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Abstract

Multi-label classification algorithms based on supervised learning use all the labeled data to train classifiers. However, in
real life, many of the data are unlabeled, and it is costly to label all the data needed. Multi-label classification algorithms
based on semi-supervised learning can use both labeled and unlabeled data to train classifiers, resulting in better-performing
models. In this paper, we first review supervised learning classification algorithms in terms of label non-correlation and label
correlation and semi-supervised learning classification algorithms in terms of inductive methods and transductive methods.
After that, multi-label classification algorithms are introduced from the application areas of image, text, music and video.
Subsequently, evaluation metrics and datasets are briefly introduced. Finally, research directions in complex concept drift,
label complex correlation, feature selection and class imbalance are presented.

Keywords Supervised learning - Semi-supervised learning - Image classification - Text classification - Evaluation metrics

1 Introduction

With the rapid development of big data, a large amount of
data is generated in life, and these data contain a lot of infor-
mation closely related to human life. In order to obtain the
required data, many tasks related to data mining have been
carried out [1]. Traditional classification methods focus on
single-label classification. However, many practical prob-
lems require multi-label classification (MLC). The goal of
MLC is to predict the potential multiple labels of the test set
by a prediction model based on the training set [2].

The classic MLC methods are mainly divided into prob-
lem transformation (PT) and algorithm adaptation problem
(AA). The most commonly used in PT is the Binary Rel-
evance (BR) method. The BR method does not consider the
interdependence between labels. In order to overcome this
problem, researchers proposed the classifier chains method
(CO) [3], which is based on BR and connects the binary
classifier obtained by BR through a chain method. The label
power-set (LP) method is also PT. The RAndom k-labEL-
sets (RAKEL) [4] is an ensemble use of LP, where each LP
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classifier is trained by a different small subset of randomly
generated labels. AA is the modification of an existing algo-
rithm to fit the new problem to be solved. The specific per-
formance is to adjust the existing single-label classification
problem to the MLC problem. Popular models of AA for
building multi-label classifiers include k-Nearest Neighbor
(kNN) [5], decision tree [6], Support Vector Machine (SVM)
[7], Neural Networks (NN) [8] and so on.

In recent years, several surveys on MLC have been pro-
vided. Tsoumakas et al. [9] detailed MLC methods from the
perspective of PT and AA, briefly introduced some evalua-
tion metrics, and finally compared the experimental results
of MLC methods. Moyano et al. [10] compared multi-label
ensemble classifiers on 20 datasets and evaluated their per-
formance based on the characteristics of imbalanced datasets
and the correlation between labels. Zheng et al. [11] intro-
duced traditional MLC methods and multi-label data stream
classification algorithms from multi-label data stream clas-
sification, discussed their advantages and disadvantages, and
determined the mining constraints of multi-label data stream
classification. Sadarangani et al. [12] only introduced semi-
supervised learning from the perspective of single label.
Supervised learning (SL) is one of the branches of machine
learning, which can be divided into regression and classifica-
tion problems. Semi-supervised learning (SSL) is a popular
method to deal with incomplete markings. So far, no survey
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has introduced MLC from the perspective of SL and SSL,
and no survey has provided a comprehensive introduction to
the practical application of multi-label. The overall frame-
work of this article is shown in Fig. 1.

The main contributions of this paper are:

(1) We present a comprehensive review of MLC algorithms
based on SL and SSL and summarize the existing MLC
algorithms and discuss their advantages and disadvan-
tages.

(2) We have studied and summarized the MLC algorithms
from the perspective of application fields.

(3) We introduce the commonly used evaluation metrics
and open datasets, and graphically demonstrate the
evaluation metrics used by SL classification algorithms.

(4) We analyze the problems in MLC algorithms, and pro-
pose the next research directions.

The remainder of this paper is organized as follows:
Section 2 describes MLC based on SL and SSL. Section 3
describes application fields, including image classification,
text classification, and other fields. Section 4 mainly intro-
duces the evaluation metrics and datasets. Finally, Sects. 5
and 6 propose further research directions and conclude the
whole paper, respectively.

2 Multi-label classification based
on supervised and semi-supervised
learning

Both supervised and semi-supervised learning algorithms
have been widely used in multi-label classification. This sec-
tion will summarize them from the perspective of supervised
and semi-supervised learning.

2.1 Supervised learning

SL is a machine learning task that infers a function from a
labeled training set [13]. In the next few sections, the paper
will review MLC algorithms from two aspects: SL based
on non-label correlation and SL based on label correlation.

2.1.1 Label non-correlation algorithm

In MLC, the correlation between the labels is very complex
[14]. Without considering this problem, the difficulty of the
algorithm can be simplified. Based on label non-correlation,
this section introduces MLC algorithms from multiple direc-
tions such as decision trees, Bayes, SVM, NN, kNN and
ensemble.

Multi-label decision trees for prediction probability
[15] build a tree using a traditional, single-label decision
tree algorithm in the context of SL, using a normaliza-
tion method to convert multi-label data into single-labeled
instances. The algorithm evaluates the method based on the
performance of tree complexity and prediction accuracy,
introducing a new metric for comparison of datasets. LASM
[16] can be used to build and train multi-label decision trees
with a new objective function optimized in each node of the
tree that facilitates balanced splitting, maintains high-class
purity of the child nodes, and allows sending instances in
multiple directions with penalties to prevent excessive tree
overgrowth. Once the previous node is completed, each node
of the tree is trained. ML-decision trees based on NPI-M
[17] is a new nonparametric predictive inference model
based on multinomial data, and the splitting criterion of this
algorithm makes it independent of the noise of the labels,
and the imprecise information gain is calculated as follows,
where H*(L|A = a;) is the maximum value of H*(L) in the
partition of the dataset consisting of instances with A = a;.

Multi-label classification based on supervised and
semi-supervised learning
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IIG(L,A) = H*(L) — Z P(A =a;)H*(LIA = a)) (1

i=1

Using Bayesian networks as base models, Yang et al.
[18] proposed a feature weighting method to improve
the classification accuracy of the decision function. The
conditional probabilities of positive classes are estimated
by computing the frequency ratios of features in-depth
from the training data, and the decision function can be
simplified by eliminating redundant variables for vari-
ables whose probabilities are independent of the decision
function.

AEML-LLSVM [19] is a fast classification algorithm
based on multi-core low-rank-linearized SVM. The BR
transformation strategy is used to decompose the multi-
label data set into multiple binary data sets. Then, the
approximate extreme value method is used to obtain a
representative set from each binary data set. Finally, the
algorithm is trained on each representative set to achieve
MLC. AEDC-MLSVM [20] is an algorithm that combines
approximate extreme value method and divide-and-con-
quer strategy under SL, and is an improved approach to
the previous algorithm. The algorithm also uses BR to
implement MLC and is suitable for use with large-scale
datasets with relatively low time complexity.

Under SL, BP-AEPML [21] uses a method to reduce
the size of the original dataset by extracting a representa-
tive dataset based on approximate limit points, and then
a BP neural network is used to train the representative
dataset. NNMLInf [22] is a prediction model based on
NN. This model can be used to predict social influence.
Among them, people’s network structural features are con-
sidered network inputs and their behaviors are classified
into multiple labels as network outputs. The algorithm of
deep neural architecture based on bidirectional correlation
pool layer [23] uses a correlation function to detect differ-
ent pairs of neurons that will be aggregated into merged
neurons. An iterative procedure is proposed, which can
estimate the correlation between the merged neurons in the
deeper layer without recomputing the correlation matrix.
A novel multi-attention drive system for remote sensing
[24] proposes a k-branch CNN to extract the preliminary
local descriptors of remote sensing image bands associated
with different spatial resolutions. All the outputs of the
RNN are used to predict the multi-label of remote sensing
images, instead of determining each label by considering
a single class-specific node.

Extreme Learning Machine (ELM) is a method based
on feedforward NN construction and is used in MLC due
to its fast training [25]. ML-KELM [26] solves the prob-
lem of converting the real-valued output of the network
to a binary vector using an adaptive threshold function,

while adjusting fewer parameters, running stably, converg-
ing fast and generalizing well. ML-CK-ELM [27] uses lin-
early combined basis kernels in each layer, which does not
require random adjustment of parameters and has a signifi-
cant reduction in computation time and memory storage.
Rr et al. [28] proposed two frameworks, RMLFM applies
the feature manifold regularization term and RMLDM
considers both feature manifold and data manifold regu-
larization to maintain the local structure of data and fea-
tures, while two iterative algorithms based on the global
conjugate gradient method are used to solve the objective
functions of the proposed methods RMLFM and RMLDM.

ML-RKNN [29] is a neighbor-based reverse nearest
neighbor MLC algorithm. For the same value of k, the
algorithm adaptively acquires different numbers of neigh-
bors for different instances, thus better learning the local
configurations around the points. Also, by comparing the
class distribution of test points and their reverse nearest
neighbors, it helps to implicitly deal with the local imbal-
ance problem prevalent in the dataset. To address the data
stream problem, MLSAMPKNN [30] uses self-tuning
memory to accommodate various types of concept drift,
implementing a penalty system to identify and remove
instances of introduced errors. Instances that have a signif-
icant impact on the error are quickly removed, the fact that
it was recently added to the window. By removing poorly
performing instances, punitive systems can also help keep
memory sizes small and reduce the amount of computation
required to determine the distance of incoming instances.
MLSAKNN [31] uses the penalties of MLSAMPKNN, but
it assumes that the instance causing the error is completely
wrong, but it is possible that an instance has a noisy label
or that conceptual drift affects only a few labels. The algo-
rithm proposes methods to enable and disable dynamic
instances and instances of each label.

