
Vol.:(0123456789)

Machine Learning (2020) 109:2213–2241
https://doi.org/10.1007/s10994-020-05894-4

1 3

Ensembles of extremely randomized predictive clustering
trees for predicting structured outputs

Dragi Kocev1,2,3  · Michelangelo Ceci1,2,4 · Tomaž Stepišnik2,3

Received: 11 July 2019 / Revised: 20 March 2020 / Accepted: 6 July 2020 / Published online: 17 August 2020
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2020

Abstract
We address the task of learning ensembles of predictive models for structured output pre-
diction (SOP). We focus on three SOP tasks: multi-target regression (MTR), multi-label
classification (MLC) and hierarchical multi-label classification (HMC). In contrast to stand-
ard classification and regression, where the output is a single (discrete or continuous) vari-
able, in SOP the output is a data structure—a tuple of continuous variables MTR, a tuple of
binary variables MLC or a tuple of binary variables with hierarchical dependencies (HMC).
SOP is gaining increasing interest in the research community due to its applicability in a
variety of practically relevant domains. In this context, we consider the Extra-Tree ensem-
ble learning method—the overall top performer in the DREAM4 and DREAM5 challenges
for gene network reconstruction. We extend this method for SOP tasks and call the exten-
sion Extra-PCTs ensembles. As base predictive models we propose using predictive clus-
tering trees (PCTs)–a generalization of decision trees for predicting structured outputs. We
conduct a comprehensive experimental evaluation of the proposed method on a collection of
41 benchmark datasets: 21 for MTR, 10 for MLC and 10 for HMC. We first investigate the
influence of the size of the ensemble and the size of the feature subset considered at each
node. We then compare the performance of Extra-PCTs to other ensemble methods (ran-
dom forests and bagging), as well as to single PCTs. The experimental evaluation reveals
that the Extra-PCTs achieve optimal performance in terms of predictive power and com-
putational cost, with 50 base predictive models across the three tasks. The recommended
values for feature subset sizes vary across the tasks, and also depend on whether the dataset
contains only binary and/or sparse attributes. The Extra-PCTs give better predictive per-
formance than a single tree (the differences are typically statistically significant). Moreover,
the Extra-PCTs are the best performing ensemble method (except for the MLC task, where
performances are similar to those of random forests), and Extra-PCTs can be used to learn
good feature rankings for all of the tasks considered here.

Keywords  Multi-target regression · Multi-label classification · Hierarchical multi-label
classification · Structured output prediction · Feature ranking · Ensembles · Extremely
randomized trees · Predictive clustering trees

Editors: Larisa Soldatova, Joaquin Vanschoren.

 *	 Dragi Kocev
	 Dragi.Kocev@ijs.si

Extended author information available on the last page of the article

http://orcid.org/0000-0003-0687-0878
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-020-05894-4&domain=pdf

2214	 Machine Learning (2020) 109:2213–2241

1 3

1  Introduction

Supervised learning is one of the most widely researched and investigated areas of
machine learning. The goal in supervised learning is to learn, from a set of examples
with a known value for a target variable, a function that outputs a prediction for the
value of a previously unseen example. However, in many real life predictive modeling
problems the output (i.e., the target) is structured (ISO 2007; Panov et al. 2016), mean-
ing that there can be dependencies among the values of the target variable(s). Some
examples of structured output datatypes are: a hierarchy of classes (hierarchical multi-
label classification—HMC) (Silla and Freitas 2011; Stojanova et al. 2013), multiple
continuous variables (multi-target regression—MTR) (Borchani et al. 2015; Spyrom-
itros-Xioufis et al. 2016) or multiple binary variables (multi-label classification—MLC)
(Madjarov et al. 2012; Tsoumakas et al. 2010).

These types of structured output prediction (SOP) problems occur very often in vari-
ous domains, such as life sciences (e.g., predicting gene function, finding disease signa-
tures, predicting toxicity of molecules), ecology (e.g., analysis of remotely sensed data
and habitat modeling), multimedia (annotation and retrieval of images and videos) and
the semantic web (categorization and analysis of text and web pages). Bearing in mind
the needs of these application domains and the increasing quantities of structured data,
Dietterich et al. (2008) and Kriegel et al. (2007) listed the task of “mining complex
knowledge from complex data” as one of the most challenging problems in machine
learning.

Several methods for addressing the task of SOP have been proposed (Borchani et al.
2015; Kocev et al. 2013; Tsoumakas et al. 2010). These methods can be categorized
into two groups (Bakır et al. 2007): (1) local methods construct models for predicting
parts of the output and then combine the individual models to obtain the overall model
(i.e., they construct an architecture of several simpler models) and (2) global methods
that construct models for predicting the complete structure as a whole (also known as
’big-bang’ approaches). More specifically, the local methods construct a simple model
for each of the target variables separately for MTR and MLC and simple models for
parts of the hierarchy for HMC (e.g., one model per hierarchy level, node or branch).
For the MTR task, the number of local models to be constructed typically corresponds
to the number of targets considered: for a domain with T target variables one needs to
construct T predictive models—each predicting a single target. For the MLC task, the
number of models is typically equal to the number of possible labels L in the binary rel-
evance approach (Tsoumakas et al. 2010), however, this number can be much bigger in
the pairwise approach ( L(L−1)

2
 models), where every simple model discriminates between

two class labels. For the HMC task, the number of local models varies depending on
the selected approach: as small as the number of levels in the hierarchy or as big as the
number of classes in the hierarchy (Ceci and Malerba 2007). The multiple local models
(in each of the tasks) are then combined to obtain the overall model. Conversely, the
global methods construct a single predictive model that is valid for the complete struc-
ture. The prediction of an unseen example here is then obtained by passing the example
through the model and retrieving its prediction.

The global methods have several advantages over the local methods (Blockeel et al.
1998; Kocev et al. 2013). First, they exploit the dependencies that exist among the com-
ponents of the structured output in the model learning phase, which can result in better
predictive performance. Next, they are typically more efficient: it can easily happen that

2215Machine Learning (2020) 109:2213–2241	

1 3

the number of components in the output is very large (e.g., hierarchies in functional
genomics can have several thousands of components), in which case executing a basic
method for each component is not feasible. Furthermore, these dependencies produce
models that are typically smaller than the sum of the sizes of the models built for each
of the components.

In this paper, we propose an extension of the Extra-Trees algorithm based on the pre-
dictive clustering trees (PCTs) framework (Kocev 2011; Kocev et al. 2013). We call this
extension Extra-PCTs algorithm. PCTs belong to the group of global methods and can be
considered a generalization of standard decision trees towards predicting structured out-
puts. They offer a unifying approach for dealing with different types of structured outputs
and construct the predictive models very efficiently. They are able to make predictions for
several types of structured outputs: tuples of continuous/discrete variables, hierarchies of
classes and time series. Furthermore, the performance of ensembles of PCTs was exten-
sively evaluated across a variety of tasks and it was shown that they yield state-of-the-art
predictive performance: For MLC, Madjarov et al. (2012) and Bogatinovski (2019) per-
formed extensive empirical studies showing random forests of PCTs for MLC among the
top-performing methods; For MTR, Mileski (2017), Levatić et al. (2018) and Breskvar
et al. (2018) performed extensive comparisons to a variety of competing methods, which
listed ensembles of PCTs for MTR among the top-performing methods; and for HMC,
ensembles of PCTs yield state-of-the-art predictive performance (Cerri et al. 2016; Ho
et al. 2018; Radivojac and colleagues 2013) and have been extensively used for gene func-
tion prediction (Radivojac and colleagues 2013; Schietgat et al. 2010; Škunca et al. 2013).

In (Kocev et al. 2013), we evaluated the construction of local and global models for
SOP in the context of ensemble learning. More specifically, we focused on the two most
widely used ensemble learning techniques: bagging (Breiman 1996) and random forests
(Breiman 2001). We showed that both global and local tree ensembles perform better than
their single model counterparts in terms of predictive power. Global and local tree ensem-
bles perform equally well, but global ensembles are more efficient and produce smaller
models, and need fewer trees in the ensemble to achieve the maximum performance.

In this paper, we investigate a new strategy for learning global models for SOP through
ensemble learning. In particular, we extend the Extra-Trees algorithm to the context of
SOP. The Extra-Trees algorithm, proposed by Geurts et al. (2006a), is an algorithm for
tree ensemble construction, based on extreme randomization of the tree construction algo-
rithm. The algorithm at each node of the tree randomly selects k attributes and, on each of
them, randomly selects a split. The k candidate splits are then evaluated and the best split
is put in the node. Geurts et al. (2006a) evaluated their approach in the context of single-
target regression and classification problems, containing only numerical attributes. The
bias/variance analysis of the error revealed that Extra-Trees decrease the variance, while
at the same time they increase the bias. If the level of randomization is well adjusted, then
the variance almost disappears at the cost of a slight increase in the bias with respect to
that of standard trees. In this study, we perform an empirical evaluation of the Extra-Trees
algorithm extension in SOP domains, where the descriptive attributes can be continuous,
categorical or mixed (both continuous and categorical in the same dataset).

Furthermore, traditional decision tree learning mainly requires design decisions on the
definition of the search space and of the heuristics used to explore the search space. In
Extra-PCTs, the search space is that of all possible families of trees, where every single
tree has a randomization mechanism for the determination of the split and has a prototype
function associated to the leaves. The heuristics and the prototype function in the PCTs
framework are based on variance reduction and are designed to work for various structured

2216	 Machine Learning (2020) 109:2213–2241

1 3

output prediction tasks (i.e., MTR, MLC and HMC). Moreover, the search space and the
heuristics are not independent since the evaluation function should be coherent with the
prototype function at the leaves. This means that we have proposed a method that dif-
fers from that proposed in Geurts et al. (2006a) both in the heuristics and the prototype
function. In a nutshell, with the Extra-PCTs algorithm, we investigate the effect of two
competing aspects on tree learning: modified search through the additional randomization
of the split search procedure and the structured output space through the joint variance
function.

