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Abstract—A simple yet effective multilabel learning method, called label powerset (LP), considers each distinct combination of labels

that exist in the training set as a different class value of a single-label classification task. The computational efficiency and predictive

performance of LP is challenged by application domains with large number of labels and training examples. In these cases, the number

of classes may become very large and at the same time many classes are associated with very few training examples. To deal with

these problems, this paper proposes breaking the initial set of labels into a number of small random subsets, called labelsets and

employing LP to train a corresponding classifier. The labelsets can be either disjoint or overlapping depending on which of two

strategies is used to construct them. The proposed method is called RAkEL (RAndom k labELsets), where k is a parameter that

specifies the size of the subsets. Empirical evidence indicates that RAkEL manages to improve substantially over LP, especially in

domains with large number of labels and exhibits competitive performance against other high-performing multilabel learning methods.

Index Terms—Categorization, multilabel, ensembles, labelset, classification.

Ç

1 INTRODUCTION

TRADITIONAL single-label classification is concerned with
learning from a set of data that are associated with a

single label � from a set of disjoint labels L of size M, with
M > 1. If M ¼ 2, then the learning task is called binary
classification, concept learning, or filtering, while if M > 2,
then it is called multiclass classification.

In several application domains, however, data are
associated with a set of labels Y � L. In text categorization
for example, a newspaper article concerning the reactions of
the Christian church to the release of the “Da Vinci Code” film
can be classified into both of the categories societynreligion and
artsnmovies. Similarly, in semantic scene classification [1], [2],
[3], a photograph can belong to more than one conceptual
class, such as sunset and beach at the same time. Other
interesting applications of multilabel classification include
music categorization into emotions [4], [5], [6], semantic
video annotation [7], [8], direct marketing [9], and automated
tag suggestion [10], [11].

This paper focuses on the label powerset (LP) multilabel
learning method [1], [12], which considers each subset of L,
hitherto called labelset, that exists in the training set as a
different class value of a single-label classification task. LP
is an interesting approach to study, as it has the advantage
of taking label correlations into consideration. This way it
can, in some cases, achieve better performance compared to
computationally simpler approaches like binary relevance
(BR), which learns a binary model for each label indepen-
dently of the rest [13].

However, LP is challenged by application domains with
large number of labels and training examples, due to the
typically proportionally large number of labelsets appearing
in the training set. The large number of these labelsets (class
values for the single-label classifier of LP), raises the
computational cost of LP on one hand, and makes its learning
task quite hard on the other, as many of these labelsets are
usually associated with very few training examples. More-
over, LP can only predict labelsets observed in the training
set. This is an important limitation, because new labelsets
typically do appear in test sets, which simulate unseen data.

In order to deal with the aforementioned problems of LP,
this work proposes randomly breaking the initial set of labels
into a number of small-sized labelsets, and employing LP to
train a corresponding multilabel classifier. This way, the
resulting single-label classification tasks are computationally
simpler and the distribution of their class values is less
skewed. The proposed method is called RAkEL (RAndom k
labELsets) [13], where k is a parameter that specifies the size
of the labelsets. Two different strategies for constructing the
labelsets are studied. The first one leads to disjoint, whereas
the second to overlapping labelsets.

Empirical evidence indicates that both approaches
manage to significantly improve LP, especially in domains
with large number of labels. The overlapping strategy
achieves higher predictive performance than the disjoint
one, as the aggregation of multiple predictions for each
label via voting allows the correction of potential uncorre-
lated errors. Finally, a comparative study against other
multilabel learning methods, indicates that RAkEL with
overlapping labelsets is highly competitive.

The rest of this paper is structured as follows: The
following section presents related work on learning from
multilabel data. Section 3 discusses the motivations and
rationale for using RAkEL and describes the two alternative
strategies for creating the labelsets in detail. Section 4
describes the data sets that are involved in the experiments
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and the evaluation measures, while Section 5 presents and
discusses the results. Finally, the last section highlights the
main points of this work and presents its conclusions.

2 RELATED WORK

Multilabel learning methods can be grouped into two
categories [12]: 1) problem transformation, and 2) algorithm
adaptation. Methods of the first group transform the learning
task into one or more single-label classification or ranking
tasks, for which a large bibliography of learning algorithms
exists. The second group of methods extend specific learning
algorithms in order to handle multilabel data directly.

2.1 Problem Transformation Methods

The following paragraphs describe a number of problem
transformation methods from the literature. For the formal
description of these methods, we will use L ¼ f�j : j ¼
1 . . .Mg to denote the finite set of labels in a multilabel
learning task and D ¼ fð~xi; YiÞ; i ¼ 1 . . .Ng to denote a set
of multilabel training examples, where ~xi is the feature
vector and Yi � L the set of labels of the ith example.

