
HARAM: a Hierarchical ARAM neural network for
large-scale text classification

Fernando Benites, Elena Sapozhnikova
Department of Information and Computer Science,

University of Konstanz

{Fernando.Benites,Elena.Sapozhnikova}@uni.kn

Abstract—With the rapid development of the web, the need
for text classification of large data volumes is permanently
growing. Texts represented as bags-of-words possess usually very
high dimensionality in the input space and often also in the
output space if labeled with many categories. As a result, neural
classifiers should be adapted to such large-scale data. We present
here a well scalable extension to the fuzzy Adaptive Resonance
Associative Map (ARAM) neural network which was specially
developed for high-dimensional and large data. This extension
aims at increasing the classification speed by adding an extra
ART layer for clustering learned prototypes into large clusters.
In this case the activation of all prototypes can be replaced
by the activation of a small fraction of them, leading to a
significant reduction of the classification time. This extension can
be especially useful for multi-label classification tasks.

I. INTRODUCTION

With the rapid development of the web, the amount of elec-
tronic documents in digital libraries is dramatically increasing
nowadays. Consequently the need for text classification of
large data volumes is ever increasing. The high dimensionality
of such data, concerning both input and output spaces, is
one of the most important issues in modern text classification
problems. To cope with this challenge, the scalability of exist-
ing classification algorithms should be improved. We present
here an extension of fuzzy Adaptive Resonance Associative
Map (ARAM) [1] – an Adaptive Resonance Theory (ART)-
based neural network. It aims at speeding up the classification
process in the presence of very large data.

ART neural networks belong to the class of competitive
learning networks with a growing structure [2], creating new
prototypes on-the-fly during the learning phase. The most im-
portant advantages of Fuzzy ART networks, Fuzzy ARTMAP
(FAM) and ARAM, are their fast learning ability inherent
in ART [3], simple extraction of the learned fuzzy rules,
the ease of parameter setting, debugging and implementation.
Their prototypes represent input data by multi-dimensional
hyperboxes. The hyperbox size is bounded above by a user-
defined threshold parameter ρ called vigilance. The greater
the vigilance, the smaller the hyperboxes and more specific
the prototypes. There is however no hint how to set this
parameter in a certain classification task. Moreover the in-
fluence of vigilance on the hyperbox size depends on the
dimensionality of a dataset because of the definition of the size
as the sum over all dimensions (see Eq. (7)). Thus the higher
the dimensionality, the finer should be tuned the vigilance.
Consequently, increasing this parameter by only 0.00001 can

dramatically increase the number of prototypes in a high-
dimensional setting.

It is known that the efficiency of ART networks can
decrease due to building too many prototypes, which is a
problem of category proliferation [4]. One of its reasons can
be overtraining on large and overlapping data [5], [6], in
particular due to the match tracking procedure [3]. In this
case, the growth of the network can become a problem at
the test stage because for each sample to be classified a huge
number of prototypes must be activated. For example, in an
earlier experiment on single-label text classification [7] ARAM
created more than 2700 prototypes after training on only 7770
documents with ρ = 0.8.

The problem becomes even more pronounced in multi-
label setting because multi-label classifiers ML-FAM and ML-
ARAM [8] process each multi-label as a unique class that leads
to more invocations of the match tracking procedure. Although
both classifiers showed performance superior to the non-neural
multi-label classifiers [9] and comparable with other neural
multi-label classifiers (see Table IV), we expect deceleration
of the classification process for multi-label and large datasets.

To solve the problem of activation of many prototypes,
spatial indexing methods such as k-d Tree [10], R-Tree [11]
or X-Tree [12] can be applied. The idea of these methods is the
hierarchical organization of data into a tree structure using the
feature values in order to accelerate access to it. However these
methods are either too inaccurate for classification or slower
than the activation of all prototypes of ML-ARAM, especially
in classification problems with thousands of features like text
mining.

For this reason, we propose clustering learned prototypes
by means of additional unsupervised Fuzzy ART layers. If the
cluster size is chosen sufficiently large, each cluster can then
be responsible for multiple prototypes, providing a hierarchical
structure with a few clusters. Thus the choice of one cluster
will lead to activating only a subset of all prototypes and
accelerating the classification process. In this way Hierarchical
ARAM (HARAM) can decrease the number of activated
prototypes for each test sample in order to shorten activation
time as compared with the standard (ML)-ARAM algorithm.

HARAM, conventional ARAM and their multi-label ex-
tensions were evaluated on popular text datasets. Obtained
experimental results were also compared with the state-of-
the-art multi-label neural classifiers from [13]. The rest of the
paper is organized as follows: After introducing HARAM in

2015 IEEE 15th International Conference on Data Mining Workshops

978-1-4673-8493-3/15 $31.00 © 2015 IEEE

DOI 10.1109/ICDMW.2015.14

847

Authorized licensed use limited to: UNIVERSIDAD DE CORDOBA. Downloaded on February 23,2023 at 17:56:16 UTC from IEEE Xplore. Restrictions apply.

Figure 1. ARAM neural network.

Section II, its multi-label extension ML-HARAM is presented
in two versions (Section III). Experimental results on a single-
label and two multi-label datasets are discussed in Section IV.
Finally, some concluding remarks are given in Section V.

II. HARAM

First of all, the basic steps of the original ARAM algorithm
are presented below, for more details see [1]. ARAM performs
incremental supervised learning of pattern pairs. It can be
visualized as two overlapping Fuzzy ART [2] modules ARTa

and ARTb consisting of two input fields Fa
1 and Fb

1 connected
through weights to a common category field F2 (Figure 1). The
network processes complement-coded [2] inputs A and targets
B by adapting existing prototypes or creating new ones, which
are stored in the weights of category nodes of the F2 layer. In
classification tasks, the target vectors usually represent class
labels, for example, in the binary form. When performing a
classification task, ARAM incrementally creates prototypes for
input patterns, and associates each prototype with its respective
class.