The Extra-Trees algorithm has been successfully applied to several practically rel-
evant domains including computer vision (Maree et al. 2005) and gene network inference
(Huynh-Thu et al. 2010; Ruyssinck et al. 2014). The applications in the latter domain are
especially noticeable: a variant of the method that exploits its feature ranking mechanism
(GENIE3 algorithm) has been the overall top performer in the DREAM4 and DREAM5
challenges1 for gene network inference. We fully exploit this aspect and use the Extra-
Trees algorithm not only for prediction purposes, but also for feature ranking in the case
of SOP: the first feature ranking method that is general enough to perform ranking for the
different types of outputs with a uniform approach.

The major contribution of the work can be summarized as follows:

•	 An investigation of the effects of the modified search through the space of potential
splits and the structured output space on tree induction.

•	 An extension of the Extra-Trees algorithm towards the task of structured output pre-
diction, including multi-target regression, multi-label classification and hierarchical
multi-label classification.

•	 A comprehensive experimental evaluation of the proposed Extra-PCTs algorithm,
including its parametrization.

•	 A general feature ranking algorithm for an arbitrary SOP task.

The work presented in this paper builds upon our previous preliminary work presented in
(Kocev and Ceci 2015), which only considers the MTR task. We extend this work along
several dimensions. First of all, we extend the proposed algorithm towards a more general
SOP setting, so as to also include MLC and HMC tasks. Consequently, we evaluate the
proposed extension on benchmark datasets from the corresponding tasks. Moreover, we
consider 11 additional datasets for the MTR task. Next, we include a comparison with the
bagging of PCTs (in addition to the random forests of PCTs). Furthermore, we investigate
several design choices for parametrization of the proposed method, in terms of selecting
the optimal feature subset sizes. We also provide a detailed overview of the related work.
Finally, we propose a feature ranking algorithm that treats all of the SOP tasks in a uniform
way. We also illustrate the usefulness of the proposed feature ranking algorithm across all
of the tasks. All in all, this study is qualitatively and quantitatively improved compared
with the previous study.

The remainder of this paper is organized as follows. Section 2 outlines the task defini-
tions and the related work. Section 3 presents the proposed Extra-PCTs algorithm for SOP
and feature ranking. Next, Section 4 provides details on the design of the experimental
evaluation, whose results are presented and discussed in Section 5. Finally, Section 6 con-
cludes the paper and provides directions for further work.

1  For more information, visit http://dream​chall​enges​.org/.

http://dreamchallenges.org/

2217Machine Learning (2020) 109:2213–2241	

1 3

2 � Background and related work

2.1 � Definition of the tasks

A formal task definition and description for the three SOP tasks addressed in this work
are given separately in Kocev et al. (2013), Madjarov et al. (2012) and Vens et al. (2008).
Namely, Kocev et al. (2013) provide a definition for the of MTR, Madjarov et al. (2012)
provide a definition for the of MLC, and (Vens et al. 2008) provide a definition for the
of HMC. Considering all of the above definitions, we formally define the task of SOP as
follows.

Given:

•	 A description space X spanned over D independent variables of primitive data types
(discrete or continuous), i.e. for each tuple xi ∈ X, xi = (xi1 , xi2 , ..., xiD);

•	 A target space Y which consists of variables and a definition of some constraints SY on
the variables in Y according to which variables are related/ordered;

•	 A set of examples E, where each example is a pair of tuples from the description and
the target space, respectively, i.e., E = {(xi, yi)|xi ∈ X, yi ∈ Y , 1 ≤ i ≤ N} and N is the
number of examples in E ( N = |E|);

•	 A quality criterion q, which rewards models with high predictive accuracy and low
complexity.

Find: A function f ∶ X → Y such that f maximizes q.
Here, the function f is represented with ensembles of extremely randomized predictive

clustering trees. Depending on the definition of the constraints among the variables ( SY ),
we can instantiate the three tasks as follows. If the variables in Y are continuous and SY
specifies that these variables should be considered as a tuple, then the task at hand is MTR.
Next, if the variables from Y are binary and SY specifies that these variables should be con-
sidered as a tuple (or as a set, cf. (Gjorgjioski et al. 2011)), then the task at hand is MLC.
Finally, if the variables from Y are binary and SY specifies that there are parent-child rela-
tionships among the variables which express a partial order among them, then it is possible
to express a hierarchy constraint and specify that if an item belongs to a parent class, it also
belongs to a child class. In this case, the task at hand is HMC.

2.2 � Related work

The multi-target regression (MTR) task has received increased attention by the research
community over the past decade. It is also known under the name of multi-output, multi-
response or multivariate regression. Borchani et al. (2015) consider two groups of meth-
ods for MTR: problem transformation and algorithm adaptation. This division corresponds
to the more general grouping of methods for SOP, outlined in the introduction: local and
global methods, respectively.

The simplest approach to MTR is to consider it as multiple single-target regression tasks
and then apply a standard regression algorithm on each of the single-target tasks (i.e., con-
struct local models). Within this approach it is possible to use any regression method to
obtain the local predictive models and then combine their outputs to obtain the predictions
for the multiple target variables (Kocev et al. 2013).

2218	 Machine Learning (2020) 109:2213–2241

1 3

As for global methods, in statistics, Brown and Zidek (1980) extend the standard ridge
regression to multivariate ridge regression, while Breiman and Friedman (1997) propose
the Curds&Whey method, where the relations among the tasks are modeled in a post-pro-
cessing phase. More recently, some authors investigated kernel/SVM-based methods for
MTR. For example, Evgeniou et al. (2005) extend the kernel methods to the case of multi-
task learning, using a particular type of kernel (multi-task kernel). They show experimen-
tally that the support vector machines (SVMs) with multi-task kernels have significantly
better performance than the ones with single-task kernels. Liu et al. (2009) propose an
approach to define the loss functions on the output manifold by considering it a Riemann-
ian submanifold, in order to include its geometric structure in the learning (regression) pro-
cess. The proposed approach can be used in the context of any regression algorithm.

Another line of research adapts methods for MLC towards the task of MTR. More spe-
cifically, Tsoumakas et al. (2014) present an ensemble method for MTR that constructs
new target variables via random linear combinations of existing targets. The augmented
output space is then exploited by adapting the MLC algorithm RAkEL for MTR. Next,
Spyromitros-Xioufis et al. (2016) propose two methods: the stacked single-target regres-
sion method and the ensemble of regressor chains. The former method corresponds to the
binary relevance approach with the addition that it constructs meta-models that exploit the
estimated values of the other target variables. The latter method corresponds to the classi-
fier chains method for MLC (Read et al. 2011): it selects a random chain (permutation) of
the target variables and builds a predictive model for each target, by considering the predic-
tions of the targets earlier in the chain. The ensemble is constructed by multiple random
selections of the chains.

Finally, there are several methods that adapt regression trees and rules for the task of
MTR. First of all, Struyf and Džeroski (2006) propose multi-target regression trees and
adapt pruning techniques to improve their predictive power. Next, Appice and Džeroski
(2007) adapt model trees for MTR. Furthermore, Kocev et al. (2013) consider the multi-
target regression trees in an ensemble setting. Finally, Aho et al. (2012) use the ensembles
of multi-target regression trees to obtain multi-target regression rule sets.

Multi-label classification (MLC) is already an established predictive modeling task.
The methods addressing this task are classified in two groups: problem transformation or
algorithm adaptation methods (Tsoumakas et al. 2010). The problem transformation meth-
ods transform the multi-label learning problem into one or more single-label classification
problems. For smaller single-label problems, there exists a plethora of machine learning
algorithms.

Problem transformation methods can be grouped into three categories: binary relevance,
label power-set and pair-wise methods. Binary relevance methods use the one-against-all
strategy to convert the multi-label problem into several binary classification problems. A
closely related method is the classifier chain method and its ensemble extension (Read
et al. 2011). This method constructs L binary classifiers linked along a chain. Label power-
set (LP) methods combine entire label sets into atomic (single) labels to form a single-label
problem (i.e., single-class classification problem). For the single-label problem, the set of
possible single labels represents all distinct label subsets from the original multi-label rep-
resentation. In this way, LP based methods directly take into account the label correlations.
Two representative methods are HOMER (Tsoumakas et al. 2008) and RAkEL (Tsouma-
kas and Vlahavas 2007). HOMER first constructs a hierarchy of the multiple labels and
then constructs a classifier for the label sets in each node of the hierarchy. RAkEL con-
structs each base classifier by considering a small random subset of labels and learning
a single-label classifier for the prediction of each element in the power-set of this subset.

2219Machine Learning (2020) 109:2213–2241	

1 3

Pair-wise methods perform pair-wise or round robin classification with binary classifiers,
using Q ⋅ (Q − 1)∕2 classifiers covering all pairs of labels (Fürnkranz 2002). To combine
these classifiers, the pairwise classification method uses majority voting.

The algorithm adaptation methods extend and customize existing machine learning
algorithms for the task of MLC. There are extensions of the following machine learn-
ing algorithms: boosting, k-nearest neighbors, decision trees and neural networks. The
extended methods are able to directly handle multi-label data. AdaBoost.MH and Ada-
Boost.MR (Schapire and Singer 2000) are two extensions of AdaBoost for multi-label
data. While AdaBoost.MH is designed to minimize Hamming loss, AdaBoost.MR is
designed to find a hypothesis which ranks the correct labels at the top. Next, several vari-
ants for multi-label learning (ML-kNN) of the popular k-Nearest Neighbors (kNN) lazy
learning algorithm have been proposed (Zhang and Zhou 2007). The retrieval of the k near-
est neighbors is the same as in the traditional kNN algorithm. The main difference is the
determination of the label set of a test example. Decision tree extension is proposed within
the predictive clustering framework (Blockeel et al. 1998). A single predictive clustering
tree (PCTs) is constructed by using a splitting criterion that considers all of the labels. The
PCTs for MLC are also used in an ensemble setting (Kocev et al. 2013). Neural networks
have also been adapted for MLC by introducing a new error function that takes multiple
labels into account (Crammer and Singer 2003).