There exist several transformations that can be used to
convert a multilabel data set into a single-label one, where a
single-label classifier that outputs a probability distribution
over the classes can be applied in order to learn a label
ranker [1], [14]. The copy transformation replaces each
multilabel example ðxi; YiÞ with jYij examples ðxi; �jÞ, for
every �j 2 Yi. A variation of this transformation, dubbed
copy-weight, associates a weight of 1

jYij to each of the
produced examples. The select family of transformations
replaces Yi with one of its members. This label could be the
most (select-max) or least (select-min) frequent among all
examples. It could also be randomly selected (select-random).
Finally, the ignore transformation simply discards every
multilabel example.

Binary relevance is a popular problem transformation
method that learns M binary classifiers, one for each
different label in L. It transforms the original data set into
M data sets D�j ; j ¼ 1 . . .M that contain all examples of the
original data set, labeled positively if the label set of the
original example contained �j and negatively otherwise. For
the classification of a new instance, BR outputs the union of
the labels �j that are predicted by the M classifiers.

Label powerset is a simple but effective problem
transformation method that works as follows: It considers
each unique set of labels that exists in a multilabel training
set as one of the classes of a new single-label classification
task. Given a new instance, the single-label classifier of LP
outputs the most probable class, which actually represents a
set of labels.

Ranking by pairwise comparison (RPC) [15] transforms

the multilabel data set into MðM�1Þ
2 binary label data sets,

one for each pair of labels ð�i; �jÞ; 1 � i < j �M. Each data

set contains those examples of D that are annotated by at

least one of the two corresponding labels, but not both. A

binary classifier that learns to discriminate between the two

labels, is trained from each of these data sets. Given a new

instance, all binary classifiers are invoked, and a ranking is

obtained by counting the votes received by each label. The

multilabel pairwise perceptron (MLPP) algorithm [16] is an

instantiation of RPC using perceptrons for the binary

classification tasks.
Calibrated label ranking (CLR) [17] extends RPC by

introducing an additional virtual label, which acts as a
natural breaking point of the ranking into a relevant and an
irrelevant set of labels. The binary models that learn to
discriminate between the virtual label and each of the other
labels, correspond to the models of BR. This occurs, because
each example that is annotated with a given label is
considered as positive for this label and negative for the
virtual label, while each example that is not annotated with
a label is considered negative for it and positive for the
virtual label.

2.2 Algorithm Adaptation Methods

The following paragraphs briefly report a plethora of
algorithm adaptation methods grouped by the learning
paradigm that they extend.

Decision Trees and Boosting. The C4.5 algorithm was
adapted in [18] for the handling of multilabel data.
AdaBoost.MH and AdaBoost.MR [19] are two extensions
of AdaBoost for multilabel data. A combination of
AdaBoost.MH with an algorithm for producing alternating
decision trees was presented in [20]. The main motivation
was the production of multilabel models that can be
understood by humans.

Probabilistic Methods. A probabilistic generative model
for multilabel text classification is proposed in [21],
according to which, each label generates different words.
Based on this model, a multilabel document is produced by
a mixture of the word distributions of its labels. A similar
word-based mixture model is presented in [22]. A decon-
volution approach is proposed in [23], in order to estimate
the individual contribution of each label to a given item.
The use of conditional random fields is explored in [24],
where two graphical models that parameterize label co-
occurrences are proposed.

Neural Networks and Support Vector Machines. BP-
MLL [25] is an adaptation of the popular back-propagation
algorithm for multilabel learning. The main modification to
the algorithm is the introduction of a new error function
that takes multiple labels into account. This error function is
similar to the ranking loss [19]. ML-RBF [26] is a recent
approach for adapting radial basis function networks to
multilabel data. The multiclass multilabel perceptron
(MMP) [27] is a family of online algorithms for label
ranking from multilabel data based on the perceptron
algorithm. MMP maintains one perceptron for each label,
but weight updates for each perceptron are performed so as
to achieve a perfect ranking of all labels. An SVM algorithm
that minimizes the ranking loss is proposed in [28].

Lazy and Associative Methods. A number of methods
[29], [5], [30], [2], [31] are based on the popular k Nearest
Neighbors (kNN) lazy learning algorithm. The first step in all
these approaches is the same as in kNN, i.e., retrieving the
k nearest examples. What differentiates them is the aggrega-
tion of the label sets of these examples. MMAC [32] is an
algorithm that follows the paradigm of associative classifica-
tion, which deals with the construction of classification rule
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sets using association rule mining. Finally, an approach that
combines lazy and associative learning is proposed in [33],
where the inductive process is delayed until an instance is
given for classification.