The ELIFT [32] based on SL uses an ensemble method
to alleviate the limitation on high classification accuracy.
Multiple training sets generated using a bagging strategy
are used to construct multiple LIFT classifiers. According
to the loss of each classifier, different classifiers are auto-
matically weighted. For each new instance, the predicted
label vector is obtained through the learned weighted
ensemble classifier. AESAKNNS [33] uses MLSAKNN
as the base classifier to take advantage of ensemble clas-
sification to accommodate concept drift in multi-label
environment. The ADWIN detector monitors each clas-
sifier for concept drift on a subspace. Once detected, the
algorithm automatically trains additional classifiers in the
background to try to capture new concepts on new feature
subspaces. The dynamic classifier selects the most accu-
rate classifier from the active and background ensemble to
replace the current ensemble.
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2.1.2 Label correlation algorithm

In many practical tasks, labels are highly correlated, so
the key to successful multi-label learning is to effectively
utilize the correlation between different labels [34]. This
section introduces many aspects such as decision trees,
Bayes, SVM, NN and ensemble algorithms.

In the case of SL, learning the correlation of labels may
produce circular dependence. To solve this problem, the
3RC [35] is proposed. This new method follows the BR
method and uses multiple decision trees as binary classi-
fiers. This novel method aims to learn the correlation of
labels and gives results for models that only consider rel-
evant dependencies in order to perform better predictions
and reduce error propagation due to irrelevant and weak
dependencies. ML-BTC [36] is an extended algorithm for
decision trees in which a new labeled space partitioning
technique is applied to the data to implicitly handle the
possibility of being overlooked in the process of con-
structing the tree potential class associations. The tree is
constructed based on parameters that act as restrictions
to prevent unnecessary branching for smaller imbalanced
classes.

MLNB-LD [37] proposes Bayes’ theorem with strong
independence hypothesis, a new posterior probability esti-
mation method for multi-label problems. The proposed
method uses the correlations between label pairs to deter-
mine the most likely label set for a given unseen instance.
BCC considers the importance of feature selection in clas-
sification tasks. To improve the performance of classifica-
tion by improving each internal classifier, two algorithms are
proposed to test BCC [38], namely BF-FS-BCC and GS-FS-
BCC. Given the structure and chain sequence of BCC, for
each label, a subset is selected and a classifier is built. BNCC
[39] uses conditional entropy to describe the relationship
between labels, with nodes as labels and the weights of the
edges as associations to construct the BN. It proposes a scor-
ing function to evaluate the BN structure and introduces a
heuristic algorithm to optimize the BN structure, and derives
the label order for constructing the CC model by topologi-
cally ranking the nodes of the optimized Bayesian network.

Under SL, RBRL [40] is an algorithm that combines
ranking SVM, BR and robust low-rank learning. It captures
the nonlinear relationship between input and output, and
uses two accelerated approximate gradient algorithms. The
accelerated proximal gradient method (APG) to effectively
solves the fast converging optimization problem. SSSVM
[41] is an SVM method for ultra-high resolution remote
sensing images. The basic idea is to exploit the relationship
between labels through structured SVM and to incorporate
spatial background information into the structured SVM
optimization process by adding terms to the cost function
that encourage spatial smoothing.
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LCL-Net [42] introduces a multilayer perceptron into
the LCL module to model the correlation between condi-
tions in the ChestX-ray14 dataset. The multilayer perceptron
is a general function approximator, which can adaptively
recalibrate the multi-label output during the training phase
to improve the performance of LCL-Net. At the same time,
the LCL module can be easily inserted at the end of any
CNN-based model. SDLM [43] model uses a convolutional
neural network called VGG to learn whole brain CT images
in the image feature learning part. Under SL, the slice cor-
relation between variable-length slices and the causal rela-
tionship between multiple diseases can be obtained from
RNN. DCNet [44] is mainly composed of three main mod-
ules. Among them, feature extraction is the backbone CNN,
which is used for the spatial correlation model of feature
association and the classifier used for classification score
generation. The features generated by the backbone CNN
are directly fused through summation, pixel-by-pixel mul-
tiplication or cascading, without a special fusion process.
Krishna and Prakash [45] used multiple convolutional layers
to form a deep neural network and extract features at differ-
ent levels. The classifier learns from previously unknown
trends while discovering potential dependencies between
labels. Zhou et al. [46] used to structure, attribute and label
information to solve the multi-label graph node classification
problem. The model uses the one-dimensional convolution
operator of TextCNN to extract node feature representations
while embedding the nodes into the same vector space. The
dimensionality of the feature representation learned by the
algorithm is independent of the size of the node neighbor-
hood. It uses an additional attention mechanism to measure
the compatibility of node labels.

Each output node of ML-RBF is connected to the output
of the hidden layer, and the correlation between different
classes can be properly handled to obtain the output weights.
Nan et al. [47] proposed two methods, WuELM-AE and ML-
ELM-RBEF, respectively. WuELM-AE introduces the uncer-
tainty of weights and treats the input weights as random
variables obeying Gaussian distribution. ML-ELM- RBF
first overlays WuELM-AE, then performs cluster analysis
on the sample features of each possible class, and finally
uses a regularized least squares resolution to calculate the
output weights of ML-ELM-RBF. ML-AP-RBF-Lap-ELM
[25] uses ML-RBF for mapping at the input layer, and the
affinity propagation clustering algorithm can automatically
determine the number and center of hidden nodes of the
RBF function and use Lap-ELM to solve the weights from
the hidden layer to the output layer.

ACKEL [48] is an ensemble classification method, which
borrows the idea of active learning and proposes label selec-
tion criteria to evaluate the separability and balance level
of classes transformed from a labeled subset. The K-label
ensemble method based on mutual information and joint
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Table 1 Table of time complexity analysis

Algorithm Time complexity

AEML-LLSVM [19] O(LM? k)

AEDC-MLSVM [20] Training time complexity: O(LMm?)
BP-AEPML [21] O(nuM)

ML-RKNN [29]
MLSAMPKNN [30]

In general: O(N? + d)
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entropy [49] evaluates the redundancy and imbalance of
each K-label set. The algorithm iteratively performs dis-
crete sampling, retains multiple K-label sets with low mutual
information as candidates, and selects the K-label set with
the highest joint entropy.

2.1.3 Summary

This section provides a detailed description of some algo-
rithms for label non-correlation and labels correlation from
four perspectives: time complexity, experimental results,
technical methods and performance.

2.1.3.1 Analysis of time complexity Generally speaking,
compared to decision trees, Bayesian and ensemble algo-
rithms, SVM have limited their application in large-scale
data sets due to time complexity issues. The algorithm in
this section effectively solves this problem. Among them,
RBRL [40] and AEDC-MLSVM [20] can solve the problem
of class imbalance. The neural network also has the problem
of too long training time. The learning rate of the BP neural
network MLC algorithm is fixed. To make the output vec-
tor as close to the expected value as possible, the weight
and bias of the network need to be adjusted repeatedly dur-
ing the data training process. In this process, the larger the
size of the training data set, the longer the adjustment time
required, especially when there are more hidden layers.
Extracting representative data sets based on approximate
limit points can reduce the size of the original data set and
reduce the time spent on data training.

Table 1 shows the complexity analysis of the MLC algo-
rithms for SVM and KNN under SL. L denotes the number
of labels, M denotes the representative size, k represents the
number of cluster centers, n denotes the number of hidden
layers, m denotes the number of landmark data instances, u
denotes the number of cells in each hidden layer, d denotes
the feature vector, N denotes the training set cardinality, w
denotes the window size. As can be seen in Table 1, AEML-
LLSVM has lower time complexity than AEDC-MLSVM,
while MLSAKNN sacrifices time at the cost of improving
classification results.

Table 2 Table of ELM result analysis

Algorithm Yeast Scene

ML-AP-RBF-Lap-ELM [25] 0.7673 0.8121
ML-KELM [26] 0.7702 0.8850
ML-CK-ELM [27] 0.7702 0.8148
ML-ELM-RBF [47] 0.7673 0.8299

The bolded values indicate the highest results obtained in the corre-
sponding data set in table

Table 3 Table of kNN result analysis

Algorithm Mediamill Imdb Nuswide-C
MLSAMPKNN [30] 0.160 0.066 0.247
MLSAKNN [31] 0.152 0.072 0.251
AESAKNNS [33] 0.189 0.093 0.240

The bolded values indicate the highest results obtained in the corre-
sponding data set in table

2.1.3.2 Analysis of experimental results Both NNM-
LInf and BP-AEPML were compared with SVM and both
improved in terms of time efficiency. On the dataset Medi-
amill, BP-AEPML has an average precision of 71.12% and
takes 622.7 s when the number of hidden layers is 5, but
SVM is only 38.99% and takes 13371 s. BP-AEPML uses
approximate extreme points to extract the representative
set and the size of the representative set is smaller than the
original set. Therefore, the time to adjust the weights and
thresholds is reduced. Then the training time is reduced. The
time complexity of the SVM is M>, and M is the size of the
dataset, making its running time slower. On the dataset You-
tube, NNMLInf has an average precision of 46% and SVM
of 41.85% when the number of hidden layers is 5.