At the beginning of the training process, all weight vectors
W k (k = 1, . . . , N , where N is the number of category nodes,
initially N = 1) are set to unity and the nodes are said to
be uncommitted. After the presentation of A, the activation
function Tk is calculated and the winner K is chosen by the
Winner-Take-All (WTA) rule (2):

Tk(A) =
|A ∧W a

k|
α+ |W a

k|
(1)

where ∧ denotes the fuzzy AND, element-wise min operator,
and α > 0 is called the choice parameter. (This form cor-
responds to setting the contribution parameter γ = 1 in the
original ARAM.)

TK = max
{
Tk : k = 1, . . . , N

}
(2)

Then the winner choice should be confirmed by the pair of
so-called match criteria which define the minimum required
similarity between the winner’s prototype and the input at
ARTa as well as between the actual and previously learned
target at ARTb

|A ∧W a
K |

|A| ≥ ρa,
|B ∧W b

K |
|B| ≥ ρb (3)

where ρa and ρb ∈ [0, 1] are the respective user-defined
vigilance parameters for the minimum accepted similarity.

If the ARTa inequality of (3) is violated, the node K
is inhibited and the network enables another node to be
selected. This search process continues until the input is either
assigned to a committed node or codes the prototype of a
new uncommitted node. However if the ARTb inequality is
violated, i.e. the class mismatch occurs, the so-called match
tracking process is started by increasing the vigilance until
it becomes slightly higher than the the left-hand side of the
ARTa inequality for the time of the current input presenta-
tion. This ensures a correct class prediction in the regions
of potential class overlap because match tracking corrects
an erroneous prediction for a training point by raising the
vigilance and building a new smaller hyperbox of the proper
class. So, match tracking stimulates category proliferation by
creating finer nested hyperboxes of different classes mostly on
the boundaries between classes [14]. A faster alternative with a
slightly inferior classification performance would be to activate
only the prototypes of a proper class in a supervised fashion
without match tracking. Though it can lead to misclassifica-
tions in a single-label case, for the multi-label classification
it is useful because of acquiring the class information from
several prototypes [8]. This modification can accelerate the
training process significantly due to the activation of only a
fraction of the prototypes, i.e. those that possess the same class
as the training sample.

When each match criterion is satisfied in the respective
module, the learning process follows. During learning the
winner K learns to encode the input and target vectors by
adjusting its weight vectors W a

K and W b
K accordingly to (4).

W
a(new)
K = βa

(
A ∧W

a(old)
K

)
+ (1− βa)W

a(old)
K (4)

W
b(new)
K = βb

(
B ∧W

b(old)
K

)
+ (1− βb)W

b(old)
K

where βa and βb ∈ [0, 1] are learning rates, set to unity in
the fast learning mode. This process can be seen as the growth
of the hyperbox just to include a learned data point, if it is
not already included. A graphical illustration of the learning
process at ARTa can be found in Figure 2. The weight vector1

W contains the minimum point rmin and the complement
of the maximum point rmax of the respective hyperbox.
The match criterion of ARTa corresponds to bounding the
maximum size of a new hyperbox created after expansion. The
hyperbox size is calculated on the basis of the L1 norm as the
sum of the lengths of its sides:

|Rj | =|rmax
j − rmin

j | =
∑
i

((1−Wi+M,j)−Wi,j)

=M − |W j | (5)

where M is the input dimensionality. From the left part of (3)
it follows that

|W (new)| ≥ ρ|A| = ρM (6)

and correspondingly

|R(new)
j | = M − |W (new)| ≤ (1− ρ)M. (7)

1We will skip further the symbol “a” for notational simplicity.

848

Authorized licensed use limited to: UNIVERSIDAD DE CORDOBA. Downloaded on February 23,2023 at 17:56:16 UTC from IEEE Xplore. Restrictions apply.

0

1

1

Figure 2. The hyperbox learning process.

Figure 3. Cluster growth

That is a higher vigilance leads to smaller hyperboxes, but
the choice of appropriate values for the vigilance parameter
depends on the dataset dimensionality. Even a very small
change of the ρ value multiplied by a large number of
dimensions like 50000 causes a high variation in the maximum
hyperbox size.

HARAM is based on the algorithm described above, but
has several important differences aimed at accelerating the
classification process. First, only committed nodes take part in
the competition in our implementation. In contrast to original
ARAM where one uncommitted node is allowed to compete
with committed ones, a new node is added only if needed. This
helps prevent category proliferation. The second difference is
an additional preparation step which takes place after the train-
ing process is completed. At this step, higher layers forming
the clusters of learned prototypes are organized. They reduce
the number of activated F2 prototypes2 at the classification
step. During clustering of prototypes, their identifiers are stored
for a rapid access from the top. In order for this to happen,
the learned F2 prototypes are taken as input for training of
an additional unsupervised Fuzzy ART layer. The winner is
found similarly to (1) by choosing the cluster with the highest
activation:

T c
k (W

a
j) =

|W a
j ∧W c

k|
α+ |W c

k|
(8)

here W c
k is the weight vector of the cluster and W a

j the

2We differentiate here between F2 prototypes, which are coded in the
category nodes and connected to labels, and clusters of higher layers which
are not a part of the ARAM network.

prototype of the network. An important difference is that here
not a single complement-coded input point but two hyperbox
points (rmin and a rmax) coded in W a

j are used. So, in
contrast to Eq. (1), both points influence the activation value
and thus creating compact clusters is rewarded.