3 RANDOM k-LABELSETS

Label powerset is a relatively simple method with the
advantage of taking label correlations into account. How-
ever, as briefly mentioned in the introduction of this paper,
it is challenged by domains with large number of labels, M,
and training examples, N .

The computational complexity of LP with respect to M
and N depends on the computational complexity of the
underlying single-label classification algorithm with respect
to the number of examples N and the number of classes,
which is equal to the number of labelsets that are used as
annotations for the instances of the training set. This number
is upper bounded by minðN; 2MÞ, but is usually much
smaller in practice. Columns bound and actual of Table 2 show
the bound of the number of labelsets and their actual
number, for the data sets that are used in the experiments.
Note that apart from the data set with the fewest number of
labels (6), in the rest the bound is equal to N . The actual
number of labelsets in a data set ranges from 5 to 44 percent
of this bound, as indicated by column diversity, which
measures the diversity of the labelsets that exist in a data set.
Despite being smaller than the bound, the high number of
these labelsets can constitute an important scalability
problem for LP, especially for large values of N and M.

In addition, the fact that many of these labelsets are
associated with very few examples, makes the learning
process difficult as well. As an example, consider the
mediamill data set [8], which is described in more detail in
Section 4.1 along with the rest of the data sets that are used in
the experiments. Fig. 1 shows a histogram of the number of
appearances of the 6,555 different labelsets that exist in this
data set. The total number of appearances (examples in the
data set) is 43,907. The y-axis (logarithmic scale with base 10)

shows the number of labelsets, whose number of appear-
ances falls into the corresponding bin of the x-axis (logarith-
mic scale with base 2). It can be seen that most of the labelsets
are very infrequent. In fact, 4,104 labelsets appear just once in
this data set, while those that appear up to eight times
account for 92 percent of all 6,555 distinct labelsets.

The main idea in this work is to randomly break a large
set of labels into a number of small-sized labelsets, and for
each of them train a multilabel classifier using the LP
method. For the multilabel classification of an unlabeled
instance, the decisions of all LP classifiers are gathered and
combined. For simplicity, we only consider labelsets of the
same size, k. A labelset R � L with k ¼ jRj is called k-
labelset. Therefore, the proposed approach is dubbed
RAkEL (RAndom k labELsets). This paper examines the
construction of two different types of labelsets: 1) disjoint
(RAkELd), and 2) overlapping (RAkELo). In the following
two sections, we describe the functionality of both varia-
tions of RAkEL in more detail.

RAkEL offers advantages over LP for the following
reasons. First of all, the resulting single-label classification
tasks are computationally simpler. To see why this occurs,
consider the case of the mediamill data set again. If we break
the set of 101 labels of mediamill into a number of labelsets of
size k ¼ 3, then each LP model will have to predict eight (23)
classes in the worst case. If we construct 200 such models,
training each of them using a one-versus-rest support
vector machine, then 1,600 (200 � 8) binary models will be
built in the worst case, which is much less compared to the
6,555 binary models required by the full LP using the same
underlying learning algorithm. On the other hand, using a
decision tree learning algorithm underneath will probably
lead RAkEL to a larger overall computational cost, as
decision tree learners are sublinear with respect to the
number of classes. A complexity analysis is presented in
Section 3.3.

In addition, the resulting single-label classification tasks
are characterized by a much more balanced distribution of
class values. Using the same example as above, we can see
that the distribution of the eight class values of each simpler
problem, will not be as skewed as that of the 6,555 class
values that we have seen in Fig. 1. This in turns means an
easier single-label learning problem to deal with. Note that
this benefit is independent of the single-label learning
algorithm used underneath.

Finally, in the case of overlapping labelsets, RAkEL can
gather multiple predictions for the same label by the
different LP models that include this label in their labelset.
As the different LP models are trained on a different output
space (different class labels), they offer a diverse view of the
task of predicting the value for specific labels. Therefore,
combining their output through a voting process, offers the
chance of correcting potential uncorrelated errors, and
improving the overall performance. In this respect, RAkEL
reminds ensemble methods, like ECOC (error correcting
output codes) [34], that construct multiple single-label
models by manipulating the output space [35].

3.1 RAkELd
Given a size of labelsets k, RAkELd initially partitions L
randomly into m ¼ dM=ke disjoint labelsets Rj, j ¼ 1 . . .m,
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Fig. 1. Histogram of the number of appearances of the 6,555 different
labelsets in the mediamill data set. The counts in the y-axis (logarithmic
scale with base 10) correspond to the number of labelsets that exhibit
the corresponding bin of appearances in the x-axis (logarithmic scale
with base 2).
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Tm
j¼1 Rj ¼ ;. Labelsets Rj, j ¼ 1 . . .m� 1 are k-labelsets. If

M=k is an integer, then labelset Rm is also a k-labelset,
otherwise Rm contains the remaining M mod k labels. Then
RAkELd learns m multilabel classifiers hj, j ¼ 1 . . .m using
LP. Each classifier hj confronts a single-label classification
task having as class values all the subsets of Rj that are
found in the training set.

The training set for hj, denoted as Dj, contains all
examples of the original training set annotated with the
intersection of their original annotations and Rj: Dj ¼ fð~xi;
Yi \RjÞ; i ¼ 1 . . .Ng. Note that this may lead to the empty
set appearing as an annotation for an example. This doesn’t
mean that these examples are excluded from Dj. The empty
set is just another class of the single-label classification task
of hj. Actually, the empty set is an acceptable annotation
based on the definition of a multilabel data set (Yi � L) and
most multilabel learners (including LP) handle it without
any special consideration. Fig. 2 offers an algorithmic
presentation of the training process of RAkELd.

Given a new multilabel instance ~x, the binary predic-
tions hið~x; �jÞ of all classifiers hi for all labels �j 2 Ri are
gathered in order to build the final multilabel classification
vector (see Fig. 3). Note that it is possible for RAkELd to
predict a labelset that has not appeared in the training set,
as its final prediction is assembled from different parts of
existing labelsets.

3.2 RAkELo
We first introduce some additional notation. Let the term
Lk denote the set of all distinct k-labelsets of L. The size of

Lk is given by the binomial coefficient: jLkj ¼ M
k

� �
. Given a

size of labelsets k and a number of desired classifiers
m � jLkj, RAkELo initially selects m k-labelsets Ri, i ¼
1 . . .m from the set Lk via random sampling without
replacement. Note that in this case the labelsets may
overlap, while the overlap is certain when mk > M. Then
RAkELo learns m multilabel classifiers hi, i ¼ 1 . . .m using
LP, as in the case of RAkELd. Fig. 4 presents the training
process of RAkELo in pseudocode.

For the multilabel classification of a new instance ~x, each
model hi provides binary predictions hið~x; �jÞ for each label
�j in the corresponding k-labelset Ri. Subsequently,
RAkELo calculates the mean of these predictions for each
label �j 2 L and outputs a final positive decision if it is
greater than a 0.5 threshold. This intuitive threshold
corresponds to the majority voting rule for the fusion of
classifier decisions. It has been used for deriving a final
decision in the problem transformation method RPC [15] as
well. The pseudocode of the classification process of
RAkELo is given in Fig. 5, while Table 1 exemplifies it for
a run with k ¼ 3 and m ¼ 7 on a multilabel training set with
six labels f�1; �2; . . . ; �6g. Similarly to RAkELd, RAkELo can
also predict a labelset that is not present in the training set,
as its final prediction is obtained through a voting process,
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Fig. 2. The training process of RAkELd.

Fig. 3. The classification process of RAkELd.

Fig. 4. The training process of RAkELo.

Fig. 5. The classification process of RAkELo.

Authorized licensed use limited to: UNIVERSIDAD DE CORDOBA. Downloaded on March 17,2023 at 08:23:04 UTC from IEEE Xplore.  Restrictions apply. 



based on predictions that correspond to different over-
lapping parts of existing labelsets.

Note that user-specified parameters m (number of
classifiers) and k (size of labelsets) determine the expected
number of predictions for each label, which is equal to km

M .
We hypothesize that the larger the expected number of
predictions per label, the larger the predictive accuracy of
RAkELo, due to the fusion of more predictions. Given that k
should be small to avoid the problems of LP, then in order
to increase km, one should select a large value for the
number of models, m. The empirical study that follows,
studies the relationship of m and k and provides guidelines
for appropriate values.

3.3 Complexity Analysis

If the complexity of the algorithm employed to learn the
transformed single-label classification task is OðgðC;N;AÞÞ
for a data set with C class values, N examples, and A

predictive attributes, then the computational complexity of
RAkEL is OðmgðminðN; 2kÞ; N;AÞÞ, where m ¼ dM=ke in
the case of disjoint labelsets. It is linear with respect to the
number of LP classifiers and it further depends on the
complexity of the single-label classification algorithm.

The number of LP classifiers, m, is linear with respect to
M in the case of disjoint labelsets. The empirical study that
follows, indicates that in the case of overlapping labelsets a
value of m that is linear with respect to M (e.g., 2M) suffices
for reaching a high level of predictive performance. Finally,
note that the exponential factor 2k does not pose a problem,
as k will be set to a small value.

4 EXPERIMENTAL SETUP

This section provides details on the experimental setup.
More specifically, Section 4.1 describes the data sets and
Section 4.2 the measures that were used to empirically
evaluate the performance of the proposed approach.