Table 2 shows the average precision of ELM algorithms.
The algorithms in the table are experimented with using
five-fold cross-validation. ML-KELM is set with an adap-
tive threshold function, which gives it a faster convergence
and better generalization performance. On the dataset yeast,
the running time of ML-KELM is 0.56 s, which is 1.3276 s
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faster than ML-ELM-RBF. Meanwhile, in the larger dataset
Delicious, ML-ELM-RBF can obtain a better average accu-
racy of 38.2%, compared with 37.73% for ML-CK-ELM and
ML-ELM-FM-DM is 35.74%, but ML-CK-ELM is in a bet-
ter result except the AP and error are lower than ML-ELM-
RBF, while the Coverage of ML-CK-ELM is 547.0185,
which is smaller than both ML-ELM-RBF.

Table 3 shows the subset accuracy of kNN algorithms.
For a summary of kNN algorithms on data streams, which
can all cope with the concept drift problem, the table
only records the experimental results on larger data sets.
AESAKNNS can overcome various multi-label data difficul-
ties due to its combinatorial mechanism.

2.1.3.3 Thetechnical analysisinvolvedinalgorithms Table 4
summarizes the classification methods, and the correlation
between labels, and deals with imbalances between classes
mentioned in the paper. BF-FS-BCC is an extended algo-
rithm of BCC [38], which considers the correlation between
labels, and experiments with the BR algorithm, which does
not process the label relationships, reveal that BF-FS-BCC

can obtain good classification results in terms of Hamming
score, accuracy and Macro accuracy. Among them, in the
dataset Medical, the accuracy of this algorithm is 72.5%,
which is 18.4% higher than BR. The class imbalance prob-
lem is more interesting and challenging for multi-label data-
sets [29].ML-BTC and ML-RkNN consider the problem of
class imbalance and the classification effect is effectively
improved. On the dataset CHD49, the Macro F1 value of the
comparison algorithm MK-KNN is 40.92% and ML-BTC
is 43.38%. On the dataset Yeast, the Macro F1 value of the
comparison algorithm MLKNN is 37.82%, while that of ML-
RKNN is 45.28%.

2.1.3.4 Analysis of performance of algorithms To facilitate
the analysis of performance of algorithms, Table 5 sum-
marizes the SL algorithms mentioned in the paper in terms
of comparing algorithms, experimental datasets, testing
domains, and advantages and disadvantages. In general, BR
is widely used in many fields because of its simple imple-
mentation and fast running speed, but it ignores the relation-
ship between labels and treats each label separately, losing

Table 4 Table of technical

. Algorithm Classification method Correlation Deal with imbal-
analysis between labels ances between
classes
LdSM [16] Decision trees No No
3RC [35] Decision trees Yes No
ML-BTC [36] Decision trees Yes Yes
BCC [38] Bayes Yes No
BNCC [39] Bayes Yes No
RBRL [40] SVM Yes No
AEDC-MLSVM [20] SVM No Yes
SSSVM [41] SVM Yes No
AEML-LLSVM [19] SVM No No
BP-AEPML [21] NN No No
NNMLInf [22] NN No No
LCL-Net [42] NN Yes Yes
SDLM [43] NN Yes No
DCNet [44] NN Yes No
LANC [46] NN Yes No
ML-ELM-RBF [47] ELM Yes No
ML-ELM-FM-DM [28] ELM No No
ML-CK-ELM [27] ELM No No
ML-KELM [26] ELM No No
ML-AP-RBF-Lap-ELM [25] ELM Yes No
ML-RKNN [29] KNN No Yes
MLSAMPKNN [30] KNN No Yes
MLSAKNN [31] KNN No Yes
AESAKNNS [33] Ensemble No Yes
ELIFT [32] Ensemble No No
ACKEL [48] Ensemble Yes Yes
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Table 5 (continued)

(5

Advantages and disadvantages
Advantages: It considers the structural

Biology, Pictures, Text

Test fields

Experimental datasets
Yeast; 20NG; Scene

Comparison algorithms

ML-AP-RBF-Lap-ELM [25] ML-RBF-RELM; ML-ELM-RBF;

Algorithm

Springer

relationship between low-dimensional

data

ML-RBF; RELM; ML-KNN

Disadvantages: The accuracy and

generalization of the algorithm still

need to be improved while maintain-

ing stability

Advantages: It eliminates the need for

Biology, Text

Yeast; Scene; Art; etc

ML-ELM-RBF; RELM; ML-RBF;

ML-CK-ELM [27]

random parameter tuning, while com-

ML-KNN

putation time and memory storage are

drastically reduced

Disadvantages: It does not examine the

different ways in which the nuclei can

be combined

much information. The algorithm under tag association can
obtain better accuracy than the algorithm under non-tag
association. If the application has higher requirements for
accuracy, it can be achieved by solving the related problems.

MLSAMPKNN, AESAKNNS and MLSAKNN can han-
dle the concept drift that occurs in the data stream. Penalty
mechanisms and enable/disable labels can be introduced
when the algorithm needs to handle concept drift. If one
wants to increase the diversity of the underlying classifier,
measures of feature subspaces can be introduced. LdASM and
ML-KELM can experiment on large-scale data. ML-KELM
performs better and is more stable on large-scale data. For
the dataset RCVLV2, the Hamming loss of ML-KELM
is about 5.8% and the coverage is about 12.8%, while the
Hamming loss of the comparison algorithm RANK-SVM is
about 7.1% and the coverage is about 10.8%, and the smaller
values of two evaluation metrics indicate better classifica-
tion performance. And the accuracy of LDSM decreases
compared with the comparison method. But it has lower
complexity and shorter prediction time. If one wants to have
better classification performance on large data sets while
spending less time, one can introduce the kernel extremum
learning machine principle or use a tree structure that facili-
tates balanced splitting to maintain a high degree of purity of
the child nodes and has penalties for overgrowth.

2.2 Semi-supervised learning

In practical applications, obtaining fully labeled instances
is expensive and time-consuming, and using incompletely
labeled data for training is a practical approach. Let
D=D; + Dy be aset of instances, where D; and D, are the
sets of labeled and unlabeled instances, respectively. The
task of semi-supervised MLC is to construct a classification
function £ D; UDy— 2. This section presents inductive and
transductive methods, where inductive methods involves the
optimization of the prediction model, while the transduction
methods optimizes the prediction directly.

2.2.1 Inductive methods

Semi-supervised multi-label inductive methods typically
extend SL algorithms to allow them to handle unlabeled
data. This section provides an overview of the algorithms
from three main perspectives: wrapper, clustering and
others.

2.2.1.1 Wrapper algorithms Wrapper can be divided into
co-training, self-training and boosting. Li et al. [50] fused
the algorithms of MLKNN [51] and FESCOT [52] to form
COMN algorithm. COMN is trained on the same dataset by
using a pair of MLKNN classifiers with two different sets
of parameters. Both classifiers label unlabeled instances



International Journal of Machine Learning and Cybernetics

and provide each other with training datasets. SSR-CT [53]
is a co-training method based on semi-supervised regres-
sion. During the co-training process of the algorithm, each
learner first makes predictions for unlabeled instances, and
then selects and adds the most confidently labeled unlabeled
instances to another learner's training set to improve its per-
formance. The algorithm iterates until the stopping condi-
tion is satisfied and the final prediction of the test data is the
average of the two learners' predictions. Each base classifier
in SSkC [54] is trained in a co-training fashion. To avoid
the accompanying set giving biased labeled predictions,
each accompanying base classifier is required to label only
its accompanying instances. Once the algorithm updates all
base classifiers, the labeling decision threshold is recali-
brated to satisfy the target loss function and the importance
of features is re-evaluated using both labeled and unlabeled
instances.

SS-MLLSTSVM [55] is a semi-supervised multi-label
least squares double SVM. It introduces the least squares
idea into each subclassifier of MLTSVM, so that each
subclassifier only needs to solve a linear system of equa-
tions, and introduces a manifold regularization term in
each subclassifier, which can make full use of the geomet-
ric information in unlabeled and partially labeled samples.
LP-MLTSVM [56] proposed a new two-stage classification
method. In the first stage, the labels of the unlabeled training
data are determined by using a smooth graph constructed by
manifold regularization. In the second stage, a multi-label
classifier is built.

Zhan et al. [57] used the under-inductive setting in their
algorithm. In each round of co-training, the dichotomy of the
feature space is learned by maximizing the diversity between
the two classifiers induced on the dichotomous feature sub-
set. CobMLKNN [58] extends the paradigm of co-training
using the multi-label kNN algorithm. The principle is to
identify the k-nearest instances of each test instance and cal-
culate the number of neighbors belonging to the same label.
It then uses the maximum a posteriori principle to determine
the set of labels for each test instance.

Nowadays, many applications in life can generate more
and faster data than ever before, but most co-training meth-
ods cannot deal with this problem. For this reason, Chu et al.
[59] first used the sliding window mechanism to divide the
data stream into data blocks and trained a basic classifier for
each data block using COINS, and then an ensemble model
with a WCOINS classifier is generated to adapt to the data
stream environment containing a large amount of unlabeled
data. At the same time, a new class emergence detection
mechanism is introduced to detect the emergence of new
classes in the data block. When a new label is detected, the
classifier is retrained on the current data block and the inte-
grated model is updated.

Self-training is another technique most commonly used
in SSL [60]. Santos et al. [61] proposed two methods of
applying semi-supervised technology of self-training,
namely SSLP and SSRAKEL. These methods are based on
their corresponding monitoring methods LP and RAKEL.
Santos et al. [62] proposed a self-training method for
hierarchical multi-label problems, HMC-SSLP and HMC-
SSRAKEL. But these two methods are associated with the
random selection of unlabeled instances for labeling. To
solve this problem, Rodrigues et al. [63] proposed to use
confidence parameters in the automatic label allocation
process in combination with data stream features. First,
the algorithm uses the labeled data stream set to train the
classifier and calculates the confidence coefficients for all
unlabeled samples in the dataset. Then, it sorts the unla-
beled samples in descending order based on the stand-
ard deviation and selects the top n examples in the sort.
Finally, a label is assigned to all selected examples and the
newly labeled examples are moved to the labeled dataset.

MH [64] is a well-known extension of AdaBoost [65]
in MLC, which efficiently handles multi-label problems by
transforming MLC problem into several binary classifica-
tion problems. Zhao et al. [66] also proposed a semi-super-
vised MLC algorithm based on AdaBoost, which proposes
to use conditional variance as regularization to exploit
information from unlabeled data and encourages it to find
hypothetical labels for unlabeled data, which helps drive
the algorithm to produce better combinatorial classifiers.

2.2.1.2 Clustering algorithms Clustering algorithms can
divide instances into labeled and unlabeled sets, and then
assign labels to unlabeled instances by classification.
AHMED [67] uses fuzzy clustering, which allows each
data point to belong to multiple clusters. First, the algo-
rithm updates the dimensional weights and cluster mem-
bership values. After that, it updates the centroids of the
clusters and updates the summary statistics. In this step, it
determines K nearest neighbor clusters for each test data
point. This distance is computed in the subspace of the
clusters. If K is greater than 1, the algorithm calculates the
probability of a class by multiplying the inverse of the dis-
tance between the representation of the class and the sub-
space, and then sums each class over all K nearest clusters.

FS-MLSS-KSC [68] uses the kernel spectrum cluster-
ing algorithm as the core model and integrated informa-
tion from labeled data points into the model through regu-
larization terms. It then implements the propagation of
multiple labeled data points to unlabeled data points by
combining correlations between labels. The algorithm uses
the Nystrom approximation to construct an explicit feature
map and solves the optimization problem in the original
function. OPFSEMI, ,1nn [69] uses the optimal path for-
est framework. Since misclassified samples usually appear

@ Springer
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at the boundary between clusters, this method reduces the
error in label propagation in the training set by re-prop-
agating labels from the maximum of probability density
function. In addition, the algorithm gives higher priority to
training samples closer to their maxima and assigns their
labels to new samples during classification.

Pham et al. [70] used a greedy method to select class-
label specific features as an extension of the LIFT algorithm,
as well as a label-free data consumption mechanism from
text classification using a semi-supervised clustering algo-
rithm. In the clustering phase, the algorithm uses clustering
to identify components in labeled and unlabeled instances
based on the highlighted labels. In the classification phase,
it determines the nearest instance clusters and assigns labels
to the unseen instances. Ha et al. [71] proposed TESC. In the
clustering phase, TESC uses the labeled text to capture the
silhouettes of the text clusters. Next, it adds unlabeled texts
to the corresponding clusters to adjust their center point. In
the classification phase, it uses kNN to find the most recent
clusters and returns the label set of the found clusters as the
label set of the new data instance. MCUL [72] uses cluster-
ing-based regularization terms to discover unobserved labels
in the dataset and uses the specific label features learned to
describe their semantics and use label correlation to over-
come the problem of missing labels.

2.2.1.3 Other algorithms In addition to wrapper and clus-
tering, inductive methods also use kernel norm or low-rank
regularization. SLRM [73] uses kernel constant regulariza-
tion on maps to efficiently capture label correlations and
introduces stream regularization to capture the internal
structure between data. In the regularization, when two
instances are close in the feature space, their new represen-
tation based on the map should be close. In this case, the
mapping is able to capture the intrinsic geometric struc-
ture between instances in the feature space and label space.
Sheng et al. [74] propose an adaptive low-level SSL multi-
label algorithm. In this algorithm, the intermediate feature
space for learning labeled and unlabeled training samples is
reduced by a low-rank matrix, and the multi-label classifier
is trained by an adaptive SSL strategy.

In order to solve the noise problem in the examples,
SUN et al. [75] proposed robust semi-supervised multi-
label learning based on three-low rank regularization. The
algorithm first introduces a linear self-representative model,
which uses label correlation to recover the matrix of labels
that may be noisy. Then, it uses low-rank representation to
construct a low-rank polarity matrix to capture the global
relationship between labeled samples and unlabeled sam-
ples. The graph Laplacian regularization is constructed
by using the pair similarity matrix defined above to obtain
information on the geometric structure of the labeled and
unlabeled samples. The prediction models of different labels

@ Springer

are connected in series into a matrix and the matrix tracking
norm is introduced to capture the correlation and complexity
of the control model. CORALS [76] optimizes all possible
labels by minimizing cost-sensitive ranking losses, using
dual low-rank regularization to capture the corresponding
correlations and using sparse regularization terms to con-
strain the sparsity of noisy information.

2.2.2 Transductive methods

Transductive methods in SSL are graph-based, either explic-
itly graph-based or implicitly graph-based [12]. This section
mainly explains graph-based construction and graph-based
weighting of transductive methods.

2.2.2.1 Graph-based construction Zha et al. [77] proposed
a graph-based SSL framework, which can simultaneously
explore the correlation between multiple labels and label
consistency on the graph. Specifically, the framework
employs two types of regularizers. One is used to select
the label smoothing on the graph, and the other is used to
address that the multi-label assignment of each example
should be consistent with the inherent label correlation.

In some classification tasks, local feature descriptor-
based methods are more robust to intra-class variation than
global feature-based methods [78]. LSS [78] outperforms
the global feature-based GRF algorithm in some classes.
The performance of LSS depends on the accuracy of the
feature matching context. Bao et al. [79] proposed a semi-
supervised multi-label image labeling algorithm, which
based the propagation of labels on virtual local label rep-
resentation rather than on the whole image representation,
and proposed an effective multiplication iterative method
to optimize the objective function. Later, Jiang et al. [80]
proposed an extended algorithm of graph learning based on
local and global consistency, named Multi-label Depend-
ent semi-supervised learning (MCSL). It incorporates the
intrinsic correlations between functional classes into protein
function prediction by utilizing the relationships provided
by PPI network and functional class network. The classifi-
cation function should be smooth enough on the subgraph
where the respective topologies of the two networks are well
matched.

The complexity of data distribution in practical appli-
cations makes it difficult for the algorithm to choose the
appropriate parameters. To address this problem, Liu et al.
[81] proposed an SSL framework for MLC based on ker-
nel norms. The framework uses kernel normalization for
class-level smoothing, uses criterion functions to construct
class graphs adaptively, and introduces a non-greedy itera-
tive algorithm to solve the criterion functions. It also pro-
poses two algorithms based on the kernel norm. Formula 2
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is NML-GRF, and Formula 3 is NML-LGC. F is the pre-
diction label matrix, Y is the label matrix, M is (FF)"2 L,
is the normalized Laplacian matrix of the instance graph,
L,=1-D":WD™2.

mintr((F — Y)'U(F - Y)) + tr(F'LF) + ytr(FMF")  (2)

mintr((F — Y)'U(F - Y)) + tr(F'L,F) + yir(FMF") (3)

Ghosh et al. [82] proposed two different graph-based
methods, namely Label Correlation Propagation-GRF
(CP-GRF) and Weighted Label Correlation Propagation-
GRF (WCP-GRF). CP-GRF involves propagation on a
label correlation graph for each instance. WCP-GREF is
an extension of the CP-GRF method, its correlations are
not only propagated from other related labels, but are also
based on proximity to a specific example. SMILE [83]
used the known labels and supplementary labels of labeled
instances and unlabeled instances to train a graph-based
semi-supervised linear classifier and directly predicts the
labels of new instances that are completely unlabeled.
Behpour et al. [84] developed adversarial Robust Cuts
(ARC), using learning tasks as a minimax game between
predictors and “label approximators” based on minimal
cost graph cuts. ML-GCN [85] uses GCN to embed node
features and graph topology information. The algorithm
randomly generates a label matrix with the same dimen-
sionality of the label vector as the node vector before the
last convolution operation. During training, it concatenates
the label vector and the node vector as inputs to a relaxed
jump graph model to detect node-label correlations and
label correlations.

In images, many algorithms are proposed for annota-
tion functions. AHL [86] is a multi-label image labeling
method based on adaptive hypergraph learning. The algo-
rithm preserves the local geometric structure of the data in
a high-order manner and obtains a potential feature space
by adding feature projections in which multiple labels can
be efficiently and robustly assigned to unlabeled instances.
WeSed [87] uses weakly weighted pairwise ranking loss
for weakly labeled images and triple similarity loss for
unlabeled images.

Wang et al. [88] proposed a dual low-rank regularized
multi-label learning model. The algorithm introduces
a dual-trace regularization to capture the correlation
between different label prediction models in the feature
space and a linear self-recovered model to recover the
noisy training label matrix in the learning phase. MLRMG
[89] creates multiple graphs based on a randomly selected
subset of features, learns the labeling function on each
graph by optimizing a semi-supervised loss function, and
finally, it votes on multiple graphs to determine predictive
labels for unlabeled data. Song et al. [90] introduced the

idea of label embedding to capture the network topology
and higher-order multi-label correlations. The similarity
of label embedding and node embedding can be used as
a confidence vector to guide the label smoothing process,
forming a marginal ranking optimization problem to learn
the second-order relationships between labels.

Boulbazine et al. [91] proposed an online semi-super-
vised multi-label classifier based on the Growing Neural Gas
(GNG) algorithm. The main principle of the algorithm is to
associate a prototype consisting of two vectors with each
neuron k. These two vectors are updated for each neuron dur-
ing the learning process and used for prediction of unknown
label vectors. Li et al. [92] extended the graph-based SSML
to MLC, and also investigated three graph regularization
methods: Gaussian Field and Harmonic Function (GFHF),
Local and Global Consistency (LGC), and Manifold Regu-
larization Modification (MR), and propose a semi-super-
vised multi-label decomposition framework for the NIALM
problem. MGLP [93] uses multi-level neighborhood infor-
mation granularity and a three-way decision method, where
the three-way decision method can be used to select unla-
beled data for further annotation. Through the iterative pro-
cess of label propagation, data annotation and data subset
update, the final pseudo label accuracy of unlabeled data is
improved.

2.2.2.2 Graph-based weighting The classic label propaga-
tion algorithm gives a finite weighted graph G=(V, E, W),
where V is composed of the dataset X={x;, i=1, ..., n} and
E is composed of V x V, W is a non-negative symmetric
weight function, and the algorithm interprets the weight w
(i, J) as a similarity measure between vertices x; and x;. If p
is a distance metric defined on the graph, then the similarity
matrix can be constructed as follows:

.. P(xi’xj)z
W(@,j)=h T 4)

One disadvantage of label propagation is that it does not
handle multi-class or MLC problems well due to the lack
of interaction between labels in different classes. Reference
[94] proposed a dynamic version of label propagation. For
the dynamic propagation algorithm, it sets the similarity
between non-adjacent points to 0, i.e. assumes that local
similarity is more reliable than distant ones. Local similari-
ties can be propagated to non-local points through a diffu-
sion process on the graph. At the same time, KNN is used to
test the local distance. The similarity matrix is constructed
as follows:

Wij = { (v)V(i, N-if (x; € KNN(x;)) )

@ Springer
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Dharmadhikari et al. [95] used the KNN method to
reweight adjacency matrix A, and uses a cosine similarity
measure to represent edge weights and generate a matrix W
through a graph segmentation process. Such graph specifica-
tion can improve the efficiency of the label inference stage.
Lucena et al. [96] extended MLKNN algorithm to SSL. The
algorithm creates weight matrices and diagonal matrices
using instances of the partially labeled dataset. The formula
for the weight is as follows:

Xj=X;

W, =e 27 ©6)

y

Among them, they transformed the training dataset into
graph G (V, E), e € E. W;; defines the similarity between
nodes i and j.

Gang et al. [97] proposed to construct two graphs at
instance level and category level, respectively. For instance-
level, the definition of the graph is based on labeled and
unlabeled instances, where each node represents an instance
and the weight of each edge reflects the similarity between
the corresponding paired instances. For the class hierarchy,
a graph is constructed based on all classes, where each node
represents a class, and the weight of each edge reflects the
similarity between the corresponding pairwise classes.

To make the algorithm more robust to noise and incom-
plete image labels, Cevikalp et al. [98] argue that it is impor-
tant to use a robust ramp loss. The algorithm passes the
labels of the labeled data samples to the nearest unlabeled
samples and uses the similarity score to control the reli-
ability of the label assignment. The weight formula of the
algorithm is as follows:

ZHM Z] 1 Zk 11 SlL
>+KZ”"Z s s(ya(fof)>

where u is the unlabeled label, x; feature vector, C;“_ and

A
mln Etmce WT

(wfx,. )

C; represent the positive and negative labels of x;. s; is equal
tol,i=1,...,1, r is the rank. L(.) is the weighting function
for different levels and W is the weight matrix. 4 is the regu-
larization parameter and K is a user-defined parameter that
controls the slope loss weight.

2.2.3 Summary

This chapter provides a tabular overview of the time com-
plexity, application areas, and advantages and disadvantages
of individual algorithms.

2.2.3.1 Time complexity Time complexity refers to the

amount of computational effort required to execute an
algorithm. It can measure the efficiency of the algorithm,
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pointing out the relationship between the computational
workload performed by the algorithm to solve the prob-
lem and the size of the problem. The time complexity of
the individual algorithms involved in this paper is shown in
Table 3. We can find that it is mostly related to the number
of instances and feature dimensions. Individual algorithms
are also related to the number of iterations performed, and
the size of the model.

SMILE runs faster than all comparison algorithms with
30% missing labels. On the three datasets, SMILE only takes
a total time of 280.51 s, while the comparison algorithm
MLML consumes 7615.33 s. SS-MLLSTSVM, although it
needs to compute the Laplace matrix for the whole sam-
ple, still has a faster running speed. On Flags, it takes only
0.037 s, while the comparison algorithm BPMLL takes
4.241 s. The running speed of CORALS decreases signifi-
cantly with the increase in the number of instances, label
classes and feature dimensions. This is because the method
focuses on checking the correctness of each class label
(Table 6).

2.2.3.2 Analysis of performance of algorithms The test
domains for semi-supervised multi-label learning are gener-
ally text, audio, images, biology, and music. Among them,
the algorithms focusing on text classification include algo-
rithms SISC [67], GB-MLTC [95], MULTICS [70]. SISC
can determine clusters in subspaces of high-dimensional
sparse data. GB-MLTC can use cosine similarity measures
that may ignore certain aspects of semantic relationships
between text documents that may affect accuracy. MUL-
TICS can be derived from the text classification of the unla-
belled data consumption mechanism.

In the field of image, LSS [78], SSML [92], WeSed [87]
and AHL [86] algorithms are suitable for multi-label image
labeling, and LSS can obtain better results when match-
ing more images. SSR-CT [53] uses regression and coop-
erative algorithms to classify and predict images, but it is
easily affected by noise. But WeSed does well with noisy
data. CNN +RMLC [98] can remove error samples well to
expand the training set and suitable for retrieval of large-
scale images.

In the face of large amounts of data, multi-label data
stream algorithms are particularly important. Both coop-
erative training and self-training algorithms in inductive
methods can reasonably process data stream data, such as
the algorithm Rodrigues [63].

Finally, we summarize semi-supervised classification
algorithms from the perspective of label non-correlation and
label correlation through Fig. 2, which includes test fields,
advantages and disadvantages.
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3 Application field

MLC problems have attracted more and more researchers’
attention due to their wide application [13]. In the next few
sections, MLC algorithms will be described from the fields
of image classification, text classification, and others.

3.1 Image field

Image classification is a difficult task that has attracted great
attention from the research community recently. Image clas-
sification is more suitable to use MLC algorithms for clas-
sification. This is because most images can be described
with multiple labels to describe their semantic content, such
as objects, scenes, actions, attributes, etc. [41]. This section
is mainly introduced from the medical field and the remote
sensing image field.

3.1.1 Medical field

Image of MLC has a wide range of applications in the medi-
cal field, such as chest X-rays, electrocardiograms, brain CT,
eye diseases, etc. The algorithms of MLC can make up for
the shortage of doctors and reduce the workload of doctors.

Chen et al. [42] proposed a novel label co-occurrence
learning model for multi-label chest X-ray image classi-
fication, which explores potential co-occurrence labels in
images by using label co-occurrence and dependent informa-
tion. Guan et al. [99] proposed the CRAL model to solve the
problem of multi-label chest disease classification on chest
X-ray images. It predicts the presence of multiple lesions in
a particular category of attentional view and suppresses dis-
orders in unrelated categories by assigning smaller weights
to the corresponding features. Chougrad et al. [100] used
SGD with exponentially decaying learning rate to effectively

Table 6 Table of time complexity analysis

improve domain adaptation so that the model can maximize
learning over new domains for better classification predic-
tion of mammograms.