The growing process of a cluster C after learning a
prototype P is depicted in Figure 3. The corresponding
hyperbox with the corner points (rmin, rmax) becomes in-
corporated in the cluster C = (cmin, cmax) changing it to
Cnew=(cmin

new , c
max
new). Then if Cnew is the winner of the higher

layer, the prototype P is activated at F2 along with all other
prototypes involved in the creation of C.

The Fuzzy ART clustering layer usually has a vigilance
value (which we denote as Clustering Vigilance (CV)) lower
than the value chosen for ARAM training. In principle,
clustering can be performed in several layers, using proto-
types/clusters from a lower layer as the input for the next
layer and decreasing the vigilance parameter for each new
higher layer. Hierarchical activation starts then by activating
the clusters of higher layers and goes down, only activating
the prototypes of the lower layer which belong to the winner
at the higher layer. So, first the clusters of the highest layer are
activated by a test sample. The winning cluster propagates the
pointers to the prototypes to be activated at the layer below.
After activating only the selected prototypes of this layer, new
pointers are restored from the winning cluster and the process
continues until the lowest layer F2 is reached, from which the
corresponding classification labels can be taken.

Although this builds a hierarchy of prototypes, the gain
of speed decreases significantly with each additional layer
and accuracy hardly changes at all. Several experiments not
included in this paper due to the space constraints showed that
besides the F2 prototype layer, it was the first cluster layer that
influenced the accuracy of the classifier most. For this reason
only one cluster layer will be used in the experiments below.

The clustering process creates larger (and most importantly,
fewer) clusters and is thereby able to accelerate the access to
the prototypes. In order to maximize the gain of speed, one can
use a simple rule of thumb as a guiding value for the optimal
number of clusters: Assuming the equal distribution of pro-
totypes in clusters, this value can be obtained by minimizing
the sum of the number of activated clusters and the number
of activated prototypes in the winning cluster which gives the
square root of the prototype number.

Although the described process is performed offline, it can
be modified in order to retain the valuable online learning
property of ART. It is also possible to train the clusters at
the same time as the prototypes directly on training samples.
However this would cause a much longer training time.

Two potential issues of HARAM, which are related to
each other, are the problem of neighborhood and overlapping
clusters. In the first case, if a data point is not covered by
any prototype, it can still be covered by a cluster. A simple
way to visualize this is if we start from a rectangle (Cluster
C) and divide it equally into four subrectangles, as can be
seen in Figure 4. Two of them, Pi and Pj , on the opposite
corners represent prototypes and the other two empty spaces
were aggregated by the training process. If a point A lies in
these empty spaces farther away, near the border, there might

849

Authorized licensed use limited to: UNIVERSIDAD DE CORDOBA. Downloaded on February 23,2023 at 17:56:16 UTC from IEEE Xplore. Restrictions apply.

Figure 4. Potential issue of HARAM

be another prototype Pk just outside of C which could be
closer to this point than both prototypes in C. So the cluster
may create borders between the prototypes which may not be
optimal. The other issue, which can also be seen in Figure
5, concerns when a point lies in the region of overlap, where
multiple clusters have the maximum activation value at the
same time. To overcome both problems we propose to use not
the WTA rule of Eq. (2), but three most activated clusters.
Thus, in the shown example prototypes of clusters 2 and 4
would be also activated.

Figure 5 shows HARAM handling the well-known problem
“the circle in the square” [3]. The ARAM network trained
with a vigilance of 0.95 had 125 prototypes. In the upper
layer only 5 clusters were created with the CV set to 0.8. In
the classification phase with the sample (0.5,0.5), the middle
cluster (number 3) won in the higher layer. It contained 30
prototypes that should be activated plus the 42 of its both
neighbors. In total, only 77 prototypes from both levels were
activated while classifying the sample, taking only about 60%
the effort of the standard ARAM network.

This approach differs from the approaches using a hierar-
chy of ART layers to obtain multi-resolution clustering, e.g.
[15], because its main goal is to speed up classification and
especially multi-label classification.

III. ML-HARAM

Another important difference between HARAM and
ARAM concerns their multi-label versions. ML-ARAM [8]
increases its precision by relaxing the WTA rule, allowing
multiple prototypes to be involved in the label-ranking calcu-
lation. For that it first calculates the difference in activations
between the most activated and the least activated prototype.
Then this difference multiplied by a user defined ML-threshold
is utilized to select a fraction of highly activated prototypes for
creating label-rankings. For more details of this process and the
subsequent transformation from label-rankings to multi-labels
see [8]. In HARAM instead of activating all prototypes, the
lowest activation value is estimated in the preparation step:
The prototypes are used again for the activation3, as in the
clustering process, but this time only the least activated node
is selected for each prototype. The least activated prototype

(P l
i = arg min

k

|W a
i∧W a

k|
α+|W a

k|) is chosen and its identifier is saved

as an additional attribute of the prototype (Pi) used as input,
i.e. we discover the prototype which is the least activated for

3Here hierarchical activation with clusters and then prototypes can be used
to speed up the process.

the given input prototype. The lowest activation value among
all neurons can then be estimated from P l

i , given a certain test
sample for which Pi has the highest activation. This strategy,
Precalculation of least Activated (PA), is imprecise but very
fast. However the error is low comparing with the use of a
precise value of the least activated prototype.

IV. EXPERIMENTS

We present here a comparison of (ML)-HARAM with
(ML)-ARAM and other classifiers. We implemented the algo-
rithms in Python with the Scipy package. The sparse version,
which is well-suited for very large data both concerning its
execution time and memory consumption, is implemented
in cython. We also compared the “full” and the “sparse”
versions of HARAM to demonstrate that the float precision
can influence some results, and how they perform in execution
time against each other. On the multi-label datasets we com-
pared additionally the standard algorithms with the accelerated
algorithms implemented without match tracking (denoted by
the suffix wom).

