone and based on the optimal 1-component
model, eq 3.

t ) 10.5211,prob>t ) 0.0000,R2 ) 0.85,Q2 ) 0.83
(1)

C1 ) -0.53E225+ 0.70E249- 0.48S465

TBG) -0.44E225
((0.10)

+ 0.58E249
((0.11)

- 0.39S465
((0.10)

(2)

Figure 6. Maximizing Q2 for the pyrethroid data set.

TBG) 8.96- 0.35E225
((0.08)

+ 0.35E249
((0.07)

- 0.15S465
((0.04)

(3)
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where

so that

Here A5, A8 ) atomic charges,MIZ ) z-component of
moment of inertia, andDVX) x-component of dipole vector
are standardized variables, and the standard errors in eq 5
are bootstrap estimates (Table 2). In terms of the original
unstandardized variables eq 5 produces

A randomization test for this model using 1000 permutations
of the response variable produced tail probabilities less than
0.0003 for fit and 0.0071 for prediction.

A very similar 3-variable, 1-component model occurs over
the range 0.4e Rmax

2 e 0.6 with R ) 0.2:

where

Thus, in terms of standardized variables

where the standard errors are bootstrap estimates (Table 2).
In terms of the original unstandardized variables eq 8
becomes

A randomization test for this model using 1000 permutations
of the response variable produced tail probabilities less than
0.0001 for fit and 0.0052 for prediction.

For both these models,n-fold cross-validation was carried
out for n ) 2, 6, 10, 15 and 18, with the results shown in
Figures 7 and 8. Then-fold cross-validation indicates that
the 1-component model is to be preferred over the 2-com-
ponent model on grounds of parsimony, even though the
latter has a marginally better value ofQ2. Equation 9 relates
high insecticidal activity of pyrethroids to a low or negligible
dipole component, a partial positive charge at the meta-
position of the benzyl ring of the alcohol moiety, and a large
moment of inertia in thez-direction. These features are
consistent with a mode of action in which the order within
a lipid bilayer or biological membrane is disrupted.

3.4. Selwood Data Set.The final example is the data set
studied by Selwood et al.13 in modeling the biological activity
of 31 antifilarial antimycin analogues. Of the 53 descriptors
in the data set only 12 are significantly correlated with the
response at the 5% level. None of these variables was consi-
dered to have small variance, so all 12 were used in the UFS/
CR modeling phase. The results, shown in Table 3 and Figure
9, are exceedingly poor. The best model, withR2 ) 0.42
andQ2 ) 0.41, was obtained whenRmax

2 ) 0.1 andR ) 1.0:

where

C1 ) 0.71SUM_F+ 0.71MOFI_Z

Table 2. Optimal Models for the Pyrethroid Data Set

Rmax
2 R variables components Q2 R2

0.1 1.0 2 1 0.7196 0.7241
0.2 1.0 2 1 0.7196 0.7241
0.3 1.0 2 1 0.7196 0.7241
0.4 0.2 3 1 0.7563 0.8051
0.5 0.2 3 1 0.7563 0.8051
0.6 0.2 3 1 0.7563 0.8051
0.7 0.1 4 1 0.7172 0.7980
0.7 1.2 4 2 0.7733 0.7746
0.9 0.1 6 1 0.6823 0.7730
0.99 0.1 6 1 0.6823 0.7730

1-Component Model (Rmax
2 ) 0.4,R ) 0.2)

Analysis of Variance
DF SS MS F-ratio Prob>F

model 1 14.4913 14.4913 70.2119 0.0000
error 17 3.5087 0.2069
total 18 18.0000
S 0.4543
R2 0.8051
adjustedR2 0.8051

Bootstrap 95.0% Confidence Limits
(Based on 5000 Bootstraps)

lower median upper mean stderr

A5 0.3715 0.6974 0.9215 0.6860 0.1440
MIZ 0.0406 0.2914 0.4888 0.2846 0.1124
DVX -0.5541 -0.3303 -0.0290 -0.3192 0.1332

2-Component Model (Rmax
2 ) 0.7,R ) 1.2)