Cai et al. [102] proposed a method for arrhythmia based
on electrocardiogram data set, which can detect 55 kinds of
heart disease symptoms at the same time, and call it Multi-
ECGNet. This model proposes a complete set of ECG moni-
toring analysis, modeling methods and research ideas of an
end-to-end deep learning model, and at the same time is
superior to ordinary cardiologists in terms of indicators. Li
et al. [43] proposed a multi-label slice-dependent learning
model called SDLM. It is a sequence-to-sequence model that
effectively learns image features and slices dependencies in
an end-to-end manner. He et al. [44] proposed a model that
considers patient-level diagnosis and multi-label disease
classification that are associated with binocular eyes. Three
models are proposed. The first is the CNN model, which
can classify patient-level multi-label eye diseases, and can
handle seven eye diseases at the same time through a sin-
gle network, and the second is a novel module SCM, which
is designed to effectively integrate from Control the func-
tion of CFP extraction. Ou et al. [103] proposed bilateral
feature Enhancement Network, which uses the interaction
between bilateral fundus images to enhance the extracted
feature information. Feature information from images with
different resolutions extracted by extended convolution is
superimposed, enriching the feature images and thus captur-
ing more disease features.

Xu et al. [104] explored easily accessible labels to help
classify lesion types, used the label of lesion type and patient
ID to construct a loss function based on DML and also used
five-fold input to build a deep model using transfer learn-
ing. Finally, a five-fold mining algorithm for label selection
training samples is proposed.

Algorithm Dataset Time complexity

SMILE [83] Cal500; Bibtex; Delicious N2C + N?D + ND? + D3, C is the number of distinct labels
of the instance, N is the number of instances, and D is the
number of features

AHL [86] CUB; SUN; AWA; Corel5K; IAPR-TC12; ESP Game n’+d, d is the feature dimension and 7 is the number of

SS-MLLSTSVM [55] Flags; Emotions; Birds; Scene; Yeast

CORALS [76]
cal07; Delicious; ESPGame

MCUL [72] Bibtex; Corel16k001; Medical; Stackex

MGLP [93]
QSAR

Emotions; CAL500; Genbase; Medical; Corel5k; Pas-

Wine; Lonosphere; Breast; Heart; Yeast; Image; Wireless;

samples

Linear: O(n*log(n) + Kd?), nonlinear: O(n*log(n) + Kn?), K
is the number of labels, n is the number of instances, and
d is the distance

O(t X (¢° + r?)), t is the iteration time to update the model,
q is the class label, r is min(d,q)

The time complexity of ||S — HHT||i in the objective func-
tion is O(nz(d +1+n)

The worst case is O(kun?), n is the number of instances, u is
the unlabeled instances, and k is related to KNN

@ Springer
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Fig.2 Summary of SSL algorithms
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SSR-CT [54]

label non-correlation
algorithm

- CMLDSE [60]

MCUL [68]

KSC [70]
label correlation

algorithm

SLRM [74]

OPFSEMlngisiann [71]

label non-correlation
algorithm

L label correlation
algorithm

SS-MLLSTSVM [56]

LP-MLTSVM [57]

CobMLKNN [59]

MGLP [94]

NML-LGC/GRF [82]

GB-MLTC [96]

Test Field: image
Advantages: It utilizes rich unlabeled data to improve the performance of regression estimation
Disadvantages: This method is casy to be affected by noise and has limited application field

Test Field: image, music, audio, biology
Advantages: It improves learning speed and generalization performance.
Di: ges: It does not i i the effect of high-dimensional data on classification performance.

results are better than the SS-MLLSTSVM[56].
Disadvantages: The algorithm is not extended to structural learning problems.

Test Field: Biological; Images; Music; Video;Text;

Advantages: The algorithm uses a complementary multi-label classifiers in the ensemble to build new
labeled learning examples with a confidence of over 85%.

Disadvantages: It does not remove irrelevant and redundant features.

Test Field: Images; Biological; Text;

Advantages: This algorithm applies semi-supervised technology to multi-label data stream classification.
At the same time, a new label detection algorithm is introduced.

Disadvantages: It does not solve the problem of detecting concept drift in the absence of labels.

Test Field: image, music, audio, biology
Advantages: The algorithm is based on the manifold theory on Graph Laplacian. The experimental

Test Field: Text;

Advantages: It solves the problem of missing labels and completely unobservable multi-label learning.
Disadvantages: It cannot automatically determine the number of unobservable tags and cannot
describe the semantics of unobservable tags for various types of data.

Disadvantages: It cannot automatically determine the number of unobservable tags and cannot
describe the semantics of unobservable tags for various types of data.

Test Field: Image, audio

Advantages: It can handle large data sets.

Disadvantages: The nonlinear loss function is not considered in this algorithm to measure the marking
approximation error of the marking data.

Test Field: Text;
Advantages: It solves the problem of missing labels and completely unobservable multi-label learning.

Test Field: Biological; Video; Text;

Advantages: In classification, the closer the training sample is to the maximum value, the higher priority
the algorithm will assign labels to new samples..

Disadvantages: It does not address the issue of active learning in single and multi-labels classification.

Test Field: Biological; Video; Text;

Advantages: This algorithm improves the accuracy of pseudo label. At the same time, the algorithm can
be applied to data annotation

Disadvantages: It does not study the feasibility of different graphs, nor does it study the case of real-
time streaming data and class unbalanced data weight.

Test Field: Biological;
Ad ges: It effectively o the problem of label data scarcity.
Disadvantages: It effectively overcomes the problem of label data scarcity

MCSL [81]

Test Field: Text, image, biology

A

Ad ges: It solves the probl of artificial c ion of category map and complex distribution
of data.

Disadvantages: It is not extended to incremental learning.

of unlabeled instances to predict the labels of new unlabeled instances.
Disadvantages: It does not solve the correlation between high-order labels.

Test Field: Music, text

Advantages: The algorithm uses the label correlation derived from labeled instances and a large number
of unlabeled instances to predict the labels of new unlabeled instances.

Disadvantages: It does not solve the correlation between high-order labels.

ARC [85]

Test Field: Biological; Video; Text;
Advantages: This algorithm can embed nodes and their labels in the same low dimensional space.
Disadvantages: It does not consider embedding the contents of nodes into the learning model.

ML-GCN [86]

Test Field: Biological; Video; Text;

Advantages: The algorithm can deal with high-dimensional data, and also introduces global label
correlation to solve the problem of multi label classification.

Disadvantages: It did not experiment on large datasets.

MLRMG [90]

Test Field: Text;

Ad ges: The algorithm
accuracy of multi label text classifier.
Disadvantages: It does not use more robust feature extraction techniques, such as LSI, NMF.

similarity and class label correlation to improve the

Test Field: Text;

Advantages: It integrates multi-label LVQ-NN algorithm into a semi-supervised classification
framework and tests it on real databases in different fields.

Disadvantages: It does not select the most trusted instance based on the preset threshold in the current
framework.

LVQ-NN [98]

Test Field: Music, text
SMILE [84] Advantages: The algorithm uses the label correlation derived from labeled instances and a large number
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3.1.2 Remote sensing image

Multi-label image classification plays an important role in
the complex content of remote sensing images, and has trig-
gered some related studies in the past few years [105].

Alshehri et al. [106] proposed a deep learning model
based on a codec NN architecture with a channel and
spatial attention mechanism to deal with remote sensing-
based drone problems. The model is based on the task of
a pre-trained CNN encoder module and converts the input
image into a set of feature maps using an appropriate com-
bination of features. The task of the decoder module based
on LSTM network is to generate the classes present in the
image in a sequential manner. Hua et al. [105] proposed
an attention-aware labeled relational inference network
based on remote sensing technology. The network consists
of three basic modules. The learning module of labeling
plots by label aims to extract high-level elements specific
to labels; the attention area extraction module generates
attention label-specific functions; the label relationship
inference module uses the output derived from the previ-
ous module the label relationship is used to predict the
existence of the label.

A novel multi-attention drive system was proposed by
Sumbul et al. [24] in 2020. The system is mainly divided
into four modules. The first module extracts preliminary
local descriptors of remote sensing image bands that can
be associated with different spatial resolutions. The second
module is implemented by a two-way RNN architecture, in
which LSTM nodes enrich local descriptors by consider-
ing the spatial relationship of local regions. The third mod-
ule is implemented through a patch-based multi-attention
mechanism, which takes into account the co-occurrence
of multiple land cover categories. The last module uses
these descriptors to classify multi-label remote sensing
images. Chaudhuri et al. [107] proposed model based on
four main steps: The first step is to segment each image
in the archive and extract the features of each region. The
second step is to construct the image neighborhood map
and use the relevant label propagation algorithm. The third
step uses a novel region labeling strategy to associate the
class label with the image region, and the last step uses a
sub-image matching strategy to retrieve images similar to
the given query image.

Dai et al. [108] proposed a new CBIR model. Combin-
ing spatial and spectral descriptors, this model achieves
image retrieval through a novel remote sensing image
retrieval method based on sparse reconstruction, consid-
ers a new label likelihood metric, and extends the original
sparse classifier to single-label and multi-label remote
sensing image retrieval problems, proposing a strategy to
exploit the sensitivity of the sparse reconstruction-based
approach to different dictionary words. Koda et al. [41]

proposed an SVM-based MLC method to achieve accurate
land cover classification of remote sensing images. The
model that enhances the smoothness of the entire image
is called Spatial Structured SVM (SSSVM).