For comparison we also used a linear SVM classifier [16]
as implemented in http://www.csie.ntu.edu.tw/∼cjlin/liblinear.
Being fast classifiers, SVMs still have several disadvantages,
e.g. black-box nature and only offline learning. Additionally,
in multi-label classification tasks they use the Binary Rele-
vance (BR) approach [17] and therefore their parallelization
is limited. For the datasets 20 Newsgroups and Reuters we
used L2-regularized logistic regression (primal) kernel, but for
the EUR-Lex dataset – L2-regularized L2-loss support vector
regression (dual), in order to achieve the results comparable
with those of [13].

A. Data

First, a single-label text classification was performed on the
20 Newsgroups dataset downloaded from http://qwone.com/
∼jason/20Newsgroups/ in January 2015. We used the bydate
version [18]. The data from 20 topics was already preprocessed
and converted in 53975 tf-idf features. We further normalized
it column-wise and splitted in a training set containing 11269
samples and a test set with 7505 samples.

We also used the multi-label dataset RCV1-v2 in two
versions. The first version is referred here to as Reuters-
Small and based on our own preprocessing of the original
data provided by http://trec.nist.gov/data/reuters/reuters.html.
We used 5000 most frequent features (preprocessed with stop
words removal and stemming) in the training set, with tf-idf
weighting and normalized them column-wise separately for
training and test data. We splitted the original training data
into a training and a test set with the ratio of 9:1, e.g. about
21k training samples and 2k test samples.

The second version of the RCV1-v2 dataset is called
Reuters-Large dataset later on (http://www.csie.ntu.edu.tw/
∼cjlin/libsvmtools/multilabel/ of December 2014) and has
47236 features, 23149 test samples, 781265 training samples
and 103 classes. We also swapped the training set and the
test set (about 780k for training and 23k for test) as in
[13] in order to achieve result comparability. Their results
are also similar to those of http://www.csie.ntu.edu.tw/∼cjlin/
libsvmtools/multilabel/.

850

Authorized licensed use limited to: UNIVERSIDAD DE CORDOBA. Downloaded on February 23,2023 at 17:56:16 UTC from IEEE Xplore. Restrictions apply.

0.0
0.2

0.4
0.6

0.8
1.0

0.0

0.2

0.4

0.6

0.8

1.0

0

1

2

3

4

5

6
7

8

9

10

1112

13

14

15

1617

18 19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38
39

40

41

42

43

44

45

46

47

48

49

50

51

52
53

54

55

56

57

58
59

60

61

6263

64

65

66

67

68

69

70

71
72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

9798

99

100
101

102
103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

9999999999999

1311333333333131

17171

20002222

212122

222222222222

33333333

2424242222 333333

3131311333

2322223

366666333333363666333363666633

393939333333939333

40404044444

4242424444

44443334444443443

44444444444

45454554544

505

555555555555

5959959959595995555959

262222622226222622

65

69696999699

7070707070000
3333

73737333737377337

744

7676767777

808080808080008080
888888888828282888888

888888

87887877887788

9599995999959999999

96999969696969966696

979797979799997

00000000
111111111

102101021
103103103

10410410411 400

10551055510555511010

333333333333333311111111111 2222232323232323232322222222222333223331115111515151551 515515131333131331111111111111113333111331313222222222223232332323332323222222222222222233333222222

1201111200120120111120112011 0117
474747474747474747477

2222

124124124124124124124111

122722727771

31321111313132222222331311133321 1111111111111111111111111133333333333333333311333333333

20202000

222222

33323232333333333333323333

5555555555

30003030303000300033

111111

4444444444

44444444

5050555055565655555

0000000

5555558585858555555555

000
10111010101011

22222
22222

133

134

18
9

10

11

13

1617

20

21

22

23

24

25

28

30

31

32

36

39

40

42

43

44

45

47

50

53

55

59

61

62

64

65

66

67
69

70

73

74

76

78

80

81

82

85

87

95

96

97

100
101

102
103

104

105

107

113115

120

122

124

125

127

132

51

119

888
999999999999

101010

111111

131313333333333

1717

202020

22
322232323232

24424

252525252525

2323222

3636363636

393939333333

0440400404004040

424242424242

444444

454545

555555555555

5959959595959

616161

262222622226222

656

676767
696969

737373

74

767676

787878

808080808080

818181

888888888888888

878787

959999599995999

969999696

979797

100100100

103103103

104104104

107107107

333333311111111 222223232323232323232222222221115111513133313133111111111111111112222222232323332323332323322222222222222

120111120120120120111120112017
474747474744474747474

122111221112211

12444124441244412444124441244412444

1321111313132222222111111111111111111111111
33333333333311111111111111111111111111111111111111333333333

191919191919999999999999999999

181818

111

666

777

515151

111111

2. Layer

1. Layer

1 2 3 4 5

Figure 5. HARAM

We further downloaded the EUR-Lex dataset from http://
mulan.sourceforge.net/datasets-mlc.html, more specifically the
one with Eurovoc labels for comparison with the results of
[13]. It consists of 19348 samples, divided into 17381 training
and 1933 test samples with 5000 features and 3993 labels
(we used just the first slice of the cross validation). We also
performed cosine normalization and removed entries which
had no labels, since they created problems while training.

The time was measured on a computer equipped with an
Intel(R) Core TM i7-2600 CPU @ 3.40GHz with 32 Gigabytes
memory and the bus running at 1.3 GHz (0.8ns). The datasets
used here were only a testbed and demonstrated the scalability
of the approach. Comparisons and extensive tests in very large
datasets would overtop the resources available for this research.