Hierarchical multi-label classification (HMC) is a variant of classification, where a sin-
gle example may belong to multiple classes at the same time and the classes are organized
in a form of hierarchy. Silla and Freitas (2011) survey and categorize the HMC methods,
based on some of their characteristics and their application domains. Here, we present
and group some existing methods based on the learning technique they use. We group the
methods as follows: network based methods, kernel based methods and decision tree based
methods.

The network based approaches exploit the information in interaction networks among
the examples to obtain a better predictive model (Stojanova et al. 2013). Since the network
based approaches are typically based on label propagation, a number of approaches have
been proposed to combine predictions of functional networks with those of a predictive
model. Tian et al. (2008) use logistic regression to combine predictions from a functional
association network with predictions from a random forest.

Barutcuoglu et al. (2006) propose a kernel-based method that uses unthresholded SVMs
learned for each class separately and then combine the SVMs by using a Bayesian network,
so that the predictions are consistent with the hierarchical relationships. Valentini and Re
(2009) also propose a hierarchical ensemble method that uses probabilistic SVMs as base
learners. The method combines the predictions by propagating the weighted true path rule
both top-down and bottom-up through the hierarchy, which ensures consistency with the
hierarchy constraint. Rousu et al. (2006) present a method that defines a joint feature map
over the input and output space. Next, it applies SVM based techniques to learn the weights
of a discriminant function (defined as the dot product of the weights and the joint feature
map). Furthermore, Gärtner and Vembu (2009) propose using counting of super-structures
from the output to efficiently calculate (in polynomial time) the argmax of the discriminant
function.

Clare (2003) adapts a decision tree algorithm to cope with the issues introduced by the
HMC task and, specifically, the main contribution is to use the sum of the entropies of the
class variables to select the best split. The algorithm, called C4.5H, predicts classes on
several levels of the hierarchy and assigns a larger cost to misclassifications in the higher
levels of the hierarchy. The resulting tree is then transformed into a set of rules, and the

2220	 Machine Learning (2020) 109:2213–2241

1 3

best rules are selected, based on a significance test on a validation set. Geurts et al. (2006b)
present a decision tree based approach related to predictive clustering trees (which we use
in this paper). This approach starts from a different definition of variance and then ker-
nelizes this variance function. The result is a decision tree induction system that can be
applied to structured output prediction, using a method similar to the large margin methods
mentioned above. Therefore, this system could also be used for HMC after defining a suit-
able kernel. To this end, an approach similar to that of Rousu et al. (2006) could be used.

Blockeel et al. (2002) proposed the idea of using predictive clustering trees (Blockeel
et al. 1998) for HMC tasks (PCTs for HMC). Their work presents the first thorough empiri-
cal comparison of a HMC decision tree method in the context of tree-shaped class hierar-
chies. Vens et al. (2008) extend the algorithm towards hierarchies structured as directed
acyclic graphs (DAGs) and show that learning one decision tree for predicting all classes
simultaneously outperforms learning one tree per class (even if those trees are built by tak-
ing into account the hierarchy, via so-called hierarchical single-label classification–HSC).
Stojanova et al. (2013) adapt the PCTs to consider also the network context of the exam-
ples by defining a new distance function that includes also the interaction networks. Kocev
et al. (2013) extend the PCT framework in the context of ensemble learning. Finally, Cerri
et al. (2015) analyse decision tree methods and evaluation measures for the task of HMC.

Although all the aforementioned methods consider the learning tasks addressed in this
paper, none of them proposes an elegant way to tackle all of the considered variants of SOP
learning tasks with the same algorithm. Moreover, only a few of them exploit the ensem-
ble learning paradigm, that typically provides significant improvements in the prediction
capabilities when compared to their non-ensemble counterparts. In any case, none of the
approaches mentioned before exploit the idea of the Extra-PCTs algorithm and extend it
to deal with SOP tasks.

3 � Extra‑PCTs for structured output prediction

3.1 � Learning a single Extra‑PCT

The predictive clustering tree framework views a decision tree as a hierarchy of clusters
(Blockeel et al. 1998; Kocev 2011; Kocev et al. 2013). The top-node corresponds to one
cluster containing all the data, which is recursively partitioned into smaller clusters, while
moving down in the tree. The PCT framework is implemented in the CLUS system.2

PCTs are induced with a standard top-down induction of decision trees (TDIDT) algo-
rithm (Breiman et al. 1984). Table 1 outlines the general algorithm for PCT induction. It
takes as input a set of examples (E) and outputs a tree. It also defines the prototype func-
tions used in each tree leaf for predicting the label of new examples (e.g., for MTR it cal-
culates the average values for each target from the examples belonging to a given leaf). The
heuristic (h) used for selecting the tests (t) in a regular PCT, is the reduction in variance
caused by the partitioning ( P ) of the instances corresponding to the tests (t) (see line 7 of
the FindTest procedure in Table 2). Intuitively, by maximizing the variance reduction, the
cluster homogeneity is maximized and the predictive performance is improved.

2  CLUS is available for download at http://clus.sourc​eforg​e.net.

http://clus.sourceforge.net

2221Machine Learning (2020) 109:2213–2241	

1 3

The extremely randomized variant of PCTs introduces randomization in the test selec-
tion (Table 2) (Geurts et al. 2006a; Kocev and Ceci 2015). More specifically, it requires an
input parameter (k) that controls the number of attributes considered at each node of the
tree. The test selection procedure randomly selects k attributes and from each attribute ran-
domly selects a split. For each of the k selected attributes, the algorithm selects the split in
two different ways, depending on the attribute type. If the attribute is numeric the splitting
point is selected randomly from the set of possible splitting points. Possible splitting points
are found in the set of values of the attribute in the training set associated to the specific
node. If the attribute is categorical (i.e., nominal), then a non-empty subset of values of the
attribute in the training set associated to the specific node is randomly selected.

It is noteworthy that our approach shows the best benefits with respect to classical
regression/decision tree learning in the case of categorical attributes. In fact, differently
from continuous attributes, where the number of possible splitting points evaluated in
classical regression/decision tree learning is proportional to the number of examples,
in the case of categorical attributes the possible number of splits is proportional to 2p ,

Table 1   The top-down induction algorithm for PCTs. E is the dataset, k is the size of the attribute subset, t
is the split test, h is the heuristic score, P is the partitioning of the instances, and Prototype(E) is the proto-
type function that calculates the predictions

Table 2   Extremely randomized test selection for PCTs

2222	 Machine Learning (2020) 109:2213–2241

1 3

where p is the number of distinct values for the specific attribute. Although a theorem
by Breiman et al. (1984) (Theorem 4.5, Proposition 8.16) proves that the best binary
split can be identified among p − 1 partitions of attribute values, this theorem requires
an ordering of the attribute values on the basis of the simple mean of Y, which means
that it only applies when simple regression functions are associated to the leaves (which
is not the case of SOP). This discussion further motivates our approach that does not
(cannot) resort to this theorem, but is potentially able to evaluate any possible partition-
ing of categorical attributes without posing any constraint on the partitions.

The k-candidate tests are evaluated using the variance reduction heuristic and the best
test is selected. Obviously, the larger the variance reduction (h in the procedure FindTest-see
Table 2), the better the split. If we set the value of k to 1, this algorithm works in the same
way as the Random Tree algorithm proposed by Witten and Frank (2005). The advantage
with respect to the Random Tree algorithm is that in the approach we adopt there is still a
non-random selection based on some evaluation measure (i.e., variance reduction).

In order to take into account the structure of the output space, the variance Var(E) needs
to be instantiated differently for the various output structures (Kocev 2011; Kocev et al.
2013).

PCTs for MTR. For the MTR task, the variance is calculated as Var(E) =
∑T

j=1
Var(E, Yj) ,

where Var(E, Yj) is the normalized variance (using the standard deviation of the variables)
of the variable Yj in the set E, and T is the number of target variables. The variances of the
target variables are normalized so that each target variable contributes equally to the over-
all variance. This is due to the fact that the target variables can have completely different
ranges. The prototype function returns, for each example, a vector whose elements repre-
sent the values of the target variables.

PCTs for MLC. These are PCTs able to predict multiple binary (and thus discrete) tar-
gets simultaneously. Therefore, the variance function for the PCTs for MLC is computed
as the sum of the Gini indices of the target variables, i.e., Var(E) =

∑T

j=1
Gini(E, Yj) . The

prototype function returns a vector of probabilities that an instance belongs to a given class
for each target variable. Once these probabilities are computed, a threshold can be used to
determine the actual classes of instances.

PCTs for HMC . The variance and prototype for PCTs for the HMC are defined as fol-
lows. First, the set of labels of each example is represented as a vector with binary compo-
nents; the j-th component of the vector is 1 if the example belongs to class cj and 0 other-
wise. The variance of a set of examples E is defined as the average squared distance
between each example’s class vector (Li) and the set’s mean class vector (L) :
Var(E) =

1

�E� ⋅
∑

Ei∈E
d(Li,L)

2. The similarity at higher levels of the hierarchy is more
important than the similarity at lower levels. Hence, the distance measure used is a
weighted Euclidean distance: d(L1, L2) =

�∑T

j=1
w(cl) ⋅ (L1,j − L2,j)

2 , where Li,j is the j th

component of the class vector Li of an instance Ei , T is the size of the class vector, and the
class weights w(c) decrease with the depth of the class in the hierarchy. More precisely,
w(c) = w0 ⋅ w(p(c)) , where p(c) denotes the parent of class c and 0 < w0 < 1 ). The mean L̄
of the class vectors of the examples in the leaf is stored as a prediction (prototype func-
tion). Note that the value for the i th component of L̄ can be interpreted as the probability
that an example arriving at the given leaf belongs to class ci . The prediction for an example
that arrives at the leaf can be obtained by applying a user-defined threshold � to the proba-
bility. Moreover, when a PCT makes a prediction, it preserves the hierarchy constraint
(each instance that belongs to a class c also belongs to the ancestor classes of c). More

2223Machine Learning (2020) 109:2213–2241	

1 3

details about the variance instantiation of PCTs for the different tasks can be found in
(Kocev et al. 2013; Vens et al. 2008).