3.2 Text classification

The application field of text classification can also be solved
by using MLC algorithms. The main application fields are
sentiment classification and medical biology classification.

3.2.1 Sentiment classification

Multi-label sentiment classification is a subtask of text sen-
timent classification. Its purpose is to identify coexisting
emotions (such as joy, anger, anxiety, etc.) expressed in the
text. Due to its broad potential, it has attracted the attention
of researchers [64].

He et al. [109] proposed a JBNN, which can effectively
solve the problem that binary networks ignore the correla-
tion between labels. In JBNN, the representation of text is
replaced by a set of logistic functions instead of softmax
function, and multiple binary classifications are performed
simultaneously in a single neural network framework. In
addition, the relationships between labels are obtained by
training a joint binary cross-entropy loss. Yu et al. [110] pro-
posed a new transfer learning architecture. The model uses
a shared LSTM layer to extract shared emotion features for
emotion and sentiment classification tasks, and uses a target-
specific LSTM layer to extract specific emotion features that
are only sensitive to people's emotion classification tasks.
Fei et al. [111] proposed a TECap, which can learn poten-
tial topic information without external knowledge, thereby
promoting multi-label sentiment classification.

Alzu'Bi et al[112] proposed a model to solve the senti-
ment analysis of Arab social media. To make the annotated
data set more accurate, the model uses a mediation process
to check and update the annotated data set. Bravo-Marquez
et al. [113] proposed a model of annotated sentiment diction-
ary. The model combines word-level functions and learn-
ing techniques to efficiently accomplish this task, and can
use unlabeled tweets to identify emotional words from any
collection of specific fields. Kim et al. [114] proposed an
attention-based classifier. The model consists of an atten-
tion mechanism and multiple independent CNN, and its
performance is further improved through preprocessing of
emoticons and the use of additional dictionaries.

Mulki et al. [115] developed a Tw-StAR to identify emo-
tions embedded in Arabic, English and Spanish tweets. The
model performs one or more combinations of preprocess-
ing techniques on the tweets, adopts the BR conversion
strategy, and uses the TF-IDF scheme to generate tweets.
Alhuzali et al. [116] proposed a SpanEmo model, which
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uses multi-label sentiment classification for span prediction,
learns the association between labels and words in sentences,
and introduces a loss function. Hyun et al. [117] proposed a
deep learning-based model combining linguistic embedding
and sentiment embedding for text classification in a CL-
AFF shared task, and sentence features extracted from the
embedding model were used as a TextCNN to provide input
for text classification. Ying et al. [118] chose the popular
BERT language model to provide general language knowl-
edge for modeling sentences. They used a twitter-specific
preprocessor to decode twitter-related expressions, introduc-
ing a two-step training process to integrate common sense
and detected domain knowledge for sentiment classification.
Ameer et al. [119] proposed a large benchmark corpus for
multi-label emotion classification tasks, which uses content-
based methods, in-depth learning and transfer based learning
methods to classify the corpus at the same time.

3.2.2 Medical biology classification

Multi-label text classification plays an important role in the
field of information retrieval and has had an impact on infor-
mation retrieval in the field of medical biology. [120].

Du et al. [121] proposed the ML-Net model, which is a
novel end-to-end deep learning framework. The model is an
efficient and scalable method that combines the label pre-
diction network with an automatic label number prediction
mechanism, and it does so by using the prediction confi-
dence score for each tag and deep contextual information in
the target document. Glinka et al. [122] proposed a model to
improve the feature selection method of multi-label medical
text classification, investigating filter and wrapper methods
and hybrid methods. Hughes et al. [123] allow automatic
generation of context-based, rich representations of health-
related information. They extracted urgent semantics from
a corpus of medical texts and classified text fragments at
the sentence level using CNN. Yogarajan et al. [124] use
multi-label variants of medical text classification to enhance
the prediction of concurrent medical codes. A new embed-
ding on health-related text compares several variants of the
embedding model when dealing with the unbalanced multi-
label medical text classification problem.

Wasimp et al. [125] proposed a classification model for
multi-label questions for fact-based and list-based question
processes for biomedical question answering systems. In
the prediction stage, the list-type problems use the COPY
LAT prediction model, and the fact-type problems use the
BR LAT prediction model. Baumel et al. [120] proposed
a HA-GRU. The model can use attention weights to bet-
ter understand which sentences have the most impact on
decision-making and which words in the sentence have the
most impact on each decision. At the same time, it can find
the sentence with the highest score in each label and pass
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this most important find the word with the highest score in
the sentence. RBA [126] is a rule-based algorithm developed
using the dictionary method. It uses labels to train attention-
directed RNNss to classify reports as positive reports for one
or more diseases or normal reports for each organ system.

3.2.3 Other fields

In addition to image and text classification, the MLC
method has been widely used in other aspects. This chap-
ter will introduce the application of MLC from two aspects
of music and video.

Oramas et al. [127] proposed a multi-label music genre
classification model using deep learning architecture. The
model combines learning-based feature embedding with
the latest deep learning methods. For each album, it col-
lects cover images, textual comments, and audio tracks.
Zhao et al. [128] proposed a model to classify multi-label
music styles through user comments. The model is divided
into two mechanisms, a label graph-based neural network
mechanism responsible for classifying music styles based
on the correlation between comments and styles, and a
soft training-based mechanism introducing a loss function
with a continuous label representation. Ma et al. [129]
proposed a novel knowledge relation Framework, which
uses graph CNN to automatically learn deep associa-
tions between styles. The approach focuses on integrat-
ing external knowledge and statistical information about
musical styles to derive correct and complete dependen-
cies between styles, alleviating the problems of overfitting
and underfitting.

Kim et al. [130] proposed a NN method. This method
uses an attention mechanism for space and time dimensions
to ignore noisy and meaningless frames. The correlation
between labels is considered by decomposing the joint prob-
ability of labels into condition items. Karagoz et al. [131]
proposed an auto-encoder for reducing the dimensionality of
video datasets, and combined the features extracted by the
multi-objective evolutionary non-dominated sorting genetic
algorithm and auto-encoder. Araujop et al. [132] proposed a
video classification model based on the most advanced net-
work architecture based on the intersection of linear algebra
and deep learning. The layer in the classic form is denoted
as “dense”, and the layer denoted by loops and diagonal
lines are referred to as “compact”. The required size is repre-
sented by cascading and slicing. Jiang et al. [133] proposed
a new system to achieve real-time and MLC of short vid-
eos. The system adds an activation adjustment layer before
the output S-function to enhance the CNN's discriminative
power for each label and uses label imbalance-aware train-
ing loss to reduce the effect of mostly irrelevant labels. Wu
et al. [134] proposed a spatiotemporal location transforma-
tion framework for multi-label video classification tasks.
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The framework uses the method of global action label co-
occurrence and proposes a plug-and-play spatiotemporal
label dependency (STLD) layer. STLD not only dynamically
models tag co-occurrence in video through self-attention
mechanism, but also completely captures spatiotemporal tag
dependencies through cross attention strategy.

3.3 Summary

This section summarizes the MLC algorithm from the
image field, text classification field and other application
fields. In order to conveniently analyze the performance
and advantages and disadvantages of the model, Table 7
summarizes the models mentioned in the paper from the
aspects of algorithms, application fields, experimental data
sets, advantages and disadvantages.

4 Evaluation metrics and public data sets
4.1 Evaluation metrics

It is important to choose the appropriate method to evalu-
ate the performance of classification algorithms. In single-
label learning, classification is considered as if the obser-
vations are correctly classified or unclassified, while in
multi-label learning, classification can be considered as
partially correct or partially incorrect [50].

Several metrics have been proposed to evaluate the per-
formance of MLC algorithms. The most commonly used
are one-error, accuracy, hamming loss, recall, rank loss,
coverage, subset accuracy, average accuracy, and micro-
F1. Specially, the subset accuracy is more than strict for
the evaluation, it will result in very low metric values.
The following is a detailed introduction to the evaluation
indicators in MLC.

Given a multi-label dataset S ={(x;, Yl-)}l’f:l, where Y is
the true label of dataset x;, n is the number of instances
in the dataset, i(x;) is the multi-label classifier, I[e] is the
indicator function.

one-error: It evaluates the percentage of instances where
the top-ranking labels are not in the relevant label set.

Yiey;

1 c in
One — error = — ;1[’” Ry ¢ Y)] ®)

Accuracy: It measures the fraction of correctly classi-
fied labels.

1w [ 1Yinh)
Accuracy = — 2z <m> "

i=1

Hamming loss: It evaluates the frequency of misclas-
sification of an instance label pair, that is, the instance
predicts an irrelevant label or the relevant label is missed.

n 1
Hamming Loss = % Z % Z I[h(xi)j # Y,'Jl (10)
i=1 =1

Recall: It measures the average proportion of related
labels for instances predicted to be related.