B. Performance measures

The classification performance measure in the single-label
case is accuracy which is the ratio of the right classified
samples to the total number of classified samples. For multi-
label datasets we used the F-1 measure, which is the har-
monic mean of recall and precision. It can be calculated in
several ways depending on averaging [17]. First, we used
instance-based averaging, i.e. we calculated F-1 for every
single instance and then took the mean value (denoted as IF-
1). As the second measure we utilized the micro-averaged F-
1 (denoted as mF-1), i.e. we counted how many true posi-
tives (tp), false positives (fp) and false negatives (fn) there
were for all labels in the whole test set and then calculated
mF-1= 2∗tp

2∗tp+fp+fn . Moreover the macro-averaged F-1 MF-

1= 1
Q

∑
i=1...Q

2∗tpi

2∗tpi+fni+fpi
, was used. Here Q is the number

of labels and tpi, fpi and fni are, respectively, the number
of true, false positives and false negatives for a label i.

C. Implementation

To cope with large data and to compare with fast imple-
mentations, following modification of the standard ARAM was
undertaken.

1) Sparse Activation: A general issue with Fuzzy ART
networks, is that their complement-coded normalization leads
to double-length weight vectors. So, if feature vectors possess
high dimensionality, it will cause a large memory consumption.
One way to solve this problem is to represent the feature
vectors using only the indices and values of the non-zero

features. In this case we are interested in increasing the number
of features which are equal to zero and therefore replace the
complement-coded representation of weight vectors with the
representation by the minimum and the maximum points of a
hyperbox rmin and rmax. The sparse activation TS is then
calculated by taking the minimum between an input vector
A and rmin plus the ones of the complement and minus the
maximum between A and rmax as follows:

TSk(A) =
∑
i

min(Ai,Wi,k) +
∑
i

min(1−Ai,Wi+M,k)

=
∑
i

min(Ai, r
min
i,k) +

∑
i

min(1−Ai, 1− rmax
i,k)

=
∑
i

min(Ai, r
min
i,k) +M −

∑
i

max(Ai, r
max
i,k)

Further the
∑

i min(Ai, r
min
i,k) can be calculated using only

the indices of the non-zero values in Ai and rmin
i,k , since all

other features will be zero.
∑

i max(Ai, r
max
i,k) can also be

simplified by saving the calculation of SU =
∑

i r
max
i,k , taking

into account only the cases when Ai > rmax
i,k , and replacing

the value of rmax
ki by Ai.

∑
i

max(Ai, r
max
ki) =

∑
i

rmax
ki −

∑
i∈{j|Aj>rmax

kj }
Ai − rmax

ki

This removes all but a fraction of the original calculations,
which is left to be done at each test iteration. An important
condition for the sparse activation to be faster than the standard
one is that rmax

k has (much) more non-zero features than the
input vector A.

D. Results

1) 20 Newsgroups: First, we compared the classifiers on
the 20 Newsgroups dataset. The algorithms were trained once
and run multiple times to see the difference in the test time.
As can be seen from Table I, ARAM and HARAM produced
similar results in terms of performance measures. The test time
of HARAM was significantly shorter than that of the standard
algorithm.

In Table I, the voting strategy with five voters4 increased
the performance of all algorithms (only the average time

4Each voter was trained with a different presentation order of the training
set.

851

Authorized licensed use limited to: UNIVERSIDAD DE CORDOBA. Downloaded on February 23,2023 at 17:56:16 UTC from IEEE Xplore. Restrictions apply.

Table I. RESULTS OBTAINED ON 20 NEWSGROUPS, WITH THE TEST

TIME AND TTPS: TEST TIME PER SAMPLE IN SEC. THE TEST TIME FOR

ONE NETWORK WAS AVERAGED OVER 5 TRIALS. THE TEST TIME FOR

VOTING IS THE AVERAGED TIME OF A SINGLE VOTER. THE S STANDS FOR

SPARSE. CLUSTERING VIGILANCE IS IN BRACKETS.

Classifier test time (s) TTpS Accuracy Neurons/Clusters

ARAM 4084.22±51.61 0.5442 0.733
1124

ARAMS 633.66 ±0.96 0.0844 0.733

HARAM

[-,0.8] 1589.50±146.27 0.2118 0.725 1124/8
S [-,0.8] 312.84 ±0.79 0.0417 0.725 1124/8
S [-,0.95] 160.87±1.23 0.0214 0.732 1124/26

5 voters

ARAM 3530.67±523.93 0.4704 0.740
964±147.5

ARAMS 573.69±74.48 0.0764 0.740

HARAM

[-,0.8] 1168.69±209.63 0.1557 0.734 964±147.5/8±0.4
S [-,0.8] 280.95±35.68 0.0374 0.734 964±147.5/8±0.4
S [-,0.95] 163.76±4.51 0.0218 0.740 964±147.5/ 25±1.0

values for a single voter are depicted, since voting can be
parallelized). The difference between the measured time of
multiple voters and that of running one network multiple
times comes from many factors, e.g. the garbage collection of
Python, other concurrent processes, disk usage etc. It can be
useful to see how much variation can be expected from this
implementation. The differences in the test times of ARAM
and HARAM are still so significant that such oscillations do
not have a remarkable impact on the comparison.

The sparse implementation was much faster in this ex-
periment, since the number of features in this dataset is
high (53975) and thus the sparse activation has a tremendous
advantage against the dense algorithms, between 2 and 7 times
faster, even for HARAM. For the other datasets (Reuters-Small
and EUR-Lex) with far fewer features (5000), this is not true.

An interesting issue which we left for future work, would
be to investigate how the presentation order of the learned
prototypes influences the clustering process, and therefore the
test time and accuracy.