3.2 � Creating an ensemble of Extra‑PCTs algorithm

The extremely randomized PCTs are very unstable predictive models because of the intense
randomization at each node. Consequently, such PCTs are only meaningful when used in
combination with an ensemble learning framework. In this work, we construct ensembles
of extremely randomized PCTs (Extra-PCTs) by learning each of the base predictive mod-
els on the complete training set and each of them uses different, randomly selected attrib-
utes in the nodes. The randomization introduced at each node of the Extra-PCTs ensures
that the base predictive models will be diverse among themselves. It is clear that the level
of randomization is strongly dependent on the selection of the parameter K—the num-
ber of attributes that are retained at each node. Similarly as in random forests ensemble
method, it is given by a function of the total number of descriptive attributes D (e.g., k = 1 ,
k = ⌊

√
D + 1⌋ , f (D) = ⌊log2(D) + 1⌋ , k = D ) (Breiman 2001).

Depending on the application, one can choose to use different values for k. In this study,
we investigate the effect of the function used to initialize k on the performance of the
ensemble for the three SOP tasks: MTR, MLC and HMC.

In the Extra-PCTs algorithm ensemble, the prediction for a new instance is obtained by
combining the predictions of all the base predictive models. For the different tasks this is
performed as follows:

–	 For the MTR task, the prediction for each target variable is computed as the average
of the predictions obtained from each tree. Note that this solution exploits possible
dependencies in the output space, since clusters used for prediction (and their hierarchi-
cal organization, i.e., the tree) have been built by taking into account the whole output
space.

–	 For the MLC task, the prediction for each target variable is computed as the average of
the probabilities per class (i.e., probability distribution vote (Bauer and Kohavi 1999)
obtained from each tree.

–	 For the HMC task, the prediction of the whole output hierarchy is obtained by averag-
ing the predictions of the base predictive models (i.e., the probabilities for each of the
labels) and then applying the same thresholding procedure as the prototype calculation
in each tree leaf.

3.3 � Feature ranking for structured outputs with Extra‑PCTs

Tree-based ensembles can be used to obtain feature a ranking of the descriptive variables.
Breiman (2001) proposed exploiting the random forest mechanism to obtain a feature rel-
evance, by using random permutations of the values of the descriptive variables (in the
so-called out-of-bag) to assess their relevance to the target variable. However, the permuta-
tion of the values of the descriptive variables (for each base predictive model) entails addi-
tional computational cost in domains with a large number of descriptive variables and a
large number of examples. One way to address this issue is to consider a different variable
importance score.

In order to avoid this problem, Huynh-Thu et al. (2010) propose using the reduction
of the variance in the output space at each test node in the tree (the resulting algorithm is

2224	 Machine Learning (2020) 109:2213–2241

1 3

named GENIE3). Namely, the variables that reduce the variance of the output more are,
consequently, more important than the ones that reduce the variance less. Hence, for each
descriptive variable we measure the reduction of variance it produces when selected as a
splitting variable. If a variable is never selected as a splitting variable (in any of the trees in
the ensemble) then its importance will be 0.

The GENIE3 algorithm has been heavily evaluated for single-target regression tasks
(e.g., for gene regulatory network reconstruction) (Huynh-Thu et al. 2010). Here, we extend
it towards the three SOP tasks discussed and name the resulting algorithm ExtraPCTs-
GENIE3. The basic idea adopted for feature ranking follows the spirit of GENIE3, but we
use the Extra-PCTs algorithm for building the ensemble. This gives us the opportunity to
directly exploit the variance functions defined in Section 3.1 when measuring the reduction
of variance that a variable produces.

Recall that there are two competing aspects in the Extra-PCTs learning at play: modified
search through the additional randomization of the split search procedure and the struc-
tured output space through the joint variance function. The effects of these were not pre-
viously investigated in the context of learning predictive models, even less so, this was
studied for the task of feature ranking for structured output prediction. There are only a
handful of methods available to perform feature ranking for a specific structured output
prediction task (e.g., feature ranking for MLC or HMC) and there are no other methods
outside the predictive clustering framework that can perform feature ranking for all of the
structured output prediction tasks. Now, the two competing aspects of Extra-PCTs learn-
ing also influence the subsequent feature rankings—here, we illustrate that the proposed
methodology indeed can yield a relevant feature ranking across the spectrum of structured
output prediction tasks considered.

3.4 � Computational complexity of the Extra‑PCTs algorithm

One of the best advantages of the Extra-PCTs ensembles is their computational efficiency.
In (Kocev et al. 2013), we discuss the computational cost of an ordinary PCT and ensem-
bles of PCTs extensively. The computational cost of constructing an ordinary PCT for SOP
can be summarized as

where D is the number of descriptive attributes, N is the number of examples and T is the
size of the output measures as the number of target variables (for MTR and MLC) or the
number of classes in the hierarchy (for HMC). The three terms of the computational cost
can be related to different phases of the tree learning procedure: The first term of the cost
relates to the sorting of the (numeric) attributes at each node, the second term relates the
cost of calculating the best split and the third term relates to sorting the examples to the
subtrees, i.e., applying the split on the training instances. These terms consider that the
tree is balanced and bushy, as in (Witten and Frank 2005), hence its depth is in the order of
logN.

The cost of constructing Extra-PCTs can be derived as follows. Two procedures are
executed during the construction of each node of the tree: calculating the best split out of
the k randomly selected candidate splits at a cost of O(k ⋅ T ⋅ N) , and applying the split to
the training instances with a cost of O(N) . Furthermore, we assume that the tree is bal-
anced and bushy, hence its depth is in the order of logN , i.e., O(logN) . Bearing this in
mind, the total computational cost of constructing a single tree is

(1)O(D ⋅ N log2 N) +O(D ⋅ T ⋅ N logN) +O(N logN),

2225Machine Learning (2020) 109:2213–2241	

1 3

Comparing formulas (1) and (2), we can note that Extra-PCTs have lower computational
complexity as compared to regular PCTs. The ensembles usually amplify the computa-
tional cost of the base predictive models linearly with the number of base models. Conse-
quently, the cost of an Extra-PCTs ensemble is lower than the cost of a regular ensemble.

4 � Experimental design

In order to empirically evaluate Extra-PCTs, we perform experiments for all the SOP
learning tasks considered: MTR, MLC and HMC. In this section, we first describe the
datasets used, then we introduce the research questions guiding the experimental design
and, finally, we describe the experimental setting.

4.1 � Data description

The datasets with multiple continuous targets for the MTR task (21 in total, see Table 3)
are mainly from the domain of ecological modeling. The datasets with multiple binary tar-
gets for the MLC task (10 in total, see Table 4) are from three domains: biology, multime-
dia and text categorization. The datasets that have classes organized in a hierarchy for the

(2)O(k ⋅ T ⋅ N logN) +O(N logN).

Table 3   Properties of the
datasets with multiple continuous
targets (MTR): number of
examples (N), number of
descriptive attributes (discrete/
continuous, D/C), and number of
target attributes (T)

Name of dataset N D/C T

atp1d 337 0/411 6
atp7d 296 0/411 6
collembolaV2 393 8/39 3
edm1 154 0/16 2
enb 768 0/8 2
Forestry-LIDAR-Landsat 6218 0/150 2
Forestry-LIDAR-IRS 2731 0/29 2
Forestry-LIDAR-Spot 2731 0/49 2
jura 359 0/15 3
oes10 403 0/298 16
oes97 334 0/263 16
osales 639 0/401 12
PPMI 713 0/138 35
rf1 9125 0/64 8
rf2 9125 0/576 8
scm1d 9803 0/280 16
scm20d 8966 0/61 16
scpf 1137 3/4 3
soil-quality 1944 0/142 3
VegetationCondition 16967 1/39 7
Water-quality 1060 0/16 14

2226	 Machine Learning (2020) 109:2213–2241

1 3

HMC task (10 in total, see Table 5) come from various domains: biology, text classifica-
tion and image annotation/classification. Note that two datasets from the biological domain
have the hierarchy of labels organized as a DAG (they have GO - Gene ontology - in the
dataset name), while the remaining datasets have the hierarchy of labels organized as a
tree. The datasets for the MLC and HMC task come pre-divided into training and testing
parts, thus, in the experiments, we use them in their original format as typically done in the
literature (Kocev et al. 2013; Madjarov et al. 2012). The training part usually comprises
around 2/3 of the complete dataset, while the testing part the remaining 1/3 of the dataset.
For more information on the datasets, we refer the reader to the repositories available at:
http://mulan​.sourc​eforg​e.net/datas​ets-mlc.html, https​://dtai.cs.kuleu​ven.be/clus/hmc-ens/
and http://kt.ijs.si/Dragi​Kocev​/PhD/resou​rces/, as well as (Kocev et al. 2013; Madjarov
et al. 2012) and the references therein.

In order to facilitate replication of all the experiments, we implemented the method pro-
posed in this paper in the latest version of CLUS, already available in the public CLUS
repository at http://clus.sourc​eforg​e.net.