4.1 Data Sets

Experiments were conducted on eight multilabel data sets.1

Table 2 includes basic statistics, such as the number of
examples and labels, along with statistics that are relevant
to labelsets, such as their bound, actual number, and
diversity. Short descriptions of these data sets are given in
the following paragraphs.

The scene data set contains 2,407 images annotated with
up to six concepts such as beach, mountain, and field [1]. Each
image is described with 294 visual features.

The yeast data set [28] contains microarray expressions
and phylogenetic profiles for 2,417 yeast genes. Each gene is
annotated with a subset of 14 functional categories (e.g.,
metabolism, energy, etc) from the top level of the functional
catalogue (FunCat).

The tmc2007 data set is based on the data of the
competition organized by the text mining workshop of the
seventh SIAM international conference on data mining.2

The original data contained 28,596 aviation safety reports in
free text form, annotated with one or more out of 22
problem types that appear during flights [36]. Text
representation follows the boolean bag-of-words model.
Feature selection was then in order to reduce the computa-
tional cost of training. We used the �2 feature ranking
method separately for each label in order to obtain a
ranking of all features for that label. We then selected the
top 500 features based on the their maximum rank over all
labels. A similar approach was found to have high
performance in previous experimental work on textual data
sets [37].

The medical data set3 is based on the data made available
during the Computational Medicine Center’s 2007 Medical
Natural Language Processing Challenge.4 The data set
consists of 978 clinical free text reports labeled with one
or more out of 45 disease codes.

The enron data set is based on a collection of email
messages exchanged between the Enron Corporation
employees, which was made available during a legal
investigation. It contains 1,702 email messages that were
categorized into 53 topic categories, such as company
strategy, humor, and legal advice, by the UC Berkeley Enron
Email Analysis Project.5

The mediamill data set was part of the Mediamill
challenge for automated detection of semantic concepts in
2006 [8]. It contains 43,907 video frames annotated with 101
concepts (e.g., military, desert, and basketball, etc). The
specific data set we used corresponds to experiment 1
(visual feature extraction) as described in [8]. Each video
frame is characterized by a set of 120 visual features.

The bibtex data set [10] is based on the data of the ECML/
PKDD 2008 discovery challenge. It contains 7,395 bibtex

TSOUMAKAS ET AL.: RANDOM k-LABELSETS FOR MULTILABEL CLASSIFICATION 1083

TABLE 2
Multilabel Data Sets and Their Statistics Sorted by Increasing

Order of Number of Labels

TABLE 1
An Example of the Classification Process of RAkELo Run with
k ¼ 3 and m ¼ 7 on a Multilabel Training Set with Six Labels

1. Available at http://mulan.sourceforge.net/datasets.html.

2. http://www.cs.utk.edu/tmw07/.
3. Originally obtained from http://www.cs.waikato.ac.nz/~jmr30/.
4. http://www.computationalmedicine.org/challenge/index.php.
5. http://bailando.sims.berkeley.edu/enron_email.html.
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entries from the BibSonomy social bookmark and publica-
tion sharing system, annotated with a subset of the tags
assigned by BibSonomy users (e.g., statistics, quantum, and
datamining). The title and abstract of bibtex entries were used
to construct features using the boolean bag-of-words model.

The reuters (rcv1) data set is a well-known benchmark for
text classification methods. We have used an existing subset
of this data set (subset1) that contains 6,000 news articles
assigned into one or more out of 101 topics. In order to
reduce the feature space, we have kept only words that
appear at least 50 times in the corpus leading to a reduced
feature space of 1,654 features. An extensive description of
this data set can be found in [38].

4.2 Evaluation Measures

The evaluation of multilabel learning methods requires
different measures than those used in the case of single-
label data. A unified presentation and categorization of
existing evaluation measures for multilabel classification is
given in [13]. The evaluation in this work is based on the
popular and indicative micro F1 and macro F1 measures.

The F1 measure is the harmonic mean of precision and
recall and is a popular evaluation measure in the research
area of information retrieval. Formally, given the number of
true positives (tp), true negatives (tn), false positives (fp),
and false negatives (fn), F1 is defined as follows:

F1 ¼
2 � tp

2 � tpþ fpþ fn : ð1Þ

Micro F1 and macro F1 are the microaveraged and
macroaveraged versions of F1, respectively. Microaveraging
as well as macroaveraging [39] are ways to calculate binary
evaluation measures across several labels. Consider a
binary evaluation measure Bðtp; tn; fp; fnÞ. Let tp�, fp�,
tn�, and fn� be the number of true positives, false positives,
true negatives, and false negatives after binary evaluation
for a label �. The microaveraged and macroaveraged
versions of B, are calculated as follows:

Bmicro ¼ B
XM
�¼1

tp�;
XM
�¼1

fp�;
XM
�¼1

tn�;
XM
�¼1

fn�

 !
; ð2Þ

Bmacro ¼
1

M

XM
�¼1

Bðtp�; fp�; tn�; fn�Þ: ð3Þ

5 RESULTS AND DISCUSSION

This section presents the results obtained from our
empirical study and concludes on the applicability and
performance of RAkEL. The first part studies the perfor-
mance of RAkELd and RAkELo with respect to their
parameters and compares them with LP and each other.
Then they are compared against baseline and high-
performing multilabel classifiers. Finally, three different
single-label classification algorithms are used to study their
effect on the performance of RAkELo.