2) Reuters: In Table II we compare ML-ARAM and ML-
HARAM as well as their sparse implementations on the
Reuters-Small dataset. We varied the CV parameter and used
the modification without match tracking (denoted as wom),
since this dataset is multi-label. Comparing the results of the
standard and modified algorithms, it is obvious that match
tracking causes too many neurons to be created without any
performance improvement. As it has been discussed earlier,
one can see that in the multi-label context it does not achieve
the goal of increasing classification performance.

The performance measures micro F-1 and instance-based
F-1 attested to similar values of ARAM and HARAM when the
CV was high. This parameter has a great impact on the perfor-
mance measures and TTpS. The simple relation higher the CV,
the higher the measures and TTpS, is mostly true. However
even with the lower CV of 0.9 and the higher vigilance for the
F2 prototypes (0.975), the performance measures and TTpS of
ML-HARAM were better than those of ML-ARAM using a
vigilance of 0.9. Furthermore, its test time was about 15 times
shorter in terms of TTpS (0.015 against 0.237).

It is important to note that applying the same vigilance
value to clustering as used for classification can still improve
performance because prototype building is controlled not only

Table II. RESULTS OBTAINED ON REUTERS-SMALL WITH 23149
SAMPLES DIVIDED AS 9/1, TTPS: TEST TIME PER SAMPLE IN SEC; THE

INDEX wom STANDS FOR WITHOUT MATCH TRACKING. VG STANDS FOR

VIGILANCE. ML-THRESHOLD WAS 0.02. VIGILANCES ARE IN BRACKETS.

Classifier [vg{,CV}] IF-1 mF-1 MF-1 TTpS Neurons/Clusters

ML-ARAM

[0.9] 0.757 0.736 0.360 0.237 5590
wom [0.9] 0.791 0.774 0.419 0.048 1553
[0.975] 0.813 0.797 0.497 0.302 7118

wom [0.975] 0.837 0.822 0.553 0.067 2230

ML-ARAM Sparse

[0.975] 0.814 0.798 0.495 0.290 7049
wom [0.975] 0.836 0.823 0.552 0.123 2230

ML-HARAM

[0.975,0.9] 0.791 0.770 0.482 0.015 7118/133
wom [0.975,0.9] 0.816 0.797 0.521 0.010 2230/139
wom [0.975,0.95] 0.822 0.803 0.542 0.014 2230/287
wom [0.975,0.975] 0.830 0.812 0.541 0.020 2230/500

ML-HARAM Sparse

[0.975,0.9] 0.787 0.770 0.473 0.023 7049/132
wom [0.975,0.9] 0.816 0.800 0.524 0.021 2230/139
wom [0.975,0.95] 0.821 0.805 0.541 0.031 2230/287
wom [0.975,0.975] 0.829 0.812 0.539 0.041 2230/500

by the vigilance parameter but also by their labels. This can
be seen from the last rows of the HARAM results. The TTpS
in such cases is still much better, about three times better.

ML-HARAM without match tracking, with a vigilance of
0.975 and a CV of 0.9 was, by comparable performance,
30 times faster than the standard ML-ARAM with the same
vigilance. Even with higher values of CV it was still up to 15
times faster and achieved better F-1 performance.

The sparse version of ML-ARAM takes about two times
longer than the standard ML-ARAM in terms of TTpS on
this dataset. It is because the number of features is relatively
small (5000) and the selected features were chosen by having a
high term frequency, causing the feature vectors to be densely
populated. With a higher number of features and sparsely
populated vectors, the sparse version would achieve better
results, as shown by the 20 Newsgroups dataset.

We also analyzed the difference between the use of a global
estimation of the least activated prototype and the precise value
of the lowest activation for each test sample. As discussed
above this value is needed to calculate how many prototypes
should be used in the calculation of rankings and then multi-
labels. Activating all prototypes and taking the explicit value
of the lowest activation led to a higher mean number of used
prototypes (1.58 vs. 1.46) as expected. This did not change the
results very much: For a vigilance of 0.975 and a CV of 0.9
the absolute difference in mF-1 was only about 0.001.

Table III summarizes the results for the Reuters-Large
dataset. Here only sparse implementations could cope with
the amount of data. The data in the full form would occupy
1.6 terabytes with single precision, whereas in the sparse
form it requires only about 240 megabytes. Using the sparse
representation, there are many ways to calculate the acti-
vation of prototypes in ART networks, since the effectivity
of the calculation depends on the assumptions made about
the sparseness of the data. The method we developed and
implemented deals quickly with large data. Further, only the
methods without match tracking were fast enough to train the
networks in a reasonable amount of time.

On the Reuters-Large dataset ML-ARAM with five voters

852

Authorized licensed use limited to: UNIVERSIDAD DE CORDOBA. Downloaded on February 23,2023 at 17:56:16 UTC from IEEE Xplore. Restrictions apply.

Table III. RESULTS OBTAINED ON REUTERS-LARGE, VIGILANCE FOR

ML-(H)ARAM WAS 0.995, ML-THRESHOLD=0.00001 (VT = NUMBER OF

VOTERS) WITH SPARSE IMPLEMENTATION. A STANDS FOR

ML-ARAMwom AND H FOR ML-HARAMwom . CLUSTERING

VIGILANCE IS IN BRACKETS.