Table 4   Properties of the
datasets with multiple binary
targets (MLC): number of
examples in the training/testing
dataset (N

tr
∕N

te
 ), number of

descriptive attributes (discrete/
continuous, D/C), the total
number of labels (Q) and label
cardinality ( l

c
)

The problems are ordered by their overall complexity roughly calcu-
lated as #tr.e. × D × Q

N
tr
∕N

te
D/C Q l

c

birds 322/323 2/258 19 1.01
emotions 391/202 0/72 6 1.87
scene 1211/1159 0/294 6 1.07
yeast 1500/917 0/103 14 4.24
medical 645/333 1449/0 45 1.25
enron 1123/579 1001/0 53 3.38
corel5k 4500/500 499/0 374 3.52
tmc2007 21519/7077 500/0 22 2.16
mediamill 30993/12914 0/120 101 4.38
bibtex 4880/2515 1836/0 159 2.40

Table 5   Properties of the
datasets with hierarchical targets
(HMC): number of examples in
the training/testing dataset
(N

tr
∕N

te
 ), number of descriptive

attributes (discrete/continuous,
D/C), number of classes in the
hierarchy ( |H| ), maximum depth
of the classes in the hierarchy
( H

d
 ), average number of labels

per example ( L ), and average
number of leaf labels per
example ( L

L
)

Note that the values for H
d
 are not always a natural number because

the hierarchy has a form of a DAG and the maximum depth of a node
is calculated as the average of the depths of its parents

Domain N
tr
∕N

te
D/C |H| H

d L L
L

ImCLEF07D 10000/1006 0/80 46 3.0 3.0 1.0
ImCLEF07A 10000/1006 0/80 96 3.0 3.0 1.0
Diatoms 2065/1054 0/371 377 3.0 1.95 0.94
Enron 988/660 0/1001 54 3.0 5.30 2.84
Reuters 3000/3000 0/47236 100 4.0 3.20 1.20
WIPO 1352/358 0/74435 183 4.0 4.0 1.0
Expression–FunCat 2494/1291 4/547 475 4.0 8.87 2.29
SCOP-GO 6507/3336 0/2003 523 5.5 6.26 0.95
Sequence-FunCat 2455/1264 2/4448 244 4.0 3.35 0.94
Yeast-GO 2310/1155 5588/342 133 6.3 5.74 0.66

http://mulan.sourceforge.net/datasets-mlc.html
https://dtai.cs.kuleuven.be/clus/hmc-ens/
http://kt.ijs.si/DragiKocev/PhD/resources/
http://clus.sourceforge.net

2227Machine Learning (2020) 109:2213–2241	

1 3

4.2 � Experimental setup

We design the experimental evaluation of the proposed method by bearing in mind the fol-
lowing research questions:

1.	 What is the number of base predictive models in the ensemble to obtain good predictive
performance? Is this number stable across the tasks?

2.	 What is the optimal number of splits to be considered at each node in the tree construc-
tion for each of the SOP tasks?

3.	 Do Extra-PCTs ensembles yield better predictive performance than a single PCT?
4.	 How does the predictive performance of Extra-PCTs compare to the predictive perfor-

mance of standard tree-ensemble methods, such as bagging and random forest of PCTs?
5.	 Can Extra-PCTs be used to obtain a feature ranking for domains with structured out-

puts?

In order to answer these five questions, we design the following experimental setup. The
predictive performance of the methods on the MLC and HMC datasets is assessed using
the train-test splits from the original datasets, while for the MTR datasets we perform
10-fold cross-validation.

There are multiple performance measures in use for SOP tasks. Specifically, for MTR
we considered the correlation coefficient, the root mean squared error and the relative root
mean squared error (RRMSE). For MLC, Madjarov et al. (2012) present several perfor-
mance measures: example-based (Hamming loss, F1 score, accuracy, etc.), ranking-based
(ranking loss, one-error, etc.) and label-based (micro precision, macro precision, etc.).
For HMC, there are Area Under the Precision-Recall Curve (AUPRC) and Area Under the
Average Precision-Recall Curve ( AUPRC ), presented by Vens et al. (2008).

In the results section, we will focus on RRMSE for MTR, threshold independent rank-
ing loss for MLC and AUPRC for HMC. While focusing on other performance measures
slightly affects the parameter instantiations, the overall conclusions from the experiments
remain similar.

Next, we define the parameter values used in the algorithms for constructing the single
trees and the ensembles of PCTs. For the single trees, we use F-test as a pruning mecha-
nism (Vens et al. 2008). Specifically, we check whether a given split/test in an internal
node of the tree results in a reduction in variance that is statistically significant at a given
significance level. If there is no split/test that can satisfy this, then the node is converted to
a leaf. An optimal significance level is selected by using internal 3-fold cross validation,
from the following values: 0.125, 0.1, 0.05, 0.01, 0.005 and 0.001.

The proposed Extra-PCTs require two input parameters: feature subset size at each
node (k) and number of base predictive models. In this study, we investigate the influence
of k on the predictive power of the Extra-PCTs by setting its value to various fractions of
D: 0.01, 0.05, 0.1, 0.2, 0.3, 0.5, 0.75 and 1. Next, we construct ensembles with 10, 25, 50,
75, 100, 150, 200 and 250 base predictive models.

For a better comparison, we also used random forests of PCTs with the same values of k
and number of trees. The influence of the feature subset size on the performance of random
forests of PCTs for MTR, MLC and HMC has not been investigated before. Kocev et al.
(2013) use the recommended values as from the simpler classification and regression, but
discuss that using log from the features might be undersampling and may lead to subopti-
mal results.

2228	 Machine Learning (2020) 109:2213–2241

1 3

Notably, random forests of PCTs, where we look at all the D attributes at each node,
are equivalent to bagging ensembles. Following the findings from the study conducted by
Bauer and Kohavi (1999), the trees in all of the ensembles were not pruned.

The feature ranking using ExtraPCTs-GENIE3 is performed as follows. For each of the
tasks, we select a single dataset to showcase the potential of the algorithm. We then enlarge
the feature spaces of each of the datasets by adding 100 random variables. We investi-
gate whether ExtraPCTs-GENIE3 will place the random variables at the tail of the feature
ranking. The Extra-PCTs ensembles consisted of 100 trees and k was set to D.

In order to assess the statistical significance of the differences in performance of the
studied algorithms, we adopt the recommendations by Demšar (Demšar 2006) for the sta-
tistical evaluation of the results. In particular, we use the Friedman test (Friedman 1940)
for statistical significance—it is a non-parametric test for multiple hypotheses testing. It
ranks the algorithms according to their performance for each dataset separately, thus the
best performing algorithm gets the rank of 1, second best the rank of 2 etc; and in case of
ties it assigns average ranks. Afterwards, to check where the statistically significant dif-
ferences appear (among which algorithms), we use the Nemenyi post-hoc test (Nemenyi
1963) when we compare all of the methods with each other. In this post-hoc test, the per-
formance of two classifiers is significantly different if their average ranks differ more than
some critical distance. The critical distance depends on the number of algorithms, number
of datasets and critical value (for a given significance level) that is based on the Studen-
tized range statistic and can be found in statistical textbooks. We present the results from
the statistical analysis with average rank diagrams (Demšar 2006). The ranks are depicted
on the axis, in such a manner that the best ranking algorithms are at the left-most side of
the diagram. The lines connect the algorithms whose average ranks are smaller than the
critical distance (in our study, the significance level is set to 0.05). The difference in the
performance of the algorithms connected with a line is not statistically significant at the
given significance level.

5 � Results and discussion

In this section, we present and discuss the results from the comprehensive experimental
evaluation. We first investigate the influence of the feature subset size considered at each
node and the size of the ensemble (i.e., the number of base predictive models used in an
ensemble). We next compare the performance of Extra-PCTs with the performance of a
single PCT as well as with the performance of random forests of PCTs and bagging of
PCTs. Finally, we show that Extra-PCTs can be used for performing feature ranking. All
of the discussion is carried out for each of the tasks considered here: multi-target regres-
sion (MTR), multi-label classification (MLC) and hierarchical multi-label classification
(HMC).

5.1 � Influence of the feature subset size and the number of base predictive models

We discuss the results for each task separately. We first focus on the MTR task. Figures 1
and 2 depict the MTR performance obtained for different values of k and number of base
predictive models for the Extra-PCTs and random forests of PCTs, respectively. We start
by noticing that for both Extra-PCTs and random forests of PCTs increasing the number
of trees in the ensemble generally improves the performance. However, the improvement of

2229Machine Learning (2020) 109:2213–2241	

1 3

the performance starts to saturate after adding 50 trees in the ensembles, i.e., after 50 trees
the performance improvements are rarely noticeable. Furthermore, on the datasets with
very few attributes (e.g., the dataset enb), the first few points show the same performance
because k is the same for those ratios (0.01, 0.05 and sometimes also 0.1).

Conversely, the effect of k on performance is not as straightforward and shows more
variance among the datasets. Let us first focus on Extra-PCTs. Increasing the value of k
often improves the performance. The improvement is large at first, but then diminishes as
k grows. This is not in line with the recommendations for single-target regression which
suggest using all features (Geurts et al. 2006a). On some datasets the performance starts
decreasing when k approaches D (e.g., enb, soil_quality and most notably oes97, where
the performance diminishes much sooner). We can make similar observations for random
forests of PCTs, with the addition that the performance degradation at higher values for k is
more noticeable. In the extreme case of the oes97 dataset, random forests seem to offer the
best performance at the lowest value of k.