Analysis of Variance
DF SS MS F-ratio Prob>F

model 2 13.9421 6.9710 27.4862 0.0000
error 16 4.0579 0.2563
total 18 18.0000
S 0.5063
R2 0.7746
adjustedR2 0.7613

Bootstrap 95.0% Confidence Limits
(Based on 5000 Bootstraps)

lower median upper mean stderr

A5 0.2531 0.7047 1.0101 0.6847 0.2018
A8 -0.2358 0.1232 0.5582 0.1521 0.2217
MIZ -0.0673 0.2937 0.5876 0.2805 0.1684
DVX -0.4967 -0.1321 0.2295 -0.1332 0.1919

KA ) -1.00C1
((0.15)

+ 0.51C2
((0.17)

(4)

C1 ) -0.15A5 + 0.81A8 + 0.26MIZ + 0.50DVX

(n ) 19, t ) -6.7349,prob>t ) 0.0000)

C2 ) -0.7709A5 + 0.4162A8 - 0.3619MIZ +
0.3186DVX

(n ) 19, t ) 3.1006,prob>t ) 0.0069)

KA ) 0.6951A5
((0.20)

+ 0.0001A8
((0.22)

+ 0.4941MIZ
((0.16)

-

0.0620DVX
((0.19)

(5)

KA ) - 2.31+ 9.64A5
((2.80)

+ 0.044A8
((98)

+ 2.4E-4 MIZ
((8.29E-5)

-

0.037DVX
((0.11)

(6)

KA ) 0.81C1
((0.10)

t ) 8.3793,prob>t ) 0.0000,R2 ) 0.81,Q2 ) 0.76 (7)

C1 ) 0.77A5 + 0.49MIZ - 0.41DVX

KA ) 0.63A5
((0.14)

+ 0.39MIZ
((0.11)

- 0.33DVX
((0.13)

(8)

KA ) - 1.80+ 8.67A5
((2.00)

+ 1.94E-4 MIZ
((5.5E-5)

- 0.20DVX
((0.08)

(9)

log
1
C

) 0.64C1
((0.14)

t ) 4.5683,prob>t ) 0.0001,R2 ) 0.42,Q2 ) 0.41
(10)

1164 J. Chem. Inf. Comput. Sci., Vol. 40, No. 5, 2000 WHITLEY ET AL .



Thus

In terms of the original, unstandardized variables eq 11 is
equivalent to

The bootstrap estimates for the standard errors suggest that
both terms (SUM_F and MOFI_Z) are significant. A
randomization test for this model using 1000 permutations
of the response variable produced tail probabilities less than
0.0001 for fit and 0.0014 for prediction.

Figure 7. n-fold cross-validation for the optimal 2-component
model for the pyrethroid data set. Four negativeQ2 values obtained
whenn ) 2 are not shown.

Figure 8. n-fold cross-validation for the optimal 1-component
model for the pyrethroid data set.

Table 3. Optimal Models for the Selwood Data Set

Rmax
2 R variables components Q2 R2

0.1 1.0 2 1 0.4086 0.4240
0.2 1.0 2 1 0.4086 0.4240
0.3 1.2 3 1 0.1423 0.4435
0.4 1.2 3 1 0.1432 0.4435
0.5 1.0 4 1 0.0192 0.4150
0.6 1.0 4 1 0.0192 0.4150
0.7 1.0 5 1 0.1908 0.4478
0.8 1.0 7 1 0.3214 0.4776
0.9 1.0 8 1 0.3413 0.4743
0.99 0.8 12 1 0.3718 0.4475

1-Component Model (Rmax
2 ) 0.1,R ) 1.0)

Analysis of Variance
DF SS MS F-ratio Prob>F

model 1 12.3842 12.3842 20.8692 0.0001
error 28 16.6158 0.5934
total 29 29.0000
S 0.7703
R2 0.4270
adjustedR2 0.4270

Bootstrap 95.0% Confidence Limits
(Based on 5000 Bootstraps)

lower median upper mean stderr

SUM_F 0.3287 0.4671 0.5945 0.4643 0.0667
MOFI_Z 0.3205 0.4670 0.5945 0.4593 0.0952

Figure 9. Maximizing Q2 for the Selwood data set.