Classifier IF-1 mF-1 MF-1 test time (s) Neurons/Clusters

A 0.820 0.800 0.592 48132.03 21863

H [-,0.8] 0.802 0.790 0.536 8528.62 21863/18
H [-,0.95] 0.780 0.762 0.516 3765.89 21863 /318

7 Cluster

H [-,0.95] 0.802 0.781 0.556 4490.40 21863 /318

5 voters

A 0.833 0.816 0.609 50782.1±34.2 22884.4±2.4

H [-,0.8] 0.826 0.811 0.579 9557.9±32.8 22884.4/22±0
H [-,0.95] 0.812 0.800 0.567 7742.7±40.2 22884.4/363.2±0.5

SVM 0.859 0.852 0.656 9589.0

Table IV. RESULTS OBTAINED ON REUTERS-LARGE AND TAKEN FROM

[13].

Classifier mF-1 MF-1

Reuters-Large

NNA 0.8385 0.6457
NNAD 0.8397 0.6404

BP-MLLTA 0.7154 0.4855
BP-MLLTAD 0.6874 0.4483
BP-MLLRA 0.7889 0.5823

BP-MLLRAD 0.7809 0.5694
BRB 0.8533 0.6842
BRR 0.8476 0.6923

has a slightly lower performance in terms of all F-measures
than SVM. The performance of ML-HARAM is even lower
but its test time is much shorter: ML-HARAM is about ten
times faster. Additionally, we can state that the classifica-
tion performance of both ML-ARAM and ML-HARAM is
consistent with the recent results of other neural networks
obtained on this dataset [13] and presented in Table IV.
The neural networks used there were variations of multi-label
Backpropagation (denoted in the table as BP-MLL) as well as
single-layer models with the elements of deep learning (NNA
and NNAD). We could also reproduce to a large extent the
binary-relevance SVM results shown there (BRB and BRR),
the minor variations are due to the parameter optimization on
a validation set which we did not perform.

One interesting result here is that with a higher CV the
network was faster but did not achieve better prediction. With
a CV equal to 0.8, 18 clusters divide about 22000 prototypes
into very large groups. Although the activation of few clusters
is fast, the activation of the prototype layer is then slow
because of roughly thousand prototypes in a cluster5. On
the other hand, with a CV of 0.95 there are 318 clusters
with roughly 69 prototypes in each cluster. This makes the
activation of the prototype layer faster and explains the time
difference of the test phases. The issue with the decrease
in classification performance is more complicated but there
is a strong indication that the clusters did not divide the
prototypes well and are so small that accessing the right cluster
might be influenced by noise. Using more clusters to gather
the prototypes to be activated can increase the probability of
accessing the proper prototypes. This can be seen from Table
III: Using 7 instead of 3 most activated clusters with CV=0.95
increases the classification performance to the level of CV=0.8
but the test time remains much shorter (about half).

5It is an estimated average value

Table V. RESULTS OBTAINED ON EUR-LEX: ML-(H)ARAM,
ML-THRESHOLD 0.0001, VG=PROTOTYPE VIGILANCE. THRESHOLD FOR

SVM WAS 0.5. VIGILANCES ARE IN BRACKETS.

Classifier IF-1 mF-1 MF-1 TTpS Neurons/Clusters

ML-ARAM

[0.975] 0.337 0.327 0.116 0.944 16572
wom [0.975] 0.355 0.355 0.118 0.704 15001
wom [0.99] 0.359 0.359 0.118 0.722 15002
wom [0.999] 0.426 0.414 0.148 0.802 16688

ML-ARAM 5 voters

wom [0.999] 0.427 0.413 0.148 0.85±0.28 16688±0.71

ML-HARAMwom vg=0.975

[-,0.975] 0.385 0.381 0.130 0.029 15001/522

ML-HARAMwom vg=0.999

[-,0.975] 0.431 0.436 0.156 0.035 16688/587
[-,0.99] 0.450 0.454 0.163 0.075 16688/1843

ML-HARAMwom 5 voters

[-,0.99], 0.489 0.455 0.172 0.072±0.05 16688±0.7/1843.0±1.4

SVM 0.511 0.548 0.17 1.109

3) EUR-Lex: Table V summarizes the results of ML-
ARAM and ML-HARAM on the EUR-Lex-Eurovoc. We also
compared different implementations of ML-(H)ARAM. The
sparse implementation did not improve the time values here
since the number of features was limited to 5000. Without
match tracking the number of created neurons in ML-ARAM
decreased from 16572 to 15001 by the same vigilance and
improved performance. This points to overfitting when using
match tracking. SVM was much better in terms of most
performance measures but slower and had lower MF-1 than
ML-HARAM on this dataset. Although it is generally very
fast due to the large number of labels and BR approach it had
to evaluate 3993 models at each sample.

ML-HARAM outperformed ML-ARAM, by the same vig-
ilance in terms of all performance measures. Its test time was
also much shorter. With a higher vigilance and with a high CV,
ML-HARAM was even more superior to ML-ARAM. ML-
ARAM without match tracking but with a vigilance of 0.999
had slightly more prototypes than with match tracking and
the vigilance of 0.975. However the performance measures in
the former case were much better that demonstrates again the
problems of match tracking.

In this dataset the number of unique multi-labels was high
and therefore a problem encountered with ML-ARAM was that
using multiple voters with different presentation orders could
not help improve the performance, since the same prototypes
were created. This implies also that ML-HARAM had to create
a high number of prototypes.

Nevertheless voting greatly improved the results of ML-
HARAM. This might be because the input order of the clus-
tering process has considerable impact on accuracy. Clustering
seems to have a significant effect, as can be seen from a much
higher variance compared with the variance of the number of
prototypes. We leave further investigations on the sensitivity
of clustering to the presentation order for future work. ML-
HARAM with voting had such an improvement in terms of
the performance measures that its results had a 70% increase
in term of IF-1 and achieved the best MF-1 value.

