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Abstract. Environmental studies form an increasingly popular appli-
cation domain for machine learning and data mining techniques. In this
paper we consider two applications of decision tree learning in the do-
main of river water quality: a) the simultaneous prediction of multiple
physico-chemical properties of the water from its biological properties
using a single decision tree (as opposed to learning a different tree for
each different property) and b) the prediction of past physico-chemical
properties of the river water from its current biological properties. We
discuss some experimental results that we believe are interesting both to
the application domain experts and to the machine learning community.

1 Introduction

The quality of surface waters, including rivers, depends on their physical, chemi-
cal and biological properties. The latter are reflected by the types and densities
of living organisms present in the water. Based on the above properties, surface
waters are classified into several quality classes which indicate the suitability of
the water for different kinds of use (drinking, swimming, ... ).

It is well known that the physico-chemical properties give a limited picture of
water quality at a particular point in time, while living organisms act as conti-
nuous monitors of water quality over a period of time [6]. This has increased the
relative importance of biological methods for monitoring water quality, and many
different methods for mapping biological data to discrete quality classes or con-
tinuous scales have been developed [7]. Most of these approaches use indicator
organisms (bioindicator taxa), which have well known ecological requirements
and are selected for their sensitivity / tolerance to various kinds of pollution.
Given a biological sample, information on the presence and density of all indi-
cator organisms present in the sample is usually combined to derive a biological
index that reflects the quality of the water at the site where the sample was
taken. Examples are the Saprobic Index [14], used in many countries of Central
Europe, and the Biological Monitoring Working Party Score (BMWP) [13] and
its derivative Average Score Per Taxon (ASPT), used in the United Kingdom.
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The main problem with the biological indices described above is their sub-
jectivity [18]. The computation of these indices makes use of weights and other
numbers that were assigned to individual bioindicators by (committees of) ex-
pert biologists and ecologists and are based on the experts’ knowledge about the
ecological requirements of the bioindicators, which is not always complete. The
assigned bioindicator values are thus subjective and often inappropriate [19]. An
additional layer of subjectivity is added by combining the scores of the indi-
vidual bioindicators through ad-hoc procedures based on sums, averages, and
weighted averages instead of using a sound method of combination. While a
certain amount of subjectivity cannot be avoided (water quality itself is a sub-
jective measure, tuned towards the interests humans have in river water), this
subjectivity should only appear at the target level (classification) and not at
the intermediate levels described above. This may be achieved by gaining insi-
ght into the relationships between biological, physical and chemical properties
of the water and its overall quality, which is currently a largely open research
topic. To this aim data mining techniques can be employed [18,11,9].

The importance of gaining such insight stretches beyond water quality pre-
diction. E.g., the problem of inferring chemical parameters from biological ones is
practically relevant, especially in countries where extensive biological monitoring
is conducted. Regular monitoring for a very wide range of chemical pollutants
would be very expensive, if not impossible. On the other hand, biological sam-
ples may, for example, reflect an increase in pollution and indicate likely causes
or sources of (chemical) pollution. The work described in this paper is situated
at this more general level.

The remainder of the paper is organized as follows. Section 2 describes the
goals of this study and the difference with earlier work. Section 3 describes
the available data and the experimental setup. Section 4 describes the machine
learning tool that was used in these experiments. Section 5 presents in detail the
experiments and their results and in Sect. 6 we conclude.

2 Goals of This Study

In earlier work [10,11] machine learning techniques have been applied to the
task of inferring biological parameters from physico-chemical ones by learning
rules that predict the presence of individual bioindicator taxa from the values
of physico-chemical measurements, and to the task of inferring physico-chemical
parameters from biological ones [9]. Dzeroski et al. [9] discuss the construction of
predictive models that allow prediction of a specific physico-chemical parameter
from biological data. For each parameter a different regression tree is built using
Quinlan’s M5 system [17]. A comparison with nearest neighbour and linear re-
gression methods shows that the induction of regression trees is competitive with
the other approaches as far as predictive accuracy is concerned, and moreover
has the advantage of yielding interpretable theories.

A comparison of the different trees shows that the trees for different target
variables are often similar, and that some of the taxa occur in many trees (i.e.,
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they are sensitive to many physico-chemical properties). This raises the question
whether it would be possible to predict many or all of the properties with only one
(relatively simple) tree, and without significant loss in predictive accuracy. As
such, this application seems a good test case for recent research on simultaneous
prediction of multiple variables [1].

A second extension with respect to the previous work is the prediction of past
physico-chemical properties of the water; more specifically, the maximal, minimal
and average values of these properties over a period of time. As mentioned before,
physico-chemical properties of water give a very momentary view of the water
quality; watching these properties over a longer period of time may alleviate this
problem. This is the second scientific issue we investigate in this paper.