Table 4. Optimal Models for the Selwood Data Set with
Compound M6 Removed

Rmax
2 R variables components Q2 R2

0.1 1.0 2 1 0.4113 0.4270
0.2 1.0 2 1 0.4113 0.4270
0.3 1.0 2 1 0.4113 0.4270
0.4 1.1 3 2 0.3286 0.4380
0.5 1.1 3 2 0.3286 0.4380
0.6 1.1 3 2 0.3286 0.4380
0.7 1.0 4 1 0.3793 0.4363
0.8 1.0 6 1 0.4458 0.4787
0.9 0.8 8 1 0.4866 0.5310
0.99 0.0 12 1 0.4964 0.8517

1-Component Model (Rmax
2 ) 0.99,R ) 0.0)

Analysis of Variance
DF SS MS F-ratio Prob>F

model 12 24.7004 2.0584 8.1386 0.0001
error 17 4.2996 0.2529
total 29 20.3539
S 0.5029
R2 0.8517
adjustedR2 0.7611

Bootstrap 95.0% Confidence Limits
(Based on 5000 Bootstraps)

lower median upper mean stderr

ATCH8 -3.9277 0.0605 4.0518 0.0948 2.1537
ATCH9 -1.4681 -0.0129 1.2296 -0.0359 0.7986
ESDL5 -1.0053 -0.1880 0.9849 -0.1585 0.5902
ATCH7 -1.9265 0.2049 2.4041 0.2453 1.3341
SUM_F 0.0914 0.9037 1.8585 0.9185 0.4176
NSDL9 -0.9815 -0.0535 0.6861 -0.0768 0.4804
MOFI_Z -0.1966 1.3536 2.6885 1.3390 0.7559
S8_1DX -2.4146 -1.1739 0.0353 -1.1765 0.6543
SUM_R -0.6086 0.4421 1.3414 0.4317 0.5071
ATCH4 -2.7713 0.0366 2.2178 0.0449 2.0804
S8_1DY -2.0059 -0.8678 0.0353 -0.8980 0.5330
NSDL10 -0.1696 0.6742 1.5089 0.6700 0.4501

log
1
C

) -1.43+ 1.86SUM_F
((0.29)

+ 3.94E-5 MOFI_Z
((8.04E-6)

(12)

log
1
C

) 0.45SUM_F
((0.07)

+ 0.45MOFI_Z
((0.09)

(11)
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To understand why this result is so disappointing, scatter
plots of the 12 variables against the response were examined,
revealing that the data are very badly distributed: some
variables have outlying values (ATCH4, NSDL10); others
are clearly clustered into two groups (ATCH8, SUM_R). In
fact none of these variables has a relationship with the
response that is visible to the naked eye. In an attempt to
obtain improved models, compoundM6 was removed from
the data set. (This compound has a wildly outlying value of
NSDL10: 0.9, while the remaining compounds have values
between-0.2 and 0.1.) The UFS/CR modeling was then
repeated with the results shown in Table 4 and Figure 10.
These are an improvement over the earlier results, but are
still poor, producing the optimized model with withR2 )
0.85 andQ2 ) 0.5 whenRmax

2 ) 0.99 andR ) 0.0:

where

so that, with standard errors estimated by bootstrapping,

In terms of the original, unstandardized variables we have

A randomization test for this model using 1000 permutations
of the response variable produced tail probabilities less than
0.0008 for fit and 0.0328 for prediction.

The n-fold cross-validation results forn ) 2, 6, 10, 15,
20, and 25 are shown in Figure 11 for the entire data set
and in Figure 12 for the case where M6 was removed. In
the latter case all but 2 of the cross-validation results forn
) 2 gave values ofQ2 < 0 and are omitted from Figure 12.
Although eq 13 produces the highest optimal Q2, because
of the degree of multicollinearity (Rmax

2 ) 0.99), it contains
only 2 significant terms (ATCH8, SUM_F) as judged by the
z-test with standard errors calculated by bootstrapping.
Moreover, the standard errors are highly variable and as a
result inference is difficult. It is not clear whether the
multicollinearity exhibited by the variables in eq 13 repre-
sents a feature of the underlying population, in which case
the model may still have some predictive power.

4. DISCUSSION
The preprocessing procedure advocated here, identifying

variables with a significant projection onto the response,
eliminating irrelevant variables, and addressing redundancy
and multicollinearity by UFS, has the aim of producing a
subset of variables that meets the requirements of OLS. When
these requirements are not met, a component-based construc-
tion is required for model building. Continuum regression
provides a close to optimal construction covering OLS, PCR
and PLS.14 Leave-one-out cross-validation is employed to
select a robust model, and the finaln-fold cross-validation
indicates the chances of the model generalizing to new
objects. The issue of chance correlation is addressed by
reducing the number of variables used during model speci-
fication, and by the selection of a robust model: good
predictive properties are an indication that chance correlation
has been avoided. Moreover, the selected variables are
relevant, with unique information and minimal collinearity.
In the examples studied here, this procedure leads to models
with a small number of components (often only one) on a
focused set of variables. Such models are far easier to
interpret than models with several latent variables constructed
from a large number of descriptors.

4.1. Achieving a Generalized Model.Many of the results
obtained here illustrate the tradeoff between over-fitting and
generalization. The results for the steroid data set in Table
1, for example, show that increasing the number of compo-
nents produces a better fit, but at the expense of reducing
Q2. A 5-component model withQ2 ) 0.6 andR2 ) 0.98 has
been reported for the same data set.16 As noted earlier, the
results ofn-fold cross-validation for this model (Figure 4)
are generally weaker than those for the UFS/CR model
(Figure 3), with an increasing spread of values ofQ2 as the

Figure 10. MaximizingQ2 for the Selwood data set with compound
M6 removed.

log
1
C

) - 0.012+ 5.4ATCH8
((0.013)

+ 3.2ATCH9
((46)

-

0.084ESDL5
((0.46)

+ 2.3ATCH7
((60)

+ 4.0SUM_F
((1.7)

-

0.18NSDL9
((3.8)

+ 1.3E-4 MOFI_Z
((6.6E-5)

- 0.49S8_1DX
((0.27)

+

2.5SUM_R
((2.2)

+ 0.10ATCH4
((0.18)

- 0.23S8_1DY
((0.13)

+

3.3NSDL10
((2.8)

(15)

log
1
C

) 2.47C1
((0.25)

t ) 9.8824,prob>t ) 0.0000,R2 ) 0.85,Q2 ) 0.5 (13)

C1 ) 0.037ATCH8+ 0.023ATCH9- 0.043ESDL5+
0.021ATCH7+ 0.39SUM_F- 0.0091NSDL9+
0.59MOFI_Z - 0.48S8_1DX+ 0.24SUM_R+

0.0047ATCH4- 0.39S8_1DY+ 0.22NSDL10

log
1
C

) 0.091ATCH8
((2.15)

+ 0.056ATCH9
((0.80)

-

0.11ESDL5
((0.59)

+ 0.051ATCH7
((1.33)

+ 0.98SUM_F
((0.41)

-

0.023NSDL9
((0.48)

+ 1.47MOFI_Z
((0.76)

- 1.2S8_1DX
((0.65)

+

0.58SUM_R
((0.51)

+ 0.012ATCH4
((2.1)

- 0.96S8_1DY
((0.53)

+
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((0.45)
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group sizen decreases. The single value ofQ2 produced by
leave-one-out cross-validation can be misleading since the
results of n-fold cross-validation may have considerable
variance while more closely representing the expected
outcome when predicting the activities of a test set from a
model constructed using an independent training set. Al-
though use of independent training and test sets is the
ultimate check, this is seldom practicable in the initial stages
of a drug design program.

The results for the pyrethroid data set in Table 2 show
that even maximizingQ2 may not produce the “best” model.
Here then-fold cross-validation reveals that the 2-component
model (Q2 ) 0.77) is inferior to the 1-component model (Q2

) 0.76). In this case, choosing the more parsimonious eq 6
is supported by the increased precision indicated by the
standard errors estimated by bootstrapping.