In all experiments, RAkELd and RAkELo are run 10 times
using different seed values for the initialization of the
pseudorandom number generator that guides the selection
of the labelsets, in order to obtain more representative

results on one hand and assess the effect of the stochastic
component of the algorithm on the other.

5.1 Empirical Evaluation of RAkEL

In this section, the evaluation is based on the micro F1

measure, estimated via the holdout method using the
original train and test subsets provided with the releases
of the eight data sets.

The first two parts of this section examine the perfor-
mance of the two RAkEL variations with respect to their
parameters, which for RAkELd is the size of the labelset, k,
while for RAkELo is both k and the number of models, m.
Instead of absolute micro F1 values, the percentage of
improvement over LP is shown. This improves the legibility
of the figures and simplifies the interpretation of the results
across several different data sets. The last part compares the
absolute micro F1 performance of RAkELd and RAkELo
using specific parameters against LP and each other.

The C4.5 decision tree learning algorithm was used as
the base-level single-label classification algorithm of LP and
the LP classifiers of RAkEL. We used the implementation of
C4.5 within Weka [40] and our implementations of LP and
RAkEL within Mulan [13].

5.1.1 Evaluation of RAkELd
Fig. 6 presents the percentage of improvement of RAkELd
over LP in terms of micro F1 measure with respect to the
size of the labelset (k) in all data sets. The values of k
correspond to different fractions of the total number of
labels (from k ¼ dM=10e to k ¼ d9M=10e), so that the effect
of k is studied for a broad range of values and at the same
time results are comparable across all data sets. When
k ¼M, RAkELd becomes equivalent to LP.

A first observation is that RAkELd provides a substantial
improvement over the LP classifier for all data sets with the
exception of scene, where it leads to worse performance for
k ¼ d6M=10e ¼ 4. However, this was an expected result due
to the small number of labels in this data set (6).

Concerning the effect of k on the predictive performance
of RAkELd, we could argue that in general smaller values of
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Fig. 6. Percentage of Micro F1 Measure Improvement of RAkELd over
LP with Respect to k.
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k usually lead to better results. This confirms the hypothesis
made earlier that splitting the initial multilabel problem
into a number of simpler and smaller subproblems will
improve the performance of LP. On the other hand, greater
values of k allow the LP models of RAkELd to take larger
labelsets (and potentially more correlations) into account.
This is a plausible explanation for the fact that RAkELd’s
performance is not always degrading with respect to k.
Nevertheless, values of k that are close to M perform worst
and approximate the performance of LP.

Concerning the performance of RAkELd with respect to
the number of labels (M), we notice that the greatest
improvement is achieved in data sets with large number of
labels such as reuters (101 labels), bibtex (159 labels), and enron
(53 labels), where the performance of LP is poor (micro F1:
0.0979, 0.2897, 0.3953, respectively). An exception to this rule
is mediamill (101 labels), where the improvement is similar to
data sets with small M. This can be explained firstly by the
higher performance of LP in this data set (micro F1: 0.4539).
Second, even the smallest k value in the graph (dM=10e) is
quite large for mediamill (equal to 10). If we select smaller
values for k we will observe greater improvement over LP.
For example k ¼ 2 leads to an 11.23 percent improvement
and k ¼ 3 leads to an 8.9 percent improvement.

In conclusion, we could state that setting k to small
values is expected to lead to substantial better results
compared to LP, especially in data sets with large number
of labels.

5.1.2 Evaluation of RAkELo
Fig. 7 presents the percentage of improvement of RAkELo
over LP in terms of micro F1 measure with respect to the size
of the labelset (k) in all data sets. Based on the conclusions of
the previous section, we use small values for k (from 2 to 10).
The number of models (m) is set to 2M, so that each label
appears in the output of RAkELo’s models approximately
2k times irrespectively of the number of labels in the data
set. Note that the scene plot can not be extended more than
k ¼ 4 because the small number of labels (6) limits the
number of different labelsets that can be created.

