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a b s t r a c t 

A multi-label dataset consists of observations associated with one or more outcomes. The 

traditional classification task generalizes to the prediction of several class labels simul- 

taneously. In this paper, we propose a new nearest neighbor based multi-label method. 

The nearest neighbor approach remains an intuitive and effective way to solve classifi- 

cation problems and popular multi-label classifiers adhering to this paradigm include the 

MLKNN and IBLR methods. To classify an instance, our proposal derives a consensus among 

the labelsets of the nearest neighbors based on fuzzy rough set theory. This mathemati- 

cal framework captures data uncertainty and offers a way to extract a labelset from the 

dataset that summarizes the information contained in the labelsets of the neighbors. In 

our experimental study, we compare the performance of our method with five other near- 

est neighbor based multi-label classifiers using five evaluation metrics commonly used in 

multi-label classification. Based on the results on both synthetic and real-world datasets, 

we are able to conclude that our method is a strong competitor to nearest neighbor based 

multi-label classifiers like MLKNN and IBLR. 

© 2017 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

1. Introduction 

Research in machine learning concerns the ability to learn a confident prediction model based on a set of observations.

For example, in a classification context, a learner trains a classification model on the given elements, of which the outcomes

are known, and uses the derived model to predict the outcome of previously unseen instances. In the traditional single-label

setting, each observation is associated with one outcome, its class label. Multi-label learning [16,18,60] represents a more

general approach, where an observation can belong to several classes at the same time, that is, more than one class label

can be associated with the same instance. The total number of classes is known, but the number of labels per instance

can differ across the dataset. Multi-label learning can be more challenging than single-label learning or learning all possible

classes independently, as correlations between some classes may be present. An example of such a situation is the existence

of a label hierarchy, which needs to be taken into account in the prediction process [37] . Application domains of multi-label

classification include image processing (e.g. [24,49] ), text categorization (e.g. [29,31] ) and bioinformatics (e.g. [5,44] ). 
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In a multi-label dataset, every instance x is described by a number of input features and associated with a labelset. This

labelset is represented as a binary vector L x = 〈 l 1 (x ) , l 2 (x ) , . . . , l m 

(x ) 〉 , with m the total number of possible class labels in the

dataset and ( ∀ i )( l i ∈ {0, 1}). The value l i ( x ) indicates whether or not x belongs to class l i . The task of a multi-label classifier is

to predict the complete labelset of a target instance. This is inherently different from single-label classification, where only

one outcome label needs to be predicted. 

Several approaches to multi-label classification have been proposed in the literature. The recent overview book [18] dis-

cerns between two main families, the data transformation methods and method adaptation algorithms. The former group

of methods applies a transformation to the multi-label dataset, such that it degenerates to one or more easier-to-handle

single-label problems, on which a single-label classifier can be applied. Two well-known representatives of this family are

the binary relevance (BR, [17] ) and label powerset (LP, [3] ) transformations. BR creates m binary single-label datasets, one for

each class. Each dataset contains the same instances as the original multi-label dataset, but their labelsets are transformed to

a single label. For the dataset associated with class l i , an instance x receives the label ‘positive’ when l i (x ) = 1 and ‘negative’

otherwise. The LP transformation on the other hand creates only one single-label dataset. Each possible labelset receives

an identifier, such that labelsets that entirely coincide are associated with the same identifier. This identifier is used as the

single new class label. The second family of multi-label classification algorithms handle the multi-label dataset directly and

are often based on modifications or generalizations of existing single-label classification schemes. An example is the MLKNN

method proposed in [59] . 

In this paper, we focus on nearest neighbor methods for multi-instance classification, of which MLKNN is an example.

The nearest neighbor approach [11] is an intuitive way to predict an outcome for a new observation based on a set of

known instances. In its simplest form, it requires no training phase, since no classification model is built. Instead, all known

instances are stored in memory as prototypes. In order to predict the outcome of a target instance, its nearest element

(or set of nearest elements) is extracted from the prototype set and the prediction is derived from the outcomes of these

neighbors. In particular, to classify an instance x , the k nearest neighbor classifier (kNN) locates the k nearest elements

among the stored instances and aggregates their class labels to a prediction for x . In single-label classification, this is com-

monly achieved by a majