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Abstract

In order to rationalize the selection of molecular descrip-
tors for QSAR and other applications, we have adapted
the Shannon entropy concept that was originally devel-
oped in digital communication theory. The approach has
been extended to facilitate the large-scale analysis of
molecular descriptors and their information content in
diverse compound databases. This has enabled us to
identify descriptors with consistently high information
content. Furthermore, it has been possible to select

descriptors that are sensitive to systematic property differ-
ences in diverse compound collections (synthetic com-
pounds, natural products, drug-like molecules, or drugs)
and, in addition, to quantify such database-specific differ-
ences. Selection of descriptors based on information
content has been proven useful for binary QSAR analysis.
In this review, we describe the principles of entropy-based
descriptor selection and discuss different applications.

Introduction

Descriptors of molecular structure and properties are
important components of many investigations in computa-
tional medicinal chemistry and chemoinformatics [1]. For
example, descriptors are essential for QSAR-type applica-
tions, definition of chemical spaces for diversity or similarity
analysis, or virtual screening. Given the fact that literally
hundreds of in part very different descriptors are available
[1, 2], it is important to better understand the sensitivity of
diverse molecular descriptors to chemical information and
to rationalize descriptor selection. In this context, a number
of questions are relevant. For example, which property

descriptors capture significant amounts of chemical infor-
mation in diverse compound databases? Can we compare
descriptor distributions in detail and quantify their differ-
ences? Which descriptors are sensitive to systematic chem-
ical differences between molecular data sets? These and
other questions prompted us to explore novel ways of
systematically analyzing the database variability of mo-
lecular descriptors. In order to do so, it became necessary to
capture chemical information indirectly, which means
irrespective of differences in the properties represented by
various descriptors, their units, or value ranges. Considering
this task, variability or frequency analysis could be related to
entropy calculations, at least in principle, which suggested to
us the design and implementation of a suitable entropy-
based approach. About a decade ago, relative entropy
calculations were first introduced in chemical database
analysis to study angle and distance ranges of compounds or
to establish the frequency of occurrence of substructures [3,
4].However,we focusedour attention on some information-
theoretic approaches, since they were thought to be most
suitable for systematic and large-scale comparison of
descriptor variability.

Methods

Basic concepts. Our initial goal was to quantitatively
describe the distribution of molecular descriptors in com-
pound databases. Therefore, two similar yet distinct con-
cepts from information theory were considered. One was
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Shannon entropy (SE), originally introduced by Claude
Shannon in the early 1960s for application in digital
communication theory [5] and the other the Kullback-
Leibler information number, a function used to quantify the
similarity between a true data distribution and a statistical
model [6]. With modifications, both approaches could be
adapted to reduce chemical data distributions to their
information content.
Shannon entropy is defined as

SE���pi log2pi

with −p× being the probability of a data point or count −c× to
fall within a specific data range −i×. Therefore, −p× is obtained
as

pi� ci/�ci

In this formulation, the logarithm to the base two can be
rationalized a binary detector of counts and a scale factor of
information content. Essentially, it captures the information
whether or not a count appears in a specific data interval.
The Kullback-Leibler function, on the other hand, is

defined as:

KL �
�

gx x� � log gx x� �
hx x� �

� �

where −gx− is a true data distribution and −hx− a statistical
model to approximate gx. Thus, in essence, KL calculates a
relative entropy term. Considering the characteristics of SE
and KL, we concluded that SE would be better suited for
comparing descriptor distributions, for two reasons. Firstly,
the value of KL depends on which data distribution is
considered the observed or true distribution and, secondly,
KL is not defined if the model distribution has zero
probability in a given data interval (which is often the case
for descriptors having discrete value ranges). Consequently,
we focused on adapting the SE metric.
Shannon entropy approach. A major feature of SE