V. CONCLUSION

We introduced HARAM, an extension to the algorithm
ARAM, in order to speed up classification time on high-
dimensional and very large datasets. The key idea is to

853

Authorized licensed use limited to: UNIVERSIDAD DE CORDOBA. Downloaded on February 23,2023 at 17:56:16 UTC from IEEE Xplore. Restrictions apply.

accelerate access to the learned prototypes by clustering. An
additional ART layer clusters prototypes during a preparation
step after training in order to activate only a small fraction of
all prototypes. It significantly decreases the classification time
for a single test sample.

The time of the preparation step is negligible with respect
to the whole classification time for two reasons: It runs only
once and most of the time is needed to calculate the least
activated prototypes in the multi-label case. However this step
can be also performed on the fly.

In comparison with ARAM, HARAM was accelerated in
most setups by a factor of 3 to 10. The HARAM results in
terms of performance measures were slightly lower for most
experiments. An exception was the EUR-Lex-Eurovoc dataset
where the ML-HARAM results were better than those of ML-
ARAM. However taking into account the obtained speed-up,
it is reasonable to increase performance by using multiple
voters. This would be still faster than applying the standard
ML-ARAM algorithm.

There are several interesting questions left for our future
work. How does presentation order influence the clusters? How
can we effectively combine online learning with the clustering
step of HARAM, i.e. avoiding the whole calculation of the
clusters every time a prototype is changed? How to avoid the
loss of classification performance?

VI. ACKNOWLEDGMENTS

This study is part of the DAMIART project supported
by the German Research Foundation (Deutsche Forschungs-
gemeinschaft (DFG)).

REFERENCES

[1] A. Tan, “Adaptive resonance associatiove map,” Neural Networks,
vol. 8, pp. 437–446, 1995.

[2] G. A. Carpenter, S. Grossberg, and D. B. Rosen, “Fuzzy ART: Fast
stable learning and categorization of analog patterns by an adaptive
resonance system.” Neural Networks, vol. 4, pp. 759–771, 1991.

[3] G. A. Carpenter, S. Grossberg, N. Markuzon, J. H. Reynolds, and D. B.
Rosen, “Fuzzy ARTMAP: A neural network architecture for incremental
supervised learning of analog multidimensional maps.” IEEE Trans. on
Neural Networks, vol. 3, no. 5, pp. 698–713, 1992.

[4] E. G. Sanchez, Y. A. Dimitriadis, J. M. Cano, and J. L. Coronado,
“MicroARTMAP: use of mutual information for category reduction in
fuzzy ARTMAP.” in Proc. of the IJCNN-2000, 2000, pp. 647–652.

[5] M. Georgiopoulos, A. Koufakou, G. Anagnostopoulos, and T. Kasparis,
“Overtraining in fuzzy ARTMAP: Myth or reality?” in Proc. of IJCNN-
2001., vol. 2, 2001, pp. 1186–1190.

[6] R. S. P Henniges, E Granger, “Factors of overtraining with fuzzy
ARTMAP neural networks.” in Proc. of IJCNN-2005, 2005, pp. 1075–
1080.

[7] A.-H. Tan, “Predictive self-organizing networks for text categorization,”
in Advances in Knowledge Discovery and Data Mining, ser. LNCS,
2001, vol. 2035, pp. 66–77.

[8] E. P. Sapozhnikova, “ART-based neural networks for multi-label classi-
fication,” in 8th Intl. Symp. on Intelligent Data Analysis, Lyon, France,
2009, pp. 167–177.

[9] F. Brucker, F. Benites, and E. Sapozhnikova, “Multi-label classification
and extracting predicted class hierarchies,” Pattern Recognition, vol. 44,
no. 3, pp. 724 – 738, 2011.

[10] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Commun. ACM, vol. 18, no. 9, pp. 509–517, Sep. 1975.

[11] A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
SIGMOD Rec., vol. 14, no. 2, pp. 47–57, Jun. 1984.

[12] S. Berchtold, D. A. Keim, and H.-P. Kriegel, “The x-tree: An index
structure for high-dimensional data,” in Proc. of the 22th Intl. Conf. on
Very Large Data Bases, ser. VLDB ’96, 1996, pp. 28–39.

[13] J. Nam, J. Kim, E. Loza Mencı́a, I. Gurevych, and J. Fürnkranz, “Large-
scale multi-label text classification — revisiting neural networks,” in
Machine Learning and Knowledge Discovery in Databases, ser. LNCS,
2014, vol. 8725, pp. 437–452.

[14] E. Sapozhnikova and W. Rosenstiel, “Afc: Art-based fuzzy classifier,”
in Knowledge-Based Intelligent Information and Engineering Systems,
ser. LNCS, 2003, vol. 2774, pp. 30–36.

[15] H.-L. Hung, H.-Y. M. Liao, S.-J. Lin, W.-C. Lin, and K.-C. Fan,
“Cascade fuzzy art: a new extensible database for model-based object
recognition,” in Visual Communications and Image Processing’96. Intl.
Society for Optics and Photonics, 1996, pp. 187–198.

[16] R. en Fan, K. wei Chang, C. jui Hsieh, X. rui Wang, and C. jen Lin,
“Liblinear: A library for large linear classification,” Journal of Machine
Learning Research, vol. 9, pp. 1871–1874, 2008.

[17] G. Tsoumakas, I. Katakis, and I. Vlahavas, “Mining multi-label data,”
in In Data Mining and Knowledge Discovery Handbook, 2010, pp. 667–
685.

[18] K. Lang, “Newsweeder: Learning to filter netnews,” in Proc. of the 12th
Intl. Conf. on Machine Learning, 1995, pp. 331–339.

854

Authorized licensed use limited to: UNIVERSIDAD DE CORDOBA. Downloaded on February 23,2023 at 17:56:16 UTC from IEEE Xplore. Restrictions apply.