We first observe that RAkELo outperforms LP for all
values of k in all data sets. As k increases, the performance
of RAkELo exhibits an increasing trend in most of the data
sets, in contrast to what we have seen for RAkELd in the
previous section. The reason is that in this experiment,
bigger values of k lead to more votes for each label, as the
number of models is constant (2M). In turn, more votes lead
to more accurate estimates of the true value of each label.
Finally, as in RAkELd, the improvement in performance is
in general greater in data sets with larger number of labels.

Fig. 8 presents the percentage of micro F1 improvement
of RAkELo over LP using k ¼ 3 with respect to various
values of m in all data sets. In order to improve the legibility
of the figure, the values of m correspond to different
fractions of the total number of labels (from dM=5e to 2M).
What we observe is that as the number of classifiers
increases, so does the performance of the ensemble. As
before, this is due to the fact that bigger values of m lead to
more votes for each label. An important finding that holds
for all data sets is that after a certain number of models, the
performance of RAkELo does not exhibit substantial
improvement. In most cases M is a good approximation
of this number.

In conclusion, increasing either m or k leads RAkELo to
improved performance. The main reason for this behavior is
that the number of votes received for each label is
proportional to km. Since the complexity of RAkEL grows
exponentially with respect to k, but only linearly with respect
to m, it is more efficient to increase the value of m instead of
k. As a guideline, we suggest using a small value for k (e.g.,
k ¼ 3), and a value that is between M and 2M for m.

One thing to note, however, is that the process of
selecting the labels is random, and as such, it could lead to
the case, where none of the labelsets include one or more
from the original set of labels. In this case, the algorithm
will not be able to make a rational decision about the value
of this (or these) particular label(s). In this respect,
increasing m further, reduces the probability of a label
receiving no votes from the models.
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Fig. 7. Percentage of Micro F1 Improvement of RAkELo (m ¼ 2M) over
LP with Respect to k.

Fig. 8. Percentage of Micro F1 Measure Improvement for RAkEL (k ¼ 3)
over LP with Respect to m.
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5.1.3 Disjoint versus Overlapping Labelsets

Table 3 presents the micro F1 value of LP, RAkELd
(k ¼ 3), and RAkELo (k ¼ 3, m ¼ 2M). For RAkELd and
RAkELo the percentage of improvement in micro F1 over
LP is also presented.

We observe that RAkELo provides a higher improvement
over LP than RAkELd. This fact confirms the assumption that
ensemble voting will further enhance the overall perfor-
mance. An exception to this observation is the medical data
set, where RAkELo provides a slightly smaller improvement.
However, in this data set there is a very small number of
distinct labelsets (94), despite the relatively large number of
labels (45). This explains both the good performance of LP
and the minor improvements of RAkELo due to the small
diversity of its ensemble of LP classifiers.

In Table 3, the number of classes resulting from the
transformation process of the three methods is presented.
For RAkELd and RAkELo the classes of all LP models are
summed. The number of classes can be considered as an
estimator of computational requirements. We observe that
RAkELd presents less classes than LP in all data sets. Note
the substantial reduction in number of classes in data sets
tmc2007, enron, mediamill, reuters, and bibtex. RAkELo, as
expected, presents greater number of classes compared to
RAkELd due to the additional classfiers. However, in data
sets tmc2007, mediamill, and bibtex it presents lower number
of classes than LP.

5.2 Comparison with Other Methods

In this section, the evaluation is based on both the micro F1

and the macro F1 measures, estimated via 10 repeated
holdout experiments, each using a random 66 percent of each
data set for training and the rest for evaluation. So, in this
case RAkELd and RAkELo are run a total of 100 times each, as
10 different seeds are used for each different holdout
experiment. To calculate the performance of RAkEL for a

specific holdout experiment, we average the values obtained

from these 10 additional internal executions.
RAkEL is compared against the simple baseline methods

BR and LP, as well as against three high-performing

multilabel methods that have been found to perform better

than a number of other multilabel methods in a variety of

data sets. The first one is a multilabel version of the

k nearest neighbors algorithm, called MLkNN [2]. The

second one is a multilabel version of the back-propagation

algorithm for training multilayer perceptrons, called

BPMLL [25]. The last one is the pairwise comparison

method, called calibrated label ranking (CLR) [17].
The C4.5 decision tree learning algorithm was used as

the base-level single-label classification algorithm of BR, LP,

the LP classifiers of RAkEL, and the binary classifiers of

CLR. For RAkELd we set k to 3 and for RAkELo we set k to 3

and m to 2M in all data sets. Note that these are generic

settings based on the conclusions of the previous section,

and definitely not the optimal ones as also shown in the

previous section. For MLkNN, the number of neighbors is

set to 10 and the smoothing factor is set to 1 as

recommended in [2]. For BPMLL, the learning rate is set

to 0.05, the number of epochs is set to 100 and the number of

hidden units is set to 20 percent of the input units, as

recommended in [25]. We used the implementation of C4.5

within Weka [40] and our implementations of BR, LP,

RAkEL, CLR, MLkNN, and BPMLL within Mulan [13] for

unified experiments and evaluation.
Tables 4 and 6 present the average and standard

deviation of the micro F1 and macro F1 measure, respec-

tively, for all method-data set pairs. Tables 5 and 7 present

the rank of each method in terms of micro F1 and macro F1,

respectively, in each data set, along with the average rank of

each method. Following the suggestions in [41], we compare

the different methods according to their average rank.
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TABLE 3
Comparison of RAkELd and RAkELo

TABLE 4
Comparative Results in Terms of Micro F1
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We observe that RAkELo exhibits the highest average

rank both in the micro F1 and the macro F1 measures.

RAkELd presents the second worst average rank in terms of

micro-F1 (outperforming only LP) but the third best average

rank in terms of macro F1 outperforming LP, MLkNN,

BPMLL, and CLR. It is interesting to notice that the baseline

BR presents the second best average rank in both metrics.
In addition, the Wilcoxon signed-rank test (a ¼ 0:05) was

applied in order to examine if RAkELo (or even RAkELd)

have a statistical significant advantage over the rest of the

methods. Over all data sets, RAkELo proved to outperform

significantly BR, LP, RAkELd, and CLR in terms of micro F1.

On the other hand, RAkELd, proved significantly better than

LP only. In terms of macro F1, RAkELo proved to be

significantly better than LP, RAkELd, MLkNN, and CLR.

RAkELd significantly outperformed LP only, as for micro F1.

5.3 The Effect of the Classification Algorithm

This section studies the effect of the single-label classifica-

tion algorithm that is used to train the LP models of

RAkELo on the performance of RAkELo. We compare the

performance of RAkELo with k ¼ 3 and m ¼ 2M using

three different base-level learning algorithms: 1) the

C4.5 algorithm that was used in the experiments so far,

2) a naive Bayes (NB) algorithm, and 3) a support vector

machine (SVM) learning algorithm (one-versus-rest). We

used the implementations of these algorithms that are

available within Weka [40] (The Weka port of LibSVM [42]

was used for the SVM). The SVM was set with polynomial

kernel. We tuned the regularization (C) and degree (d)

parameters of the SVM by searching the space defined by

the values d ¼ f1; 2; 3g and C ¼ f1; 10; 100g. As in Sec-

tion 5.1, the evaluation here is also based on the micro F1

measure, estimated via the holdout method using the

original train and test subsets provided with the releases

of the eight data sets.

Table 8 presents the results of the experiments. The best
performance at each data set is indicated with bold
typeface. In general, C4.5 and SVM perform better than
NB in almost all data sets. C4.5 and SVM achieve the best
performance in four data sets each. This phenomenon can
be explained by considering that SVMs are more accurate
classifiers but, on the other hand, decision trees are well
suited for training ensembles of classifiers as RAkELo does.

6 CONCLUSIONS

This paper has presented a new multilabel classification
method, called RAkEL, that learns an ensemble of LP
classifiers, each one targeting a different small random
subset of the set of labels. The motivation was the
computational efficiency and predictive performance pro-
blems of the simple and effective standard LP method,
when faced with domains with large number of labels and
training examples.

We examined both disjoint and overlapping subsets and
found that both lead to improved results over the standard
LP method, especially in domains with many labels. We
also found that overlapping subsets lead to better results
compared to disjoint ones, due to the classifier fusion
process that takes place for each label. The results of
comparing the predictive performance of the proposed
approach with three high-performing algorithm adaptation
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TABLE 7
Ranking of Methods According to Their Macro F1 Performance

(See Table 6)

TABLE 8
Micro F1 of RAkELo Using Three Different Single-Label

Classification Algorithms

TABLE 6
Comparative Results in Terms of Macro F1

TABLE 5
Ranking of Methods According to Their Micro F1 Performance

(See Table 4)
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methods were in favor of the proposed approach (using
overlapping subsets).

RAkEL could be more generally thought of as a new

approach for creating an ensemble of multilabel classifiers

by manipulating the label space using randomization. In

this sense, RAkEL could be independent of the underlying

method for multilabel learning, which in this paper is LP.

However, we should note that only multilabel learning

methods that strongly depend on the specific set of labels

used to annotate each example, such as LP and PPT [43] (an

extension of LP), are good candidates for this generalized

version of RAkEL. BR for example wouldn’t benefit at all,

while MLkNN would only slightly be affected, as it is

heavily based on the feature space (the nearest neighbors

will always be the same for all different labelsets).
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