analysis is that diverse descriptor distributions can be
reduced to information content as long as the data
presentation is uniform. This can be conveniently achieved
by representing distributions of descriptor values in histo-
grams with fixed bin number. Thus, in our implementation
of the SE approach, we initially divided any descriptor value
range into the same number of data intervals [7]. In practice,
these histograms are obtained by calculating the values of a
given descriptor for all compounds in a database and
plotting their frequency of occurrence against the observed
value range. Then, the number of data counts per interval is
determined and transformed into probabilities of data
occurrence, which are used to calculate SE values. Figure 1
shows model histograms of data distributions having mini-
mum, intermediate, and maximum information content, as
determined by SE calculations. Information content may
range from zero for a distribution with only a single value to

a maximum of the logarithm to the base two of the total
number of histogram bins. For example, if 100 bins are used,
the maximum possible SE value is �6.6.
A bin number-independent SE value can be obtained by

scaling (sSE), i.e., by dividing the observed SE by the
maximumpossible SEvalue for the number of bins used (SE
divided by the logarithm to the base two of the total number
of bins):

sSE�SE/log2 (bins)

Accordingly, sSE values range from zero to one (maximum
information content). Figure 2 shows example histograms
for molecular descriptors having significantly different
information content. Broad value distributions correspond
to large sSE values, whereas narrow distributions yield
smaller values, as one would expect.
Differential Shannon entropy.An important question has

been how one can best compare descriptor database
distributions in quantitative terms. As illustrated in Fig-
ure 3, a simple comparison of sSE values is not sufficient for
this purpose because this does not take differences in value
range occupancy into account. Therefore, we have intro-
duced an extension of the SE concept, differential Shannon
entropy (DSE) [8], which is defined as

DSE� SEAB � (SEA� SEB)/2

where −SEA× is the SE value of a descriptor in database A,
−SEB× the corresponding value in database B, and −SEAB× the
SE value calculated for the combination of the two data-
bases. In analogy to sSE, DSE values can also be scaled and
made independent of histogram bin numbers. ScaledDSE is
defined as

sDSE�DSE/log2 (bins)

A key feature of DSE is that this formulation takes both
differences in the variability and value range distributions of
descriptors into account. This is important because combi-
nations of descriptor distributions are not necessarily the
sum of single distributions. Combining such distributions
requires renormalization of the data. In this regard, DSE
represents the difference between the renormalized histo-
gram of both distributions and the average of the independ-
ent distributions. Figure 4 illustrates that DSE mirrors
differences in information content that include complemen-
tary features of the compared distributions. If combining
and renormalizing two distributions does not increase
overall variability, negative DSE values can also be ob-
served.All programs required for SEandDSEanalysiswere
written in Perl.
Binary QSAR. One of the initial goals of descriptor

information content analysis was to provide a rationale for
the selectionof descriptors for specific applications in binary
QSAR (bQSAR), a probabilistic QSAR-like approach
based on Bayes× Theorem [9] and developed by Labute
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[10]. Starting with the analysis of learning sets, bQSAR
correlates structural features or properties ofmolecules that
are captured by descriptors with a binary (yes/no or 1/0)
formulation of biological activity or other molecular fea-
tures. Each investigated descriptor combination is trans-
formed into a specific probability density function and used
as a model to predict the binary state of molecules in test
sets. Since the probability function produces continuous
values between 0 and 1, a cut-off must be defined (typically
0.5) to discriminate between binary states. The bQSAR
calculations reported herein were carried out with the
Molecular Operating Environment (MOE, Chemical Com-
puting Group Inc., 1255 University Street, Montreal,
Quebec, Canada, H3B 3X3).
Descriptors and databases. For descriptor analysis, a pool

of approximately 150 molecular descriptors was used, as
described previously [8], including bulk property descrip-
tors and various types of 2D or implicit 3D descriptors (e.g.,
surface area approximated from 2D molecular representa-
tions). All descriptor values were calculated with MOE.
Molecular descriptors reported in the Results section are
explained in Table 1. In contrast to numerical descriptors,
two-state descriptors such as structural fragments or keys
[11] that are either present or absent in amolecule cannot be
subjected to SE and DSE analysis in a meaningful way. This

is the case because two-state descriptors lack value range
distributions and have therefore no information content
that can be quantified by SE calculations.
Descriptor comparisonswereprimarily carriedout in four

compound databases, the ACD (Available Chemicals
Directory, MDL Information Systems, Inc., 14600 Catalina
Street, San Leandro, CA 94577, USA; containing
�200000 molecules), C&H(ChapmanandHallDictionary
of Natural Products, CRC Press LLC, 2000 NW Corporate
Blvd., Boca Raton, FL 33431, USA; �120000 entries),
CMC (Comprehensive Medicinal Chemistry Database,
MDL Information Systems, Inc., 14600 Catalina Street,
San Leandro, CA 94577, USA; �8000 molecules), and
SYNTH (Synthline Drug Database, Prous Science, Proven-
za 388, 08025 Barcelona, Spain; �4000 compounds). For
prediction of aqueous solubility, a subset of PHYSPROP
(Physical/Chemical Property Database, Syracuse Research
Corporation, 6225 Running Ridge Road, North Syracuse,
NY 13212, USA) was used.

Results

SE and DSE calculations. In general, we found that
descriptor entropies varied greatly in the compound data-
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Figure 1. Model data distributions and corresponding SE values. Data representation is uniform, which means that each data range is
evenly divided into 25 bins. Therefore, the SE values shown here can be directly compared. For 25 histogram bins, the maximum possible
SE value is approximately 4.6, as represented by the distribution with maximum information content on the lower right. Here a
probability of 1.0/b means that 1.0 is divided by the total number of histogram bins.
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bases we analyzed. We consistently identified descriptors
with high, medium, and low information content, which
often displayed significant database-dependence [7, 8].
Some descriptors with relatively complex design such as
deduced molecular surface area descriptors with mapped
physical properties [12] had high information content in all
compound databases. On the other hand, DSE calculations
revealed that rather simple descriptors such as counts of
specific atom types or bonds (e.g., the number of aromatic
atoms or hydrogen bond acceptors in a molecule) showed
significant differences in pair-wise database comparisons
(or, in other words, highly complementary value distribu-
tions) [8]. In addition, we found that different types of
molecular descriptors were most responsive to intrinsic
chemical differences between databases, for example, when
comparing ACD and C&H (i.e., synthetic compounds
versus natural products) [8, 13] or ACD and CMC (i.e.,

synthetic compounds versus drug-likemolecules) [8]. Based
on these observations, we attempted to derive a more
generally applicable scheme for the classification of mo-
lecular descriptors according to information content and
database-dependent differences. Ultimately, this led to the
concept of SE-DSE analysis, as described in the following.
sSE-sDSE classification.One of the key questions for the

design of this descriptor classification schemewaswhat level
of information content could generally be considered as
high. In order to address this question, we surveyed sSE and
sDSE values for 143 descriptors in the ACD, C&H, CMC,
and SYNTH databases [14]. In these calculations, a total of
495 non-zero sSE values were obtained and graphically
analyzed in combination, as shown in Figure 5. The ob-
served sSE distribution was bimodal with a Gaussian-like
tendency towards high values.Considering the overall shape
of this distribution, we defined an sSE value of 0.3 as a
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Table 1. Molecular descriptors reported in this study.

Abbreviation Definition

SlogP_VSA2 approx. van der Waals (vdW) atomic surface with �0.2� logP� 0.0 [12]
SlogP_VSA6 approx. vdW surface with 0.2� logP� 0.25
SlogP_VSA7 approx. vdW surface with 0.25� logP� 0.3
SMR_VSA3 approx. vdW surface with molar refractivity is 0.35�Ri� 0.39 [12, 26]
SMR_VSA5 approx. vdW surface with molar refractivity is 0.44�Ri� 0.485
SMR_VSA6 approx. vdW surface such with molar refractivity is 0.485�Ri� 0.56
a_ICM entropy of element distribution in the molecule
SMR molar refractivity
mr alternative formulation of molar refractivity
logP(o/w) octanol/water partition coefficient
SlogP alternative formulation of the octanol/water partition coefficient
a_nC number of carbon atoms in a molecule
a_hyd number of hydrophobic atoms
b_rotR fraction of rotatable bonds
b_1rotR fraction of rotatable single bonds
b_heavy number of bonds between heavy atoms.
b_single number of single bonds
balabanJ Balaban×s topological connectivity index [27]
chi1v atomic valence connectivity index (order 1)
chi0_C sum of the inverse square root of heavy atoms bonded to each atom
chi0v_C sum of the inverse square root of a valence electron function.
chi1_C sum of the inverse sq. r. of cross terms of valence electron function
chi1v_C carbon valence connectivity index (order 1)
weinerPol half the sum of all the distance matrix entries with a value of 3 [28]
vsa_hyd approx. van der Waals surface area of hydrophobic atoms.
PEOE_VSA� 1 vdW surface area with atomic partial charge �0.10� q��0.05 [12, 29]
PEOE_VSA� 0 vdW surface area with atomic partial charge 0.00� q� 0.05
PEOE_VSA� 1 vdW surface area withtomic partial charge 0.05� q� 0.10
PEOE_VSA_HYD polar vdW surface area of hydrophobic atoms
PEOE_VSA_FHYD fractional polar vdW surface area of hydrophobic atoms
PEOE_VSA_FPOL fract. polar vdW surface area with abs. value of partial charge �0.2
PEOE_VSA_NEG total negative vdW surface area
PEOE_VSA_FPPOS fract. positive vdW surface with partial charge �0.2/total surface area
PEOE_VSA_FPNEG fract. negative vdW surface partial charge �� 0.2/the total surface area
PEOE_RPC� largest positive atomic partial charge divided by the positive sum
VadjEq function of a logarithm to the base of two of adjacency map
VadjMa one plus the log two of the number of heavy-heavy bonds
VdistEq sum of log two of distance matrix entries minus a function of distance matrix entries of a common value
VdistMa sum of log two of distance matrix entries minus funct. of shortest path
zagreb sum of squares of the number of heavy atoms bonded to each atom
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general threshold for low sSE and an sSE value of 0.6 as a
threshold for high sSE. Values between 0.3 and 0.6 were
considered intermediate. In addition, sDSE calculations
were carried out for all descriptors and pair-wise compar-
isons of the four databases, producing a total of 858 values.
The combined sDSE distribution is also shown in Figure 5.
Since sDSE calculation is an averaging operation, this
distribution resulted from deviations of mean values and
was therefore also Gaussian-like. When a normal curve was
fitted to the sDSE distribution, a standard deviation (or
sigma value) of 0.026 sDSE units was obtained. We
considered sDSE values outside of this one sigma limit as
high sDSE and values inside one sigma as low sDSE.
The determination of these sSE and sDSE threshold

values made it possible to define four basic sSE-sDSE
categories (high-high, high-low, low-high, and low-low) for
the comparison of descriptor database variability [14]. Of
these, the high-high and high-low categories are the most
interesting ones because they contain descriptors having
high information content. In the six pair-wise database
comparisons we carried out, only 11 of 143 descriptors were
found to belong to the high-high sSE-sDSE category, as

reported in Table 2. None of these descriptors commonly
occurred in all database comparisons. Some of the calcu-
lations gave rather unexpected results. For example, in the
high-high categorywas a very simple descriptor counting the
number of single bonds in a molecule, and this descriptor
detected unexpected differences between drug-like mole-
cules and known drugs. It also responded to intrinsic
differences between synthetic and naturally occurring
molecules (which might be more intuitive). In general,
descriptors belonging to the high-high category have con-
sistently high information content in the compared data-
bases but significantly different value distributions. There-
fore, these information-rich descriptors aremost sensitive or
responsive to intrinsic differences between the synthetic,
natural, or drug-like molecules we compared and best
reflect their diversity. In addition, we identified 22 descrip-
tors belonging to the high-low category that had consistently
high sSEvalues in the four databases and low sDSEvalues in
each of the six database comparisons. These descriptors are
listed in Table 3. These findings confirmed that information-
rich descriptors are not necessarily sensitive to compound
class-specific features or systematic chemical differences. In
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Figure 2. Representative histograms of descriptor distributions in the Available Chemicals Directory. Four descriptor distributions with
increasing (bin-independent) sSE values are shown. The descriptor b_double counts the number of double bonds in a molecule, logP-
(o/w) is the octanol-water partitioning coefficient, MW stands for molecular weight, and b_rotR accounts for the fraction of rotatable
bonds in a molecule.
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fact, in our analysis, descriptors belonging to the high-low
sSE-sDSE occurred much more frequently than high-high
descriptors. The so derived information content-dependent
classification scheme provided a basis for rational selection
of descriptors for QSAR applications.
Distinguishing between compounds from different sour-

ces. In a first application of descriptor entropy analysis, we
attempted to systematically distinguish between synthetic
molecules and natural products. This analysis was suggested
by our observations that the variability of specific descrip-
tors varied significantly in ACD and C&H, as revealed by
SE calculations [13]. Furthermore, synthetic and naturally
occurring molecules were considered an interesting test
case, since relatively little was known about intrinsic and

quantitative differences between these classes of molecules.
Only very few studies had addressed these issues. For
example, a statistical analysis was available that compared
the distributions of molecular fragments, functional groups,
and properties in natural, synthetic, and drug-likemolecules
and revealed some systematic chemical differences [15].
These included, for example, the on average higher mo-
lecular weight of natural products and their increased
oxygen content relative to synthetic molecules that are
generally richer in nitrogen-containing functional groups
[15]. Another subsequent analysis reported overall similar
findings and revealed that core structures of natural
products and drug molecules have little overlap, whereas
their pharmacophore patterns display distinct similarity
[16].
For our analysis, we selected from SE calculations a

number of property descriptors that were variably set in
ACD and C&H plus variable structural keys, as identified
by their relative frequency of occurrence in these databases.
Using alternative descriptor combinations, several bQSAR
models were derived to systematically distinguish between
randomly assembled test sets of synthetic and natural
molecules (with or without specific biological activity)
[13]. In these calculations, different bQSAR models and
descriptor sets achieved greater than 80% prediction
accuracy. These descriptor combinations consisted of, on
average, less than ten molecular descriptors or structural
keys. The best-performing bQSARmodel was derived from
only seven descriptors including three structural keys
(accounting for hydroxyl groups, oxygen atoms attached to
a ring, and double bonds, respectively) and four rather
simple 2D descriptors (the number of hydrogen atoms,
single or aromatic bonds, and the element distribution in a
molecule). When applied to different test sets, some of
which consisted of synthetic and natural compounds with
specific activity, the model consistently produced between
81% and 93% prediction accuracy [13].
Prediction of aqueous solubility. Since the bQSAR

classification of natural and synthetic molecules was based
only on SE (but not DSE) calculations and took structural
keys into account (that are not amenable to SE-DSE
analysis), we subsequently attempted to predict aqueous
solubility of organic molecules as another test case. Here
DSE-based selection of only numerical descriptors was
applied for bQSAR modeling. For this analysis, an impor-
tant question was whether or not significant differences in
descriptor information content could be correlated with
measurable changes in molecular properties such aqueous
solubility.
Limited or excessive solubility of database compounds

has been recognized as a major error source in biological
screening and has thus become a topic of intense computa-
tional research, aiming at the derivation of reliable models
for solubility predictions [17]. However, our bQSAR
analysis conceptually differed from other predictive ap-
proaches that are prevalent in the field, in particular, QSPR
models [18], neural networks simulations [19], and additive
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Figure 3. sDSE as a function of value range occupancy. Two
hypothetical descriptor distributions with significant information
content are shown. In both cases, the information content of each
distribution is the same but their relative value range occupancy
differs. Simple subtraction of their sSE values would produce a
difference of 0.081 in both situations (top and bottom). However,
in the top diagram, the value ranges of the two distributions differ
significantly, yielding a large sDSE value. By contrast, in the
bottom diagram, the value ranges closely overlap and, conse-
quently, the resulting sDSE value is small.
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group contribution methods [20]. Rather than calculating
explicit solubility values, our study was designed to predict
whether test sets of compounds would be soluble or not at
given solubility threshold values [21]. This design reflected
the major opportunities and limitations of the bQSAR
approach. Compared to conventional QSAR methods, an
advantage of bQSAR is that it can be applied to efficiently

process very large and diverse datasets, even if data values in
learning sets are only approximate. However, as a proba-
bilistic method, the major drawback of bQSAR is that it is
not possible to compute exact values for molecular features
such as solubility or activity. Therefore, our analysis was
limited to the prediction of solubility relative to given
threshold values.
For solubility calculations, we randomly divided 650 mol-

ecules from the PHYSPROP database with known aqueous
solubility into a global training set of 550 and a test set of
100 molecules. Then both training and test molecules were
divided into soluble and insoluble subsets according to five
solubility threshold values (1, 5, 10, 50, and 100 mM),
thereby producing a total of five different training and test
sets. Values of 148 descriptors were calculated for the
650 molecules and our SE-DSE metric was applied to
determine which descriptors had largest DSE values for the
comparison of the soluble and insoluble subsets of each
training set. For each set, an increasing number of descrip-
tors with largest sDSE values was used to build different
bQSAR models that were then applied to predict the
solubility of the 100 test molecules relative to the five
threshold values. As representative examples, Table 4
reports the top ten descriptors with largest sDSE values
for two solubility threshold values and training sets. Table 5
summarizes the results of all bQSAR predictions. The most
variable descriptors differed in each of the top ten lists (for
the solubility five threshold values). However, some de-
scriptors that were chemically intuitive to account for
solubility differences such as the water/octanol partition
coefficient (logP(o/w)) or the number of hydrophobic atoms
in a molecule (a_hyd) were consistently found among the
descriptors with largest sDSE values (Table 4). Importantly,
five or ten descriptors with largest sDSE values for
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Table 2. Descriptors of the high-high sSE-sDSE category.

Databases 1/2 Descriptor � sDSE � sSE 1 sSE 2

ACD/C&H a_ICM 0.042 0.808 0.704
ACD/CMC PEOE_VSA� 0 0.027 0.634 0.697
ACD/SYNTH PEOE_RPC� 0.050 0.739 0.638

PEOE_VSA� 0 0.032 0.634 0.701
PEOE_VSA_FPOL 0.032 0.853 0.811
a_ICM 0.033 0.808 0.741
balabanJ 0.033 0.694 0.626

C&H/CMC SMR_VSA3 0.062 0.670 0.534
SMR_VSA6 0.050 0.582 0.703
SlogP_VSA2 0.030 0.644 0.576
weinerPol 0.035 0.727 0.655

C&H/SYNTH SMR_VSA6 0.056 0.617 0.742
SlogP_VSA7 0.059 0.539 0.670
b_single 0.029 0.689 0.629
balabanJ 0.029 0.735 0.676
weinerPol 0.036 0.727 0.653

CMC/SYNTH PEOE_VSA_FPOL 0.113 0.829 0.811
b_single 0.029 0.652 0.549

Reported are absolute sDSE values. Data were taken from reference 14.

Table 3. Descriptors with consistently high sSE values and low
sDSE values in all database comparisons.

Descriptor low � sDSE� (�0.026)

PEOE_VSA_FPNEG 0.003
PEOE_VSA_NEG 0.006
PEOE_VSA_FHYD 0.012
SMR_VSA5 0.012
a_hyd 0.012
chi1_C 0.012
b_rotR 0.014
a_nC 0.015
b_1rotR 0.015
PEOE_VSA_HYD 0.017
VadjEq 0.017
chi0_C 0.017
chi0v_C 0.018
PEOE_VSA_FPPOS 0.020
VdistEq 0.020
VdistMa 0.020
b_heavy 0.020
chi1v_C 0.020
vsa_hyd 0.020
VAdjMa 0.021
PEOE_VSA� 1 0.023
zagreb 0.024

Reported are absolute sDSE values. Data were taken from reference 14.
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comparison of molecules above or below each solubility
threshold were sufficient to yield high prediction accuracy
between 80% and 90% (over the entire solubility range)
(Table 5). In these calculations, the top five descriptors with
largest sDSEalone achieved an average prediction accuracy
of 88% [21]. These findings indicated that differential
descriptor entropies correlated with differences in physico-
chemical molecular properties and supported the predictive
value of information content-based descriptor selection.

Discussion

An information-theoretic methodology has been developed
for the systematic analysis of descriptor distributions in
various compound databases. One of major the goals was to
provide a sound basis for descriptor selection beyond
experience and chemical intuition. Since entropy calcula-
tions reduce database distributions of descriptors to their
information content, descriptor characteristics can be
quantitatively compared, even if the targeted properties,

physical units, and value ranges differ. Analyzing and
comparing descriptor settings in diverse compound data-
bases by entropy calculations makes it also possible to
generate database profiles and reveal systematic chemical
differences. From this point of view, the approach presented
herein is conceptually related to statistical analyses of
property distributions in databases [22, 23]. Although
methodologically distinct, these approaches have similar
goals. Furthermore, entropy analysis as presented herein is
certainly not the only possible approach to systematic
descriptor selection. Database characteristics revealed by
property distribution analysis can point at descriptors that
are most relevant to capture similarities and differences. In
addition, machine learning techniques can be applied to
select preferred descriptors from large pools. For example,
for QSAR or compound classification, genetic algorithms
can be implemented to automatically select descriptor
combinations that satisfy pre-defined fitness functions.
However, a major attraction of entropy-based descriptor
selection is that systematic differences between compound
sets or databases can be quantified, even if these differences
are small and otherwise difficult to detect.
Systematic SE calculations on a relative large number of

numerical descriptors demonstrated that descriptor infor-
mation content is in general (but certainly not always)
approximately correlated with the complexity of their
designs. Among the most complex and information-rich
descriptors, we foundwere those that combined information
from two or more descriptor types, for example, molecular
surface area terms and mapped physico-chemical proper-
ties. Although we have thus far only analyzed descriptors
that can be calculated from2Dmolecular representations of
molecules, SE calculations can be readily applied to
determine the absolute and relative information content
of 3D descriptors, as is the case with any other numerical
descriptors.
Going a step further,DSEcalculations often also revealed

some intuitive trends when comparing different databases.
For example, on average, DSE values were smaller for the
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Table 4. Descriptors with largest sDSE values at different solubility threshold values.

5 mM 10 mM

Descriptor � sDSE � sSE(s) sSE(ins) Descriptor � sDSE � sSE(s) sSE(ins)

a_hyd 0.116 0.603 0.841 PEOE_VSA_NEG 0.125 0.496 0.754
logP(o/w) 0.114 0.647 0.754 a_hyd 0.125 0.582 0.841
SlogP 0.111 0.582 0.733 logP(o/w) 0.123 0.603 0.754
vsa_hyd 0.103 0.647 0.776 SlogP 0.119 0.560 0.733
PEOE_VSA_NEG 0.099 0.560 0.754 PEOE_VSA� 1 0.114 0.517 0.819
PEOE_VSA_HYD 0.097 0.647 0.776 chi1v 0.111 0.582 0.841
chi1v 0.093 0.603 0.841 vsa_hyd 0.108 0.625 0.776
chi1v_C 0.091 0.582 0.776 PEOE_VSA_HYD 0.103 0.603 0.776
SMR 0.091 0.647 0.862 chi1v_C 0.103 0.560 0.776
chi1_C 0.089 0.647 0.841 SMR 0.103 0.625 0.862

For solubility threshold values of 5 and 10 mM, the ten descriptors with largest absolute sDSE values are shown (obtained by sSE comparison of the
respective soluble and insoluble subsets of the training set). sSE(s) and sSE(ins) report the scaled SE values of descriptors in the soluble and insoluble
compound subsets, respectively. Adapted from reference 21.

Table 5. Overall accuracy of solubility predictions by bQSAR.

Number of
descriptors

Prediction accuracy (%)

1 mM 5 mM 10 mM 50 mM 100 mM

5 85 88 84 93 89
10 81 82 81 87 91
15 79 77 84 85 90
20 82 84 79 85 92
25 80 80 83 84 91
30 83 83 83 86 91

Predictions were carried out on five test sets, each consisting of the same
100 molecules (with known aqueous solubility). Dependent on the given
solubility threshold level, the ratio of compounds classified as soluble or
insoluble varied (i.e., increasing threshold values correspond to smaller
fraction of soluble test molecules). For 1 and 5 mM, the soluble and
insoluble subsets of test molecules were about equally populated. The
overall prediction accuracy was calculated as an average of prediction
accuracies for the soluble and insoluble subsets. Data were taken from
reference 21.
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ACD/CMC comparison than for comparison of ACD or
CMC with natural products (C&H), which indicated that
many natural products are chemically more distinct from
synthetic compounds than drug-like molecules. To give
another example, a simple descriptor accounting for nitro-
gen atoms in a molecule displayed the largest DSE value in
our ACD/C&H comparison, which reflects the prevalence
of amide groups in synthetic compounds as opposed to

naturally occurring molecules (that are richer in oxygen).
Also evident were known differences in aromatic character
of synthetic and natural molecules and in halogen content,
which is a characteristic feature of many ACD and CMC
compounds.
Ultimately, SE-DSE analysis was established to system-

atically detect and quantify differences in descriptor data-
base distributions, even if they were subtle. Considering the
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Figure 4. Complementary data distributions produce large sDSE values. Value distributions of two descriptors (left and right) in two
compound databases (top and middle diagrams) are shown and the combined and renormalized distributions (bottom histograms). sDSE
is calculated as the difference between the renormalized histogram of both databases binned together (bottom) and the average of their
independent histograms. The more distinct or complementary the original data distributions are, the larger become the sDSE values.
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results of our calculations, some guidelines for descriptor
selection could be formulated. For example, descriptors
belonging to the high-high sSE-sDSE category are most
likely to detect systematic chemical differences between
compound sets and to differentiate between compounds
from diverse sources. However, many descriptors having
high information content belong to the high-low sSE-sDSE
class and do not detectably respond database-specific
features. We conclude that these descriptors are a preferred
choice for similarity searching across diverse databases. For
example, this would be the case when searching known
drugs or leads against synthetic databases or when trying to

identify synthetic mimics of natural products with specific
activity [24].
Descriptor information content analysis has found mean-

ingful applications in QSAR-like analysis and other com-
putational investigations, most recently in the development
of a novel partitioning method [25]. In a bQSAR study of
aqueous solubility we could demonstrate that differences in
relative descriptor information content, as revealed byDSE
calculations, correlated with differences in physico-chem-
ical properties of test molecules, which provided substantial
support for the DSE-based descriptor selection approach.
Taken together, the findings discussed herein suggest that
concepts from information theory should merit further
investigation in computational chemistry and chemoinfor-
matics research.
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