Figures 3 and 4 show the results for the MLC task obtained with Extra-PCTs and
random forests of PCTs, respectively. Increasing the number of trees again improves the
performance for both methods, also with smaller improvements for higher values as for
MTR. For Extra-PCTs there are three datasets, where the performance decreases with
the increase in the value of k (corel5k, bibtex, enron), five if we also include the medical

Fig. 1   Results for Extra-PCTs on MTR datasets for different numbers of attributes considered in each node
(subspaces as a fraction of D) and different numbers of base predictive models (i.e., no. of trees: 10, 25, 50,
75, 100, 150, 250). The vertical dashed line is at the value for the square root from the descriptive features

2230	 Machine Learning (2020) 109:2213–2241

1 3

Fig. 2   Results for random forests of PCTs on MTR datasets for different numbers of attributes considered
in each node (subspaces as a fraction of D) and different numbers of base predictive models (i.e., no. of
trees: 10, 25, 50, 75, 100, 150, 250). The vertical dashed line is at the value for the square root from the
descriptive features

Fig. 3   Results for Extra-PCTs on MLC datasets for different numbers of attributes considered in each node
(subspaces as a fraction of D) and different numbers of base predictive models (i.e., no. of trees: 10, 25, 50,
75, 100, 150, 250). The vertical dashed line is at the value for the square root from the descriptive features

2231Machine Learning (2020) 109:2213–2241	

1 3

and tmc2007 datasets, where the smallest k is an exception. These five datasets only
have binary attributes. This means that for every attribute there is only one possible
split. Because there is no bootstrapping performed for Extra-PCTs ensembles, all mem-
bers are built on the same training set. On these datasets, k is the only thing that causes
variance among the ensemble members, the larger the k the smaller the variance. When
k = D , all ensemble members are the same, and the ensemble is equivalent to a single
tree. This is the reason why on these datasets performance decreases significantly with
increasing k. Additionally, on the mediamill and scene datasets there is very little differ-
ence in performance for different values of k (if we do not consider the lowest numbers
of trees). However, there are still datasets where increasing the value of k to around 0.5
significantly improves the performance (e.g., yeast and birds datasets). Because random
forests perform bootstrapping, which provides variance among ensemble members, this
is much less of an issue. Selecting k between 0.1D and 0.3D would fit well with these
datasets.

Fig. 4   Results for random forests of PCTs on MLC datasets for different numbers of attributes considered
in each node (subspaces as a fraction of D) and different numbers of base predictive models (i.e., no. of
trees: 10, 25, 50, 75, 100, 150, 250). The vertical dashed line is at the value for the square root from the
descriptive features

Fig. 5   Results for Extra-PCTs on HMC datasets for different numbers of attributes considered in each node
(subspaces as a fraction of D) and different numbers of base predictive models (i.e., no. of trees: 10, 25, 50,
75, 100, 150, 250). The vertical dashed line is at the value for the square root from the descriptive features

2232	 Machine Learning (2020) 109:2213–2241

1 3

The results for HMC are presented in Fig. 5 (Extra-PCTs) and in Fig. 6 (random for-
ests). Note that here, in contrast to the previous two tasks higher value means better per-
formance. As for the other two tasks, increasing the number of trees improves the perfor-
mance for both Extra-PCTs and random forests, and the improvement of using more than
50 trees is rarely noticeable. For Extra-PCTs increasing the value of k initially quickly
improves the performance, but it can later degrade it slightly. There are three exceptions to
this. The first is the enron dataset, where the performance is constantly decreasing. Here
the attributes are again all binary. The other exceptions are Reuters and WIPO datasets,
where the performance significantly drops for k = D . The attributes in these datasets are
very sparse. Because the vast majority of examples have value zero for any given attribute,
different (randomly selected) split thresholds only cause a very small change in the parti-
tions resulting from the splits. So, while the thresholds in different ensemble members are
different, the tests selected and data partitions produced are mainly equal. Random forests
also produce similar results, although they tend to reach their peak performance on lower
values of k. Because of bootstrapping they are again resistant to extreme performance
drops at k = D on datasets with binary and/or sparse attributes.

Based on these results, the recommended values for these two parameters can be sug-
gested. As noted above, having more trees in the ensemble improves the performance (at
the cost of time complexity), but the gains diminish as the size of the ensembles increases.
Based on the graphs from Figs. 1, 2, 3, 4, 5 and 6, we select 50 trees for both Extra-PCTs
and random forests of PCTs as an optimal setting, for all the tasks considered. This is con-
sistent with the findings of Kocev (2011), where no statistically significant improvement
was found for adding more than 50 trees to an ensemble.

Selecting the value for k is less straightforward because peak performance is reached
at very different values, depending on the method and dataset. For every task we select
the value of k that produces the best average rank among the datasets for that task, sepa-
rately for Extra-PCTs and random forests. To do so, we only compare different values
of k with 50 trees in the ensemble. For Extra-PCTs we also treat datasets with only
binary and/or sparse datasets separately, i.e. we select k for these datasets and other
datasets separately. We also add ensembles with k = ⌈

√
D⌉ (because they are often used

in the literature) as well as bagging ensembles of PCTs (random forests with k = D ),

Fig. 6   Results for random forests of PCTs on HMC datasets for different numbers of attributes considered
in each node (subspaces as a fraction of D) and different numbers of base predictive models (i.e., no. of
trees: 10, 25, 50, 75, 100, 150, 250). The vertical dashed line is at the value for the square root from the
descriptive features

2233Machine Learning (2020) 109:2213–2241	

1 3

to see how well these selections of k perform. In the end, we compared 6 algorithms
in three different tasks (using 21, 10 and 10 datasets for the tasks of MTR, MLC and
HMC, respectively), using the Friedman test and the Nemenyi post-hoc test.

In short, for the MTR task, the average ranks of methods with different values of k
are shown in Fig. 11 in the appendix. The selected values were thus 0.5D for random
forests and 0.75D for Extra-PCTs (no binary/sparse datasets). Next, Figs. 12 and 14
in the appendix show the average ranks for different values of k for the MLC task. We
select 0.1D for random forests, 0.05D for Extra-PCTs on sparse/binary datasets and
0.3 for Extra-PCTs otherwise. Finally, Figs. 13 and 14 in the appendix show the aver-
age ranks for different values of k for the HMC task. The best performing are 0.2D
for random forests. For Extra-PCTs, 0.5D works best for datasets with sparse/binary
attributes, and 0.75D otherwise. As we can see, the best results value of k depend on the
task and algorithm, but, generally, k = 0.5D provide good results for most of the combi-
nations. A noticeable exception is MTR, where Extra-PCTs benefit from the usage of
all the features. This is probably due to a combination of the effect of the finer (w.r.t. to
other tasks) granularity of the evaluation measure used (i.e. RRMSE) and the additional
(w.r.t. random forest) dimensions of randomization.

5.2 � Extra‑PCTs ensembles vs single PCTs and other ensemble methods

In the previous section, we analyzed the influence of the number of trees and the num-
ber of attributes considered at each node on the predictive performance of Extra-PCTs
and random forests of PCTs. In this section, we perform a statistical analysis of their
performance and compare the performance of the ensemble methods (single PCTs are
used as the baseline). We consider three ensemble methods: Extra-PCTs, random forest
and bagging (remember that random forests with k = D is equivalent to bagging). The
parameters for the methods were determined above.

The results of the statistical analysis for the MTR task are presented in Fig. 7. Extra-
PCTs with recommended k have the best average rank followed by random forests with
recommended k, but the difference is not statistically significant. However, random for-
ests seem to perform quite similarly to bagging, which is not the case of Extra-PCTs.
In addition, popular choices k =

√
D and bagging have significantly worse performance

than the best Extra-PCTs. As expected, a single PCT is statistically significantly worse
than ensemble methods.

Fig. 7   Average ranking diagram
comparing Extra-PCTs to single
PCTs and other ensemble meth-
ods for the MTR task. Extra-
PCTs with recommended k
achieve the best performance on
17 of the 21 benchmark datasets

2234	 Machine Learning (2020) 109:2213–2241

1 3

Figure 8 presents the results of the statistical analysis for the MLC task. Random forests
appear to have a slight edge over other methods, however the difference to other ensemble
methods was not found to be statistically significant.

The results of the statistical comparisons for the HMC task are shown in Fig. 9. Simi-
lar to the MLC task, there are no statistically significant differences among the ensemble
methods, but Extra-PCTs and random forests, with the suggested values for k, have notice-
ably better average ranks than the others. Along with bagging, they are also statistically
significantly better than single PCTs. Selecting k =

√
D again does not seem optimal.

An additional finding is that the standard adopted in the literature for using the sqrt
function for the feature subset size for random forests yields suboptimal performance when
used in the context of structured output prediction. Similarly, the recommended values for
Extra-PCTs for the single-target regression ( k = D ) and classification ( k = sqrt ) do not
apply for the structured output prediction task.

5.3 � Feature ranking for SOP

We illustrate the potential of Extra-PCTs to be used for performing feature ranking for the
three tasks considered here. For each task, we select a dataset and check whether Extra-
PCTs combined with GENIE3 scoring can properly delineate the real features from the
100 random features included in the dataset. We perform an analysis of the rankings using
logistic regression approximation function y = f (x) , where x represents the score returned
by the proposed solution for a given feature, and y indicates if the feature is a real feature or
a random feature ( y = 0 if the feature is a real feature and y = 1 if the feature is a random
feature). The performance is then evaluated using ROC curves. Obtaining a value of 1 for
the area under the ROC curve (AUROC) indicates that the algorithm is able to perfectly

Fig. 8   Average ranking diagram
comparing Extra-PCTs to single
PCTs and other ensemble meth-
ods for the MLC task. Extra-
PCTs with recommended k
achieve the best performance on
4 of the 10 benchmark datasets

Fig. 9   Average ranking diagram
comparing Extra-PCTs to single
PCTs and other ensemble meth-
ods for the HMC task. Extra-
PCTs with recommended k
achieve the best performance on
6 of the 10 benchmark datasets

2235Machine Learning (2020) 109:2213–2241	

1 3

Fig. 10   Feature ranking illustrative results. Images on the left-hand side: Points represent features. On the
X axis we report the score returned by the proposed solution for the specific feature. On the Y axis we
report 0 if the feature is a random feature and 1 if the feature is a real feature. The sigmoid curve is deter-
mined according to a logistic regression of Y with respect to X. The function shows a clear separation
between random and real features. Images on the right-hand side: The ROC curve of the logistic regression
approximation function y = f (x) , where x represents the score returned by the proposed solution for a given
feature, and y indicates if the feature is a real feature or a random feature ( y = 0 if the feature is a real fea-
ture and y = 1 if the feature is a random feature)

2236	 Machine Learning (2020) 109:2213–2241

1 3

separate real features from random features. The value of 0.5 for AUROC indicates that the
algorithm randomly separates real features from random features.

The obtained results of the feature ranking evaluation are shown in Fig. 10. The feature
rankings correctly place the real features at the top of the ranking, ahead of the random
features. For the datasets Waterquality (MTR) and ImageCLEF07A (HMC) the separation
is perfect (AUC=1), while for the Emotions dataset the AUROC value is 0.9671. These
results indicate that the proposed Extra-PCTs can be used for performing feature ranking
for structured output prediction.

6 � Conclusions

In this work, we address the task of learning Extra-PCTs ensembles of predictive models
for structured output prediction (SOP). We investigate three SOP tasks: multi-target regres-
sion (the output is a tuple/vector of continuous variables), multi-label classification (the
output is a tuple/vector of binary variables) and hierarchical multi-label classification (the
output is a tuple/vector of binary variables organized into a hierarchy).

Ensembles have proved to be highly effective methods for improving the predictive perfor-
mance of their constituent models, especially for classification and regression tree models. In
particular, we consider the Extra-PCTs ensembles as predictive models. Extra-PCTs ensem-
bles are a well established method for predictive modelling, that has been successfully applied
to computer vision and gene network inference. As base predictive models, we propose using
predictive clustering trees (PCTs). These can be considered as a generalization of decision
trees for predicting structured outputs, including multiple continuous variables (MTR), multi-
ple binary variables (MLC) and a hierarchy of multiple binary variables (HMC).

We perform a comprehensive experimental evaluation on 41 benchmark datasets: 21
for MTR, 10 for MLC and 10 for HMC. The selection of the datasets covers a wide range
of application domains including ecology, business and life sciences. We compare the per-
formance of three ensemble learning methods: Extra-PCTs, random forests and bagging
of PCTs. Moreover, we compare the ensemble performance with a single base predictive
model (i.e., a single PCT). The performance is measured with a variety of evaluation meas-
ures used for the specific tasks.

We summarize the results of the evaluation by answering the research questions that
guided the experimental design:

1.	 What is the number of base predictive models in the ensemble to obtain good predictive
performance? Is this number stable across the tasks?

	  Including more base predictive models in the ensemble improves the predictive per-
formance, but the improvement diminishes as ensemble sizes increase. Considering
ensembles with 50 base predictive models is a good compromise between predictive
power and computational efficiency. This is valid for the three tasks considered here and
is in line with existing literature for non-SOP tasks.

2.	 What is the optimal number of splits to be considered at each node in the tree construc-
tion for each of the SOP tasks?

	  Extra-PCTs are sensitive to the number of splits considered (k), and it proved impor-
tant to treat datasets with only binary and/or sparse attributes separately. For the MTR
task (no binary/sparse datasets), the recommended values are 0.75D for Extra-PCTs

2237Machine Learning (2020) 109:2213–2241	

1 3

and 0.5D for random forests. For the MLC task, the recommended value for random
forests is 0.1D, whereas for Extra-PCTs it is 0.05D for binary/sparse datasets and
0.3D otherwise. Finally, for the HMC task, the recommended value for random forests
is 0.2D, and for Extra-PCTs it is 0.5D for binary/sparse datasets and 0.75D otherwise.
Additionally, the results show that the literature recommended values for the feature
subset size for random forests and Extra-PCTs yield suboptimal performance when
used in the context of structured output prediction.

3.	 Do Extra-PCTs ensembles yield better predictive performance than a single PCT?
	  The ensemble methods statistically significantly outperform single PCTs. For the

MTR task, all of the ensembles are significantly better than a single PCT. For the MLC
task, all of the ensembles are better than a single tree, while the difference is statisti-
cally significant only for random forests. For the HMC task, all of the ensembles are
better than a single tree, while the difference is statistically significant for bagging and
Extra-PCTs and random forests with recommended k values.

4.	 How does the predictive performance of Extra-PCTs compare to the predictive perfor-
mance of standard tree-ensemble methods, such as bagging and random forest of PCTs?

	  For the MTR and HMC tasks, Extra-PCTs are the best performing method. The dif-
ferences are sometimes statistically significant for the MTR task, where Extra-PCTs with
recommended k are significantly better than bagging, random forests with k =

√
D and

Extra-PCTs with k =
√
D . The best performing method for the MLC task is random forest

with 0.1D, but the differences among ensemble methods were not statistically significant.
5.	 Can Extra-PCTs be used to obtain a feature ranking for domains with structured out-

puts?
	  The proof-of-concept experiments illustrate that Extra-PCTs can be used to obtain fea-

ture rankings across the SOP tasks considered here. The results show that the real features
are placed at the top of the ranking, while the added random feature is at the bottom of the
ranking.

 We plan to extend the work along the following major dimensions. First, Extra-PCTs can
be extended to other types of structured outputs (such as time series or tuples of mixed
primitive data types, both continuous and discrete). Next, other (more complex) distance
measures on structured types can be used, thus extending the applicability of the method to
new domains. Furthermore, we will extend Extra-PCTs towards semi-supervised learning.
Finally, we plan to investigate in depth the potential of Extra-PCTs for performing feature
ranking in the context of the SOP tasks considered here.

Acknowledgements  We acknowledge the financial support of the European Commission through the grants
ICT-2013-612944 MAESTRA and H2020-688797 TOREADOR, as well as the Slovenian Research Agency
(via the grant J2-9230 and a young researcher Grant to TS). The computational experiments were executed
on a computing infrastructure from the Slovenian Grid (SLING) initiative. We finally thank Lynn Rudd for
her help in reading the manuscript.

A Appendix

See Figs. 11, 12, 13 and 14.

2238	 Machine Learning (2020) 109:2213–2241

1 3

Fig. 11   Average ranking diagrams of Extra-PCTs (left) and random forests of PCTs (right) with a different
number of attributes considered in each node, for the task of MTR using RRMSE as the performance measure

Fig. 12   Average ranking diagrams of Extra-PCTs on datasets with only binary/sparse attributes (left) and
others (right), with a different number of attributes considered in each node, for the task of MLC using
Ranking Loss as the performance measure

Fig. 13   Average ranking diagrams of Extra-PCTs on datasets with only binary/sparse attributes (left) and
others (right), with a different number of attributes considered in each node, for the task of HMC using
AUPRC as the performance measure

Fig. 14   Average ranking diagrams of random forests of PCTs with a different number of attributes consid-
ered in each node, for the tasks of MLC (left) and HMC (right)

2239Machine Learning (2020) 109:2213–2241	

1 3

References

(2007) ISO/IEC 11404:2007–Information technology–General-Purpose Datatypes (GPD). http://www.iso.
org/iso/catal​ogue_detai​l.htm?csnum​ber=39479​

Aho, T., Ženko, B., Džeroski, S., & Elomaa, T. (2012). Multi-target regression with rule ensembles. Journal
of Machine Learning Research, 13, 2367–2407.

Appice, A., & Džeroski, S. (2007). Stepwise induction of multi-target model trees. In Machine learning:
ECML 2007, LNCS (Vol. 4701, pp. 502–509).

Bakır, G. H., Hofmann, T., Schölkopf, B., Smola, A. J., Taskar, B., & Vishwanathan, S. V. N. (2007). Pre-
dicting structured data. Neural Information Processing: The MIT Press.

Barutcuoglu, Z., Schapire, R. E., & Troyanskaya, O. G. (2006). Hierarchical multi-label prediction of gene
function. Bioinformatics, 22(7), 830–836.

Bauer, E., & Kohavi, R. (1999). An empirical comparison of voting classification algorithms: Bagging,
boosting, and variants. Machine Learning, 36(1), 105–139.

Blockeel, H., Raedt, L. D., & Ramon, J. (1998). Top-down induction of clustering trees. In Proceedings of
the 15th international conference on machine learning (pp. 55–63), Morgan Kaufmann.

Blockeel, H., Bruynooghe, M., Džeroski, S., Ramon, J., & Struyf, J. (2002). Hierarchical multi–classifica-
tion. In KDD-2002 Workshop Notes: MRDM 2002, Workshop on Multi-Relational Data Mining (pp.
21–35).

Bogatinovski, J. (2019). A comprehensive study of multi-label classification methods. M.S. thesis, Jožef
Stefan International Postgraduate School, Ljubljana, Slovenia.

Borchani, H., Varando, G., Bielza, C., & Larrañaga, P. (2015). A survey on multi-output regression. Wiley
Int Rev Data Min and Knowl Disc, 5(5), 216–233.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
Breiman, L., & Friedman, J. (1997). Predicting multivariate responses in multiple linear regression. Journal

of the Royal Statistical Society: Series B (Statistical Methodology), 59(1), 3–54.
Breiman, L., Friedman, J., Olshen, R., & Stone, C. J. (1984). Classification and regression trees. New York:

Chapman and Hall/CRC.
Breskvar, M., Kocev, D., & Džeroski, S. (2018). Ensembles for multi-target regression with random output

selections. Machine Learning, 107(11), 1673–1709.
Brown, P. J., & Zidek, J. V. (1980). Adaptive multivariate ridge regression. The Annals of Statistics, 8(1),

64–74.
Ceci, M., & Malerba, D. (2007). Classifying web documents in a hierarchy of categories: A comprehensive

study. Journal of Intelligent Information Systems, 28(1), 37–78.
Cerri, R., Pappa, G. L., Carvalho, A. C. P., & Freitas, A. A. (2015). An extensive evaluation of decision

tree-based hierarchical multilabel classification methods and performance measures. Computational
Intelligence, 31(1), 1–46.

Cerri, R., Barros, R. C., de Carvalho, P. L. F., & Jin, A. C. Y. (2016). Reduction strategies for hierarchical
multi-label classification in protein function prediction. BMC Bioinformatics, 17(1), 373–374.