3 The Data

The data set we have used is the same one as used in [9]. The data come from
the Hydrometeorological Institute of Slovenia (HMZ) that performs water qua-
lity monitoring for Slovenian rivers and maintains a database of water quality
samples. The data cover a six year period (1990-1995). Biological samples are
taken twice a year, once in summer and once in winter, while physical and chemi-
cal samples are taken more often (periods between measurements varying from
one to several months) for each sampling site.

The physical and chemical samples include the measured values of 16 different
parameters: biological oxygen demand (BOD), electrical conductivity, chemical
oxygen demand (KoCraO7 and KMnOQy), concentrations of Cl, CO2, NHy, POy,
Si02, NO2, NO3 and dissolved oxygen (O2), alkalinity (pH), oxygen saturation,
water temperature, and total hardness. The biological samples include a list of
all taxa present at the sampling site and their density. The frequency of occur-
rence (density) of each present taxon is recorded by an expert biologist at three
different qualitative levels: 1=incidentally, 3=frequently and 5=abundantly.

Our data are stored in a relational database represented in Prolog; in Prolog
terminology each relation is a predicate and each tuple is a fact. The following
predicates are relevant for this text:

— chem(Site, Year, Month, Day, ListOf16Values) : this predicate contains all
physico-chemical measurements. It consists of 2580 facts.

— bio(Site, Day, Month, Year, ListOfTaza): this predicate lists the taxa that
occur in a biological sample; ListOfTaxa is a list of couples (taxon, abundance-
level) where the abundance level is 1, 3 or 5 (taxa that do not occur are
simply left out of the list). This predicate contains 1106 facts.

Overall the data set is quite clean, but not perfectly so. 14 physico-chemical
measurements have missing values; moreover, although biological measurements
are usually taken on exactly the same day as some physico-chemical measure-
ment, for 43 biological measurements no physico-chemical data for the same day
are available. Since this data pollution is very limited, we have just disregarded
the examples with missing values in our experiments. This leaves a total of 1060
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water samples for which complete biological and physico-chemical information
is available; our experiments are conducted on this set.

4 Predictive Clustering and TILDE

Building a model for simultaneous prediction of many variables is strongly re-
lated to clustering. Indeed, clustering systems are often evaluated by measuring
the average predictability of attributes, i.e., how well the attributes of an object
can be predicted given that it belongs to a certain cluster (see, e.g., [12]). In
our context, the predictive modelling can then be seen as clustering the training
examples into clusters with small intra-cluster variance, where this variance is
measured as the sum of the variances of the individual variables that are to
be predicted, or equivalently: as the mean squared euclidean distance of the in-
stances to their mean in the prediction space. More formally: given a cluster C'
consisting of n examples e; that are each labelled with a target vector x; € RP,
the intra-cluster variance of C' is defined as
n
0% =1/n- > (x —%)(x; %) (1)

i=1

where x = 1/n>"" | x;. (We assume the target vector to have only numerical
components here, as is the case in our application; in general however predictive
clustering can also be used for nominal targets (i.e., classification), see [1].)

In our experiments we used the decision tree learner TILDE [2,3]. TILDE is
an ILP system! that induces first-order logical decision trees (FOLDT’s). Such
trees are the first-order equivalent of classical decision trees [2]. TILDE can
induce classification trees, regression trees and clustering trees and can handle
both attribute-value data and structural data. It uses the basic TDIDT algorithm
[16], in its clustering or regression mode employing as heuristic the variance as
described above. The system is fit for our experiments for the following reasons:

— Most machine learning and data mining systems that induce predictive mo-
dels can handle only single target variables (e.g., C4.5 [15], CART [5], M5
[17], ...). Building a predictive model for a multi-dimensional prediction
space can be done using clustering systems, but most clustering systems
consider clustering as a descriptive technique, where evaluation criteria are
still slightly different from the ones we have here. (Using terminology from
[12], descriptive systems try to maximise both predictiveness and predictabi-
lity of attributes, whereas predictive systems maximise predictability of the
attributes belonging to the prediction space.)

L Inductive logic programming (ILP) is a subfield of machine learning where first

order logic is used to represent data and hypotheses. First order logic is more ex-
pressive than the attribute value representations that are classically used by machine
learning and data mining systems. From a relational database point of view, ILP
corresponds to learning patterns that extend over multiple relations, whereas classi-
cal (propositional) methods can find only patterns that link values within the same
tuple of a single relation to one another. We refer to [8] for details.
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— Although the problem at hand is not, strictly speaking, an ILP problem (i.e.,
it can be transformed into attribute-value format; the number of different
attributes would become large but not unmanageable for an attribute-value
learner), the use of an ILP learner has several advantages:

— No data preprocessing is needed: the data can be kept in their original,
multi-relational format. This was especially advantageous for us because
the experiments described here are part of a broader range of experi-
ments, many of which would demand different and extensive preproces-
sing steps.

— Prolog offers the same querying capabilities as relational databases, which
allows for non-trivial inspection of the data (e.g., counting the number
of times a biological measurement is accompanied by at least 3 physico-
chemical measurements during the last 2 months, ...)

The main disadvantage of ILP systems, compared to attribute-value learners,
is their low efficiency. For our experiments however this inefficiency was not
prohibitive and amply compensated by the additional flexibility ILP offers.

5 Experiments

TILDE was consistently run with default parameters, except one parameter
controlling the minimal number of instances in each leaf which was 20. From
preliminary experiments this value is known to combine high accuracy with
reasonable tree size. All results are obtained using 10-fold cross-validations.

5.1 Multi-valued Predictions

For this experiment we have run TILDE with two settings: predicting a single
variable at a time (the results of which serve as a reference for the other setting),
and predicting all variables simultaneously. When predicting all variables at
once, the variables were first standardised (z, = (z — piz)/0, with u, the mean
and o, the standard devation); this ensures that all target variables will be
considered equally important for the prediction.? As a bonus the results are
more interpretable for non-experts; e.g., “BOD=16.0" may not tell a non-expert
much, but a standardised score of +1 always means “relatively high”.

The predictive quality of the tree for each single variable is measured as the
correlation of the predictions with the actual values. Table 1 shows these corre-
lations; correlations previously obtained with M5.1 [9] are given as reference. It
is clear from the table that overall, the multi-prediction tree performs approxi-
mately as well as the set of 16 single trees. For a few variables there is a clear
decrease in predictive performance (T, NO2, NO3), but surprisingly this effect
is compensated for by a gain in accuracy for other variables (conductivity, COx,

2 Since the system minimises total variance, i.e. the sum of the variances of each
single variable, the “weight” of a single variable is proportional to its variance;
standardisation gives all variables an equal variance of 1.
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Table 1. Comparison of predictive quality of a single tree predicting all variables at
once with that of a set of 16 different trees, each predicting one variable.

TILDE, all variables TILDE, single variable M5.1, single variable

variable r r r

T 0.482 0.563 0.561
pH 0.353 0.356 0.397
conduct. 0.538 0.464 0.539
O2 0.513 0.523 0.484
Og-sat. 0.459 0.460 0.424
COq 0.407 0.335 0.405
hardness 0.496 0.475 0.475
NO2 0.330 0.417 0.373
NOs 0.265 0.349 0.352
NH4 0.500 0.489 0.664
POy 0.441 0.445 0.461
Cl 0.603 0.602 0.570
SiO- 0.369 0.400 0.411
KMnO4 0.509 0.435 0.546
K2Cr207 0.561 0.514 0.602
BOD 0.640 0.605 0.652
avg 0.467 0.465 0.498

Chironomus thummi

>=3

T=0.0305434
pH=-0.868026
cond=1.88505
02=-1.66761
02sat=-1.77512
€02=1.5091 T=0.637616
hardness=1.27274 pH=-0.790306
NO02=0.78751 cond=0.734063 o5
NO03=0.309126 022117917
NH4=2.30423 02sat=-0.942371
PO4=138143 C02=0.603914 Gammarus fossarum
Cl=1.46933 hardness=0.855631
$i02=1.30734 NO2=1.57007
KMnO4=1.09387 NO3=-0.250572 >=1 <l
K2Cr207=1.40614 NH4=0.510661
BOD=1.23197 P04=0.247388
Cle0.5%0256 T=-0.145121 T=-0.0308557
SIOZ-0.171444 pH=-0.0213303 pH=-0.600129
KMnO4=0.526165 cond=0.119256 cond=1.57447
K2Cr207=0.561389 02=-0.274239 02=-1.30586
BOD=0.630086 02sat=-0.33789 02sat=-1.38338
—— C02=-0.182526 C02=0.630138
hardness=0.129298 hardness=1.55244
NO02=0.164533 NO2=0.889683
NO03=0.254751 NO03=-0.272559
NH4=0.0355588 NH4=1.01863
PO4=0.00090593 PO4=1.11101
Cl=-0.024326 C1=0.9249
$i02=-0.229698 $i02=0.717223
KMnO4=0.460244 KMnO4=1.74707
K2Cr207=0.324544 | | K2Cr207=1.40825
BOD=0.187718 BOD=0.998845

Fig. 1. An example of a clustering tree.
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KMnOy). A possible explanation for this is that when the variables to be pre-
dicted are not independent, they contain mutual information about one another
that may help the learner distinguish random fluctuations in a single variable
from structural fluctuations. The table also shows that TILDE’s performance is
slightly worse than that of M5.1 (possibly because of different settings).

Note that because of the constant “minimal coverage” of 20, all trees have
approximately equal size (about 35 nodes). Hence, when predicting all 16 varia-
bles at once the total theory size is effectively reduced by a factor of 16 without
predictive accuracy suffering from this.

Figure 1 shows the first levels of a multi-prediction tree that was induced
during the experiment. The tree indicates, e.g., that Chironomus thummi has
the greatest overall influence on the physico-chemical properties; its occurrence
indicates low oxygen level, high conductivity, very high NH, concentration, etc.

5.2 Predicting Past Values

In this experiment we try to predict the average, maximal and minimal values
of physico-chemical parameters over a period of three months before the date
when the biological sample was taken. Although three months is a relatively long
period (according to our domain expert 1 to 2 months would be optimal), for
this data set we faced the problem that physico-chemical measurements are not
always available for each month; in some cases the only measurement available
for the last 5 months is taken on the same day as the biological measurement,
which means that the minimal, maximal and average value over the period of
time are equal to the current value. The problem is quantified in [4]; here we just
mention that by using a period of 3 months we ensure that for a reasonably-sized
subset of the data set at least 2 or 3 measurements are available.

Results of this experiment are shown in Table 2. This table confirms most
of the expert’s expectations. For instance, for oxygen it was expected that the
minimal oxygen level during a period of time, rather than its average or maxi-
muin, is most related to the biological data. Especially for Os-saturation, and to
a lesser extent for Og, this is confirmed by the experiment. The expectation that
for chemical oxygen demand (KMnOy, K5Cry0O7), the average value would be
most important (because this parameter has a cumulative effect) is confirmed,
although the minimal value also shows high correlation, which was not expected.

5.3 Discussion

Both experiments show the potential of decision tree learning for gaining insi-
ght in the water quality domain. The first experiment shows that simultaneous
prediction of multiple parameters is feasible and increases the potential of deci-
sion trees for providing compact, interpretable theories. The second experiments
confirms that it is possible to predict past properties of water from its cur-
rent biological properties; moreover the results may lead to more insight into
the mechanisms through which physico-chemical properties influence biological
properties over a longer period of time.
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Table 2. Comparison of predictive quality of trees when predicting the current value
of a property vs. its minimal, maximal or average value during the last three months.

minimum maximum average current

variable r r T r

T 0.444 0.591 0.578  0.563
pH 0.351 0.316 0.355 0.356
conduct. 0.410 0.405 0.443 0.464
O2 0.540 0.435 0.514  0.523

Og-sat. 0.522 0.388 0.472 0.460
CO2 0.359 0.401 0.403 0.335
hardness 0.412 0.451 0.497 0.475
NO; 0.236 0.446 0.416 0.417
NOs 0.313 0.359 0.336  0.349
NH4 0.373 0.494 0.475 0.489
POy 0.271 0.400 0.418 0.445
Cl 0.513 0.311 0.413 0.602
SiO- 0.344 0.432 0.394  0.400
KMnO4 0.524 0.461 0.526  0.435
K2Cr207 0.627 0.529 0.697 0.514
BOD 0.609 0.575 0.653  0.605
avg 0.428 0.437 0.474 0.465

6 Conclusions

We have used the decision tree learner TILDE to test two hypotheses: a) is it
feasible to predict many properties at once with a single decision tree; b) is it
feasible to predict past chemical properties from current biological data? In both
cases the answer is positive. Our experiments globally confirm the expert’s expec-
tations, but here and there also contain some unexpected and interesting results.
Some insight has been gained in the interdependencies of physico-chemical para-
meters and the way in which the properties of the water in the recent past can be
predicted from current biological data. From the machine learning point of view,
the feasability and potential advantages of a hitherto little explored technique,
simultaneous prediction of multiple variables, has been demonstrated.

Related work in the machine learning domain includes the use of (descriptive)
clustering systems for prediction of multiple variables [12]. In the application
domain, we mention [9], [10] and [11] (on which this work builds further), and
[4] which discusses a broad range of preliminary experiments in this domain.

There are many opportunities for further work: some of our results need to
be studied in more detail by domain experts; simultaneous prediction of subsets
of the 16 used variables, or of a mixture of current and past values, seems an
interesting direction; and many of the preliminary experiments described in [4],
investigating other kinds of relationships in this domain, deserve further study.
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