The models produced for the widely studied Selwood data
set (Table 3) are much less successful, largely due to the
fact that the data are so poorly distributed. Since this study
was first published, and probably as a result of the full data
being made available as Supplementary Material,13 it has
become accepted as a “standard” set for assessing new
mathematical modeling techniques. Methods applied to this
set have included joint eigenvector regression and alternating
conditional expectations,18 cluster significance analysis19 and
variants,20 genetic function approximations,21 Kohonen map-

ping,22 evolutionary algorithms23,24back-propagation neural
networks,25 evolutionary programming,26 systematic search,27

genetic algorithms,28 cascade-correlation neural networks,9

genetic neural networks,29 and neural networks with active
neurons.30 Despite this intense study, and with two notable
exceptions,28,31few if any comments have been made on the
quality of this data set. The poor data distributions may be
due to a number of reasons such as incorrect structure
representation in the original molecular models, imperfections
in the algorithms32 used to derive properties from the
semiempirical calculation output or, perhaps, by the nature
of the compounds themselves. Whatever the cause, and
because the data set is available on the QSAR and Modeling
Society Web site (http://www.pharma.ethz.ch/qsar/), perhaps
it is time that this set was no longer regarded as a “standard”
and is perhaps flagged as “difficult” if not flawed.

4.2. Reducing Dimensionality.The use of latent variables
in regression attempts to address the problem of multicol-
linearity. A number of the close to optimal standardized
models reported here have identical or very similar standard
errors for each of the included terms (compare the one
component models (2), (5), and (8)). As one more component
is added, however, the standard errors increase in size and
diverge (cf. the common terms in eqs 5 and 8). Thus, as
more components are added the precision of the final
prediction model decreases to result in less certainty of
accurate prediction. Similarly, as more terms are used to
construct a component, the standard errors obtained for the
original variables by bootstrapping increase, leading to
unstable beta estimates (the familiar problem of “bouncing
betas”). For the Selwood data set, the optimal model obtained
by removing an object (M6) has a maximum Q2 (0.50) but
only 2 significant terms from a total of 12 variables used to
construct this component (eq 13). These important results
emphasize the requirement for using models of as low
dimension as possible that are consistent with maximizing
Q2. Using low dimensional models will lead to smaller
average distances for interpolation in the multivariate
property space.

4.3. Feature Recognition.It is often argued that use of
latent variables constructions on preprocessed data can lead
to models that omit terms regarded by medicinal chemists
as important explanatory variables. This problem can be
addressed by calculating the component loadings (correla-
tions of the original variables with a component) for all the
variables in the over-square data matrix. The loading patterns
can then be reviewed in order to identify those sets of
variables highly associated with the component(s) included
in the model. This can help to identify the features associated
with the response.

This is illustrated for the pyrethroid set (1 component, 3
variable model). The component loadings significant at the
1% level are shown in Table 5. Based on this pattern of
loadings, killing potency appears to be associated with the
following features: (i) the atomic charges at the meta
positions of the benzyl ring; (ii) the atomic charge of the
ether linkage; (iii) the smallest component of the moment
of inertia; (iv) the dipole along the long axis of the pyrethroid
molecule; (v) the electrophilic superdelocalizability of the
cyclopropane atom subtending the geminal dimethyl sub-
stituents; and (vi) the nucleophilic superdelocalizability of
the vinyl carbon attached to the propane ring. These features

Figure 11. n-fold cross-validation for the optimal 2-variable model
for the Selwood data set with compound M6 removed.

Figure 12. n-fold cross-validation for the optimal 12-variable
model for the Selwood data set with compound M6 removed. 38
negativeQ2 values forn ) 2 are not shown.
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may be useful for developing a putative pharmacophore for
the killing action of pyrethroid insecticides.
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CI000384C

Table 5. Loadings for the 1-Component Pyrethroid Model with
Tail Probability p< 0.01

variable loading variable loading

A5 0.756 DVX -0.603
A3 0.723 ES12 -0.584
A8 0.619 MIZa 0.567
NS16 -0.605

a Variable MIZ is included here because it occurs in the model,
although its loading falls just below the value (0.575) required for
significance at the 1% level.
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