Clare, A. (2003). Machine learning and data mining for yeast functional genomics. Ph.D. thesis, University
of Wales Aberystwyth, Aberystwyth, Wales, UK.

Crammer, K., & Singer, Y. (2003). A family of additive online algorithms for category ranking. Journal of
Machine Learning Research, 3, 1025–1058.

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learn-
ing Research, 7, 1–30.

Dietterich, T. G., Domingos, P., Getoor, L., Muggleton, S., & Tadepalli, P. (2008). Structured machine
learning: The next ten years. Machine Learning, 73(1), 3–23.

Evgeniou, T., Micchelli, C. A., & Pontil, M. (2005). Learning multiple tasks with kernel methods. Journal
of Machine Learning Research, 6, 615–637.

Friedman, M. (1940). A comparison of alternative tests of significance for the problem of m rankings.
Annals of Mathematical Statistics, 11, 86–92.

Fürnkranz, J. (2002). Round robin classification. Journal of Machine Learning Research, 2, 721–747.
Gärtner, T., & Vembu, S. (2009). On structured output training: Hard cases and an efficient alternative.

Machine Learning, 76, 227–242.
Geurts, P., Ernst, D., & Wehenkel, L. (2006a). Extremely randomized trees. Machine Learning, 63(1),

3–42.
Geurts, P., Wehenkel, L., & D’Alché-Buc, F. (2006b). Kernelizing the output of tree–based methods. In

ICML ’06: Proceedings of the 23rd international conference on machine learning (pp. 345–352),
ACM.

http://www.iso.org/iso/catalogue_detail.htm?csnumber=39479
http://www.iso.org/iso/catalogue_detail.htm?csnumber=39479

2240	 Machine Learning (2020) 109:2213–2241

1 3

Gjorgjioski, V., Kocev, D., & Džeroski, S. (2011). Comparison of distances for multi-label classification
with pcts. In Proceedings of the 14th international multiconference-information society IS 2011
(pp. 121–124), IJS, Ljubljana.

Ho, C., Ye, Y., Jiang, C. R., Lee, W. T., & Huang, H. (2018). Hierlpr: Decision making in hierarchical
multi-label classification with local precision rates.

Huynh-Thu, V. A., Irrthum, A., Wehenkel, L., & Geurts, P. (2010). Inferring regulatory networks from
expression data using tree-based methods. PLoS ONE, 5(9), 1–10.

Kocev, D. (2011). Ensembles for predicting structured outputs. Ph.D. thesis, Jožef Stefan International
Postgraduate School, Ljubljana, Slovenia.

Kocev, D., & Ceci, M. (2015). Ensembles of extremely randomized trees for multi-target regression. In
Discovery science: 18th international conference (DS 2015), LNCS (Vol. 9356, pp. 86–100).

Kocev, D., Vens, C., Struyf, J., & Džeroski, S. (2013). Tree ensembles for predicting structured outputs.
Pattern Recognition, 46(3), 817–833.

Kriegel, H. P., Borgwardt, K., Kröger, P., Pryakhin, A., Schubert, M., & Zimek, A. (2007). Future trends
in data mining. Data Mining and Knowledge Discovery, 15, 87–97.

Levatić, J., Kocev, D., Ceci, M., & Džeroski, S. (2018). Semi-supervised trees for multi-target regres-
sion. Information Sciences, 450, 109–127.

Liu, G., Lin, Z., & Yu, Y. (2009). Multi-output regression on the output manifold. Pattern Recognition,
42(11), 2737–2743.

Madjarov, G., Kocev, D., Gjorgjevikj, D., & Džeroski, S. (2012). An extensive experimental comparison
of methods for multi-label learning. Pattern Recognition, 45(9), 3084–3104.

Maree, R., Geurts, P., Piater, J., & Wehenkel, L. (2005). Random subwindows for robust image classifi-
cation. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR),
1, 34–40.

Mileski, V. (2017). Tree methods for hierarchical multi-target regression. M.S. thesis, Jožef Stefan Inter-
national Postgraduate School, Ljubljana, Slovenia.

Nemenyi, P.B. (1963). Distribution-free multiple comparisons. Ph.D. thesis, Princeton University,
Princeton, NY, USA.

Panov, P., Soldatova, L. N., & Džeroski, S. (2016). Generic ontology of datatypes. Information Sciences,
329, 900–920.

Radivojac, P., et al. (2013). A large-scale evaluation of computational protein function prediction.
Nature Methods, 10, 221–227.

Read, J., Pfahringer, B., Holmes, G., & Frank, E. (2011). Classifier chains for multi-label classification.
Machine Learning, 85(3), 333–359.

Rousu, J., Saunders, C., Szedmak, S., & Shawe-Taylor, J. (2006). Kernel-based learning of hierarchical
multilabel classification models. Journal of Machine Learning Research, 7, 1601–1626.

Ruyssinck, J., Huynh-Thu, V. A., Geurts, P., Dhaene, T., Demeester, P., & Saeys, Y. (2014). NIMEFI:
Gene regulatory network inference using multiple ensemble feature importance algorithms. PLoS
ONE, 9(3), 1–13.

Schapire, R. E., & Singer, Y. (2000). Boostexter: A boosting-based system for text categorization.
Machine Learning, 39, 135–168.

Schietgat, L., Vens, C., Struyf, J., Blockeel, H., Kocev, D., & Džeroski, S. (2010). Predicting gene func-
tion using hierarchical multi-label decision tree ensembles. BMC Bioinformatics, 11(2), 1–14.

Silla, C., & Freitas, A. (2011). A survey of hierarchical classification across different application
domains. Data Mining and Knowledge Discovery, 22(1–2), 31–72.

Spyromitros-Xioufis, E., Tsoumakas, G., Groves, W., & Vlahavas, I. (2016). Multi-target regression via
input space expansion: Treating targets as inputs. Machine Learning, 5, 1–44.

Stojanova, D., Ceci, M., Malerba, D., & Džeroski, S. (2013). Using PPI network autocorrelation in hier-
archical multi-label classification trees for gene function prediction. BMC Bioinformatics, 14, 285.

Struyf, J., & Džeroski, S. (2006). Constraint based induction of multi-objective regression trees. In Pro-
ceedings of the 4th international workshop on knowledge discovery in inductive databases KDID
(LNCS 3933) (pp. 222–233), Springer.

Tian, W., Zhang, L. V., Taşan, M., Gibbons, F. D., King, O. D., Park, J., Wunderlich, Z., Cherry, J. M., &
Roth, F. P. (2008). Combining guilt–by–association and guilt–by–profiling to predict Saccharomyces
cerevisiae gene function. Genome Biology 9(S1):S7.

Tsoumakas, G., & Vlahavas, I. (2007). Random k-labelsets: An ensemble method for multilabel classifica-
tion. In Proceedings of the 18th European conference on machine learning (pp. 406–417).

Tsoumakas, G., Katakis, I., & Vlahavas, I. (2008). Effective and Efficient Multilabel Classification in
Domains with Large Number of Labels. In Proceedings of the ECML/PKDD workshop on mining mul-
tidimensional data (pp. 30–44).

2241Machine Learning (2020) 109:2213–2241	

1 3

Tsoumakas, G., Katakis, I., & Vlahavas, I. (2010). Mining multi-label data. Data mining and knowledge
discovery handbook (pp. 667–685). Berlin: Springer.

Tsoumakas, G., Spyromitros-Xioufis, E., Vrekou, A., & Vlahavas, I. (2014). Multi-target regression via ran-
dom linear target combinations. In Machine learning and knowledge discovery in databases: ECML-
PKDD 2014 (Vol. 8726, pp. 225–240), LNCS.

Valentini, G., & Re, M. (2009). Weighted true path rule: a multilabel hierarchical algorithm for gene func-
tion prediction. In Proceedings of the 1st international workshop on learning from multi-label data
(pp. 133–146).

Vens, C., Struyf, J., Schietgat, L., Džeroski, S., & Blockeel, H. (2008). Decision trees for hierarchical multi-
label classification. Machine Learning, 73(2), 185–214.

Škunca, N., Bošnjak, M., Kriško, A., Panov, P., Džeroski, S., Šmuc, T., et al. (2013). Phyletic profiling with
cliques of orthologs is enhanced by signatures of paralogy relationships. PLOS Computational Biol-
ogy, 9(1), 1–14.

Witten, I. H., & Frank, E. (2005). Data Mining: Practical Machine Learning Tools and Techniques. Morgan
Kaufmann.

Zhang, M. L., & Zhou, Z. H. (2007). Ml-knn: A lazy learning approach to multi-label learning. Pattern Rec-
ognition, 40(7), 2038–2048.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Affiliations

Dragi Kocev1,2,3  · Michelangelo Ceci1,2,4 · Tomaž Stepišnik2,3

	 Michelangelo Ceci
	 michelangelo.ceci@uniba.it

	 Tomaž Stepišnik
	 Tomaz.Stepisnik@ijs.si

1	 Department of Computer Science, University of Bari Aldo Moro, Bari, Italy
2	 Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana, Slovenia
3	 Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
4	 CINI - Consorzio Interuniversitario Nazionale per l’Informatica, Rome, Italy

http://orcid.org/0000-0003-0687-0878

	Ensembles of extremely randomized predictive clustering trees for predicting structured outputs
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Definition of the tasks
	2.2 Related work

	3 Extra-PCTs for structured output prediction
	3.1 Learning a single Extra-PCT
	3.2 Creating an ensemble of Extra-PCTs algorithm
	3.3 Feature ranking for structured outputs with Extra-PCTs
	3.4 Computational complexity of the Extra-PCTs algorithm

	4 Experimental design
	4.1 Data description
	4.2 Experimental setup

	5 Results and discussion
	5.1 Influence of the feature subset size and the number of base predictive models
	5.2 Extra-PCTs ensembles vs single PCTs and other ensemble methods
	5.3 Feature ranking for SOP

	6 Conclusions
	Acknowledgements
	References

