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Abstract

Multidrug ABC-transporters are highly polyspecific in their substrate recognition pattern
and influence the pharmacokinetics of a broad variety of structurally diverse compounds.
Thus, prediction of ABC-transporter substrate properties of compound libraries is of
major interest. In this study, we use k-nearest neighbor (kKNN) classification in
combination with five different feature subset selection (FS) algorithms to create
predictive models for classification of ABCB1, ABCC1, and ABCG?2 substrates. Our
results show that FS methods that incorporate the classification algorithm give the best
results and contain only a small subset of descriptors. For ABCB1 and ABCG2 cross
validated accuracies of higher than 80% were achieved. The interpretation of the best
performing feature subsets showed that descriptors consisting of simple counts as well as
of projections of physicochemical properties on subdivided surface areas have highest

contribution to the models.

1 Introduction

ATP-Binding-Cassette (ABC) transporters represent a
ubiquitous family of membrane-bound proteins being
mainly responsible for conducting chemo-defence mecha-
nisms by extruding xenobiotics out of living cells [1]. Thus,
the ABC-transporters ABCB1 (P-glycoprotein), ABCG2
(MXR, BCRP), and ABCC1 (MRP1) confer a multidrug-
resistant phenotype to cancer cells [2]. Furthermore, they
are expressed in various tissues and thus influence absorp-
tion and distribution of a broad variety of structurally and
functionally unrelated compounds [3]. In light of this in-
creasing knowledge on the importance of ABC-transport-
ers for bioavailability of candidate compounds prediction
of potential substrates is of major interest in the early drug
discovery phase [4].

Selecting the most relevant descriptors (features) re-
flecting the relationship between chemical structure and
biological activity is one of the striking challenges in li-
gand-based design [5]. Roughly, feature subset selection
(FS) algorithms can be categorized into two distinct
classes: filters and wrappers. Filter methods are fast and
classifier-agnostic, i.e. they do not rely on the performance
of a specific classifier. Some of the filter methods consider
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interaction effects among variables and therefore return a
selected feature subset, whereas others perform only fea-
ture ranking according to the individual predictive power
of the respective descriptor. For ranking methods, an addi-
tional heuristic (e.g. selection of the n-top ranked features)
has to be performed to yield a final subset. Wrappers are
feedback methods, which rely on a specific classifier to
evaluate the quality of a set of features. Thus, wrappers
can also be seen as a feature subset selection method.
Previously we were able to show that a different kind of
data pre-processing technique, namely principal compo-
nent analysis (PCA) can be successfully used as dimen-
sionality reduction technique to classification of ABCB1
substrates by computing linear combinations of the origi-
nal attributes and using them for classification. However,
our results showed that classification performance with
PCs is highly unstable and depends heavily on the method-
ology applied to calculate eigenvalues and eigenvectors
[6]. Moreover, PC loadings do not always reliably indicate
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which variables are the most relevant ones [7, 8]. In this
study we examine the performance of different FS meth-
ods that perform either feature subset selection or feature
ranking, rather than reducing the input space by linear
combinations of these.

2 Methods

2.1 Data Sets

Data sets for ABCB1, ABCC1, and ABCG?2 substrates
have been obtained from the work of Szarkacs et al. [9].
Potential advantages of using these data for constructing
in-silico models over certain other data sets (mostly com-
piled from different literature sources) are that there are
no inter-laboratory differences in the measurements and it
provides chemical information and activity of more than
1400 compounds for all 48 human ABC-transporters.
These screening data contain Pearson’s correlation coeffi-
cients of the mRNA levels of the respective transporter
and the cytotoxicity of a compound over a panel of 60 tu-
mor cell lines In other words, compounds which give a
negative correlation over 60 different cancer cell lines be-
tween transporter expression (determined as mRNA lev-
el) and their “intrinsic” cytotoxicity (the higher the expres-
sion of the transporter the lower is the toxicity of the com-
pound)can be regarded as being transported by the trans-
porter, whereas compounds showing no correlation be-
tween these two parameters are not regarded to interact
with the protein. In this study we assign compounds with
correlation coefficients lower than —0.3 to be substrates
and those which show no correlation between toxicity and
transporter expression (—0.02<r<0.02) to be nonsub-
strates. This procedure yields a set of 240 (110(45.8%)
substrates and 130 (54.2% ) nonsubstrates) compounds for
ABCBI, 227 (124 (54.6% ) substrates and 103 (45.4% ) non-
substrates) compounds for ABCC1 and 198 (94 (47.5%)
substrates and 104 (52.5% ) nonsubstrates) compounds for
ABCG2.

2.2 Structure Preparation and Molecular Descriptors.

Chemical structures were cleaned from counter ions, and
hydrogens and lonepairs are added using the MOE2007.09
[10] wash routine. PEOE partial charges are assigned to
each structure. Minimization was carried out using the
MMFF99x forcefield. The descriptor classes used in this
study cover the collection of all available 2D descriptors
contained in the MOE software environment. We have
discarded those descriptors that reflect only filter types
(e.g.: number of leadlike-violations). In total we utilize 179
descriptors.
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2.3 FS Algorithms

The five different FS techniques considered here embody
one unsupervised subset selection method (RM), two filter
ranking procedures (IG, ReliefF), one filter subset selec-
tion technique (CFS), and one wrapper for the kNN classi-
fier (kNN-wrapper).

RM: The RM criterion, as proposed by McCabe [11, 12],
is a proximity (or similarity) measure that uses the concept
of matrix correlation of the PC matrix and the p-optimal
feature subset of the original matrix. Matrix correlation is
defined as the cosine between two n x p matrices [12]. This
cosine origins from dividing the inner product of two ma-
trices (which is calculated similarly to the “usual” inner
product of two vectors) by the norm induced by this inner
product. According to this, the RM coefficient represents
the cosine of the PC matrix of the original matrix and a se-
lected feature subset of the original data matrix. This fea-
ture subset is selected by a genetic algorithm as search
heuristic. The genetic algorithm utilizes the RM criterion
as fitness function to identify the global optimal subset
[13].

Information Gain (IG): 1G, also known as Kullback-Lei-
bler divergence, originally used to compute splitting crite-
ria in decision tree algorithms, is often applied to find out
how well each single feature separates a data set [14]. It
can be seen as a supervised analogue of Claude Shannon’s
information theoretical entropy calculation. The relevance
of each attribute is measured in terms of entropy reduc-
tion. The underlying theory of this algorithm is to elimi-
nate those descriptors whose value distributions are rela-
tively random across the class labels, i.e., have only a small
entropy. A drawback of this filter-ranking method is that
each descriptor is evaluated independently of the context
of other descriptors.

ReliefF: The ReliefF algorithm, as introduced by Kira
and Rendell [15, 16], is a ranking method which, utilizes
instance based learning to determine a relevance weight
for each descriptor. Each of these weights reflect the de-
scriptor’s ability to discriminate between the classes. The
output of this method is a ranked quality weight for each
feature in the range [—1,1].

Correlation-based Feature Selection (CFS): Contrary to
IG and ReliefF, CFS as introduced by Hall [17] is a filter
method that performs feature subset selection. The result-
ing feature subset contains features that show a high de-
gree of correlation with the class label (i.e., they are sup-
posed to be predictive of the class label), while having a
low degree of intercorrelation (i.e., are not supposed to be
predictive of each other).

kNN-Wrapper: Contrary to the methods above, wrap-
pers incorporate the machine learning algorithm in the FS
process, rather than being independent of it [18]. Wrap-
pers, generally, tend to achieve better classification results
than filter methods based on the fact that they are tuned
towards the classification algorithm and its training data.
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However, they tend to be much slower than filters because
they must repeatedly call the induction algorithm. In our
case, the resulting feature subset from a wrapper relies on
the performance of the kNN algorithm evaluated by 10-
fold cross validation.

2.4 Classification Algorithm

For comparing the effectiveness of our FS methods, we ap-
ply kNN classification modeling. A 10-fold cross validation
is carried out to determine the performance of the differ-
ent models. Each data set containing the features selected
by the respective FS method is randomly split into 90%
training compounds and 10% test compounds. A kNN
model is constructed on the selected 90% training com-
pounds and the 10% test compounds are predicted. This is
repeated 10 times. It is noteworthy to mention, that sam-
pling is done without replacement in order to assure that
each compound is one time in the test set and the remain-
ing nine times in the training sets. Additionally, we used Y-
randomization to estimate the relationship between the
derived feature subsets and the binary biological activity.
For this, we randomly split our data sets into 90% training
and 10% test set and permuted the class label of the train-
ing set. Consecutively, a kNN model was built on this data
set of the selected features for each method and this per-
muted activity. This procedure was necessary since kNN
modelling has no intrinsic training step (kNN is a ‘lazy’
learning method or ‘instance-based’ learning method,
which does classification in the same step as learning). Af-
terwards, this model was used to predict the class label of
the remaining 10% test compounds. This was repeated for
100 times and classification results were averaged for each
method and each data set. The overall classification accu-
racy (given in percent) was calculated as: ((true positives +
true negatives)/all compounds) x 100.

2.5 Software

The R software package [19] was used to generate the RM
subsets (function genetic in the subselect package) as well
as for generating the 2D radial visualization plots (func-
tion radviz2d in the dprep package). The Y-randomized
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training sets for each data set were generated using an in-
house R script. All other FS methods as well as the classifi-
cation were performed using the WEKA3.5.8 software
[20].

3 Results and Discussion

3.1 Comparison of FS Methods

We compared five different FS algorithms with respect to
their classification accuracy in 10-fold cross validation runs
as well as in 100 replicates of Y-randomization. Further-
more, we compared the derived models also in terms of
the numbers of descriptors. Since classification was done
on basis of kNN we first elucidated the optimal value of k.
For all data sets it is shown that k=1 retrieved the best re-
sults (see Supplementary Information SI 1). Therefore, the
results in Table 1 report classification with k=1.

From Table 1 it can be seen that the best models in
terms of %-classification accuracy are derived by the
wrapper FS methodology with correct classifications of
85.6% for ABCBI1, 72.0% for ABCCI1, and 88.1% for
ABCG?2 in 10-fold crossvalidaton. Comparing these kNN
classification results for ABCB1 with previously published
results with kNN learning on higher dimensional data sets
[21] demonstrates the applicability of our models. Our
models also show a relatively low classification accuracy in
Y-randomization, which further highlights the information
content of the selected features. Additionally, the models
contain only a small number of descriptors (10-12) for all
three targets. The unsupervised method (RM) showed the
poorest classification performance for the three data sets.
The ranking methods IG and ReliefF gave similar classifi-
cation results, but the best models retrieved with the Re-
liefF method contained a smaller number of descriptors
(see Supplementary Information SI2). However, ReliefF
also showed a similar performance for Y-randomization as
for cross-validation (especially for ABCC1), which renders
this method questionable for this application. The CFS al-
gorithm showed a medium performance among the FS
methods used.

Table 1. Classification performance expressed as classification accuracy for the three data sets and the five FS methods. Best classifi-
cation results are shown in bold letters, worst results are underlined; ACC =classification accuracy, 10 x CV =10-fold cross-validation,

Yrand = Y-randomization, #descr =number of descriptors.

ABCBI1 ABCC1

ABCG2

ACC (10xCV) Yrand (test) #descr. ACC (10xCV) Yrand (test) #descr. ACC (10x CV) Yrand (test) #descr.

RM 63.54 54.55 7 57.66
1G 75.42 59.09 90 62.11
RELIEF 80.83 72.73 54 65.11
CFS 74.6 36.36 15 59.44
WRAPPER 85.57 45.46 12 71.96

34.78 9 44.76 55.22 2
47.83 54 76.91 50.69 72
65.22 18 76.56 55.36 18
52.17 3 79.07 70.69 11
39.13 10 88.14 64.55 11
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Since the best models were obtained when applying the
kNN-wrapper algorithm, we also examined the classifica-
tion performance of the three feature sets with respect to
other classification algorithms such as support vector ma-
chine and decision tree. For the ABCB1 and the ABCG2
data set classification accuracies of 75% to 79% are ob-
tained. For the ABCCI1 set classification results are worse,
but still comparable to the kNN results. This suggests that
the obtained feature sets might also be used successfully in
the context of other machine learning systems. For details
see Supplementary Information SI3.