1 ¥ |Y: n h(x[)|
Recall = — - = an
2T
Rank loss: It calculates the score for incorrectly sorted
label pairs.
Ri(ya)>Ri(yh)’ (ya,y,,) € Yll X f/lll
i

Rank loss = % ; I(ya’yh) :

12)
where (y,,y,,) is the pair class label for instance x; and
Y=v/7,.

Coverage: It is an indicator used to averagely calculate
the number of steps required to cover all relevant labels of
an instance.

1 n
== R.(y)—1
Coverage p izzl T?ea;( i) (13)

Subset accuracy: Subset accuracy can evaluate all cor-
rectly classified instances of the label.

n

Subset accuracy = % Zl[h(xi) =7)] (14)
i=1

Average accuracy: The average accuracy is the average
proportion of related labels that rank higher than a specific
label.

. 1 1 |{quYiI:Ri(yqui(yi))}|
Average precision = ~ Z —
nia |Y,." ner! Ri(v:)

as)

where R,(y;) is the predicted rank of the class label y; for an
instance x;.

Micro-F1: Consider the problem of class imbalance. It
uses the F1 metric to evaluate each label separately and aver-
ages all labels.

2 Z,l-=1 2o yijh(xl-,yj)
Z]l':l X Yyt Zj’:l 2 h(xi’yj)

Micro — F1 = (16)
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Table 8 Evaluation metrics of SL algorithms

Algorithm Evaluation metrics
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Precision and recall can be used to calculate the weighted
F1 metric. This metric is generally considered to be a bet-
ter performance evaluation index than precision and recall.

precision X recall

F1 - measure = 2 X 17

precision + recall
In order to better understand the role of evaluation met-
rics in multi-labeling, the evaluation metrics of the above SL
algorithms are depicted in Table 8. where SA is subset preci-
sion, Acc is accuracy, Pre is precision, Re is recall, Micro
Pre is micro-prediction, Macro Pre is macro-prediction,
Micro Re is micro-recall, Macro Re is macro-recall, Macro
Av is macro-average, Co is coverage, RL is Ranking Loss,
AP is average precision, OE is One Error.

4.2 Public dataset

The main application areas of public datasets are media,
biology, text, image, and chemistry, etc. Selected datasets
can be downloaded from these three Web sites: http://mulan.
sourceforge.net/datasets-mlc.html, https://www.csie.ntu.edu.

@ Springer

tw/~cjlin/libsvmtools/datasets/ and http://www.uco.es/kdis/
mllresources/. In domain, there are many relevant datasets,
mainly described as follows:

Multimedia: Birds cover audio data. Cal500 Contains
information about music clips. Emotions covers data about
music clips with emotional labels. Mediamill covers data
about the concepts that appear in the video.

Text: Bibtex contains information about bibtex project
metadata, enron contains data about the emails of Enron
seniors, and medical, a dataset whose instances correspond
to documents with a summary of a patient symptom history.

Image: CorelSk is a data set whose examples correspond
to Corel images that have been segmented through standard-
ized cutting. Scene contains information about the scene,
which can be annotated in the following six contexts: moun-
tain, city, beach, sunset, field, and fallen leaves. Flags con-
tains information about national flags.

Biology: Two datasets are relevant to this domain. The
first is Yeast, which contains information about gene func-
tion. A second data set corresponding to biology is genbase,
which contains data on proteins.


http://mulan.sourceforge.net/datasets-mlc.html
http://mulan.sourceforge.net/datasets-mlc.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.uco.es/kdis/mllresources/
http://www.uco.es/kdis/mllresources/
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Table 9 Summary of datasets

Datasets Domain N M L LD(D)
Revl-v2 Text 804,414 500 103 0.031
IMDB Text 120,919 1001 28 0.071
Mediamill Multimedia(Video) 43,907 120 101  0.043
Tmc2007  Text 28,596 49,060 22 0.098
20NG Text 19,300 1006 20 1
Delicious  Text 16,105 500 983 0.019
Ohsumed  Text 13,529 1002 23 0.072
bibtex Text 7395 1836 159 0.015
Reuters Text 6000 500 101  0.028
Corel5k Image 5000 499 374 0.009
Slashdot Text 3782 1079 22 0.053
Yeast Biology 2417 103 14 0.303
Scene Image 2407 294 0.179
Image Image 2000 294 5 0.247
Enron Text 1702 1001 53  0.064
Medical Text 978 1449 45  0.028
Genbase Biology 662 1186 27  0.046
Birds Multimedia(audio) 645 258 19  0.053
Emotions  Multimedia(music) 593 72 6 0.311
CALS500 Multimedia(music) 502 68 174 0.15
Flags Image 194 10 7 0.485

The attributes of the data set can be counted from N:
number of instances, M: number of features, L: number of
class labels, LD (D): label density.

In order to better understand the information of the data-
sets, some datasets are introduced in detail in Table 9, the
table is listed below in descending order of the number of
instances.

5 Next direction

The existing MLC literatures based on SL and SSL have
been able to solve the classification problem very well, but
there are still some serious problems for researchers to solve,
for example, processing of complex concept drift, process-
ing of complex correlations of label, processing of feature
selection, and processing of class imbalance. The following
will analyze these issues and serve as the future research
directions of this article.

5.1 Processing of complex concept drift

Nowadays, data stream becomes more and more common
and the imperative for online algorithms for mining transient
and dynamic data is becoming more and more evident [135].
At present, there are few MLC algorithms to solve concept

drift, which makes concept drift a worthy research direction.
Since there are various types of concept drift, such as grad-
ual drift, abrupt drift, repeated drift, etc., how to effectively
detect concept drift has become an urgent challenge. Block-
based and incremental update strategies are widely used in
single-label algorithms and have achieved good results. The
research group will decide to convert it into a binary clas-
sifier using BR method. The algorithm based on block and
incremental update strategy is used to detect concept drift.

5.2 Processing of complex correlations of label

Existing classification methods simply consider the corre-
lation between labels, but some labels have very complex
relationships with each other. Some labels within a data-
set have bidirectional relationships and multiple periodic
dependencies. For example, the prediction of the “beach”
category depends on the “city” value, while the prediction of
the “city” category depends on the “beach” value [35]. This
makes the correlation between labels important for the study
of MLC problems under SL and SSL. Many algorithms only
partially consider the complex label correlation problem,
and effectively considering the label correlation can improve
the classification performance.

5.3 Processing of feature selection

Feature selection is the process of data pre-processing. Algo-
rithms can reduce complexity and improve prediction accuracy
through feature selection. In general, the presence of redun-
dant or irrelevant attributes may cause other problems such as
poor classification performance and may have high compu-
tational and memory storage requirements [101]. Multi-label
algorithms based on SL and SSL select a subset of features
that contain highly relevant and non-redundant features can
filter out redundant features to a large extent. Currently, the
most basic feature selection methods can be broadly classified
as packing, embedding, and filtering methods. However, in
general, they must collect the complete set of features before
feature selection starts. This has some limitations because in
reality many features are dynamically changing. In view of
this feature, online feature selection methods can be used to
deal with the multi-label problem and solve the feature selec-
tion problem.

5.4 Processing of class imbalance

Most multi-label datasets have a serious class imbalance,
which will seriously affect the classification performance
[20]. The class imbalance data are divided two aspects: on
the one hand, for a particular class label, the number of posi-
tive instances is significantly less than the number of nega-
tive instances. On the other hand, for a particular instance, the
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number of relevant labels is usually less than the number of
irrelevant labels [40]. Traditional classifiers are more suitable
for the classification of balanced data, because the classifica-
tion performance will decline sharply when classes are imbal-
anced in the multi-label data. Therefore, it is important to take
SL and SSL as the next step to deal with the class imbalance
problem.

6 Summary

This paper introduces the existing MLC algorithms based
on SL learning and SSL. At the same time, it summarizes
algorithms of practical application fields such as multi-
label image and text classification, and summarizes the
involved algorithms from multiple aspects through images
and tables. Then the evaluation metrics and public datasets
of multi-label are briefly introduced. Finally, we propose
the next research directions based on the current chal-
lenges faced by MLC.

By reviewing supervised and semi-supervised learning
algorithms for multi-label classification, we can under-
stand that more and more algorithms consider the cor-
relation between labels and it can improve the classifica-
tion performance of the algorithms in supervised learning
algorithms. Semi-supervised learning algorithms are sig-
nificantly more important when there are labeled and unla-
beled data in the dataset. The inductive methods are opti-
mized for the classification model, while the transductive
methods are optimized directly for the prediction. Multi-
label classification algorithms can be applied in many real
scenes, mainly images and text. The image field is mainly
divided into medicine and remote sensing, and the text
field is mainly divided into emotion and medical biology.
If an algorithm considers only one evaluation metric alone
it may not yield as good results as another metric, but
this does not mean that the metric has no role at all in the
evaluation and it can be chosen to be used in combination
with more sensitive evaluation metrics. In general, multi-
ple evaluation metrics should be provided when measuring
algorithm performance, rather than allowing performance
to be determined by a single evaluation metric. With the
rapid development of big data, more and more data are
generated in our daily life, multi-label classification algo-
rithms are becoming more and more important, but they
also face many challenges. We can continue to study the
problems of complex concept drift, complex label relation-
ships, feature selection and class imbalance.
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