A

chil_|

PEOE_VSA_PPOS

SlogP_VSAS

3.2 Interpretation of Wrapper Selected Feature Subsets

For the three ABC-transporters the following descriptors
have been selected by the wrapper method:

ABCBI: apol, chi0_C, chiOv_C, chil_C, rings, PEOE_V-
SA-5, PEOE_VSA_POL, PEOE_VSA PPOS, SlogP_V-
SA0, SMR_VSA2, TPSA, opr_brigid.

ABCCI: a_count, a_hyd, chily,
PEOE_VSA +3, PEOE_VSA +5,
PEOE_VSA-6, Q_VSA_PNEG, vsa_acc.

opr_nring,
PEOE_VSA-+4,

a_hyd

Figure 1. A-C: Radial visualization of the kKNN-WRAPPER selected descriptors. Classes are encoded as follows: circles =sub-

strates/actives, squares =nonsubstrates.
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ABCG2: a_count, a_hyd, a_nC, a_nH, chilv, SlogP_V-
SALl, SlogP_VSA2, SlogP_VSAS, SMR_VSALI,
SMR_VSAG6, VDistMa.

From this list of selected descriptors it can be deduced
that simple atom counts as well as a description in terms of
subdivided surface areas (VSA) are in general good means
to describe substrates and nonsubstrates of ABC-trans-
porters. Interestingly, for ABCB1 and ABCG2 VSA-de-
scriptors reflecting lipophilicity and size (SlogP_VSA and
SMR_VSA) are selected, whereas for ABCC1 the domi-
nant class of VSA-descriptors is the partial charge class
(PEOE_VSA). The three descriptor sets are graphically
visualized in a 2D-radial visualization in Figure 1A-C,
which represents a nonlinear projection of the attribute
space with the attributes shown along the perimeter of the
circle onto two dimensions. Classes are specified by circles
(active/substrates) and squares (inactive/nonsubstrates).
For details on this visualization technique see [22].

The graphs show that for ABCB1 and ABCG2 a good
separation of the two classes is achieved using the wrapper
selected attributes. Maximum class separation is consid-
ered to be one of the striking attributes of a feature subset.
The results in Figure 1A — C illustrate the class discriminat-
ing power of the selected subsets. The interpretation of
Figure 1A highlights that substrates of ABCB1 have high-
er values for SMR_VSA2 and SlogP_VSAS and the non-
substrates show a higher number of rigid bonds (Oprea’s
rigid bond count — opr_brigid), polarizable atoms (a_pol)
and higher values for partial charge descriptors (PEOE_V-
SAPPOS, PEOE_VSA_POL). The importance of lipophi-
licity for ABCBI1 substrates has already been mentioned
in other studies [23, 24]. From these results, a reduction of
lipophilicity as well as an increase in the number of rigid
bonds might be a promising strategy to avoid ABCB1 con-
ferred drug-transport. For ABCG2 (Fig. 1C) SMR_VSA1
and SMR_VSAG6 are the dominant descriptors for the ac-
tive class, whereas the inactive class shows higher values
for SlogP_VSA1, SlogP_VSA2, and a_hyd. For the
ABCC1 set (Fig. 1B) the separation is only moderate,
which is in convergence with its weak classification perfor-
mance. However, the nonsubstrates seem to be more rigid,
which is reflected in Oprea’s ring count descriptor.

4 Conclusions

In this paper we concentrated on the classification perfor-
mance of five different feature subsets for the three ABC-
transporters ABCB1, ABCC1, and ABCG2. Our results
show that the wrapper method outperforms the other FS
methods. Additionally, a comparison of the three feature
sets retrieved for ABCB1, ABCC1 and ABCG?2 highlights
certain general properties (e.g. size, partial charge, rigidi-
ty) of ABC-transporter substrates and nonsubstrates that
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might be useful in shaping chemical libraries to avoid
ABC-transporter related ADMET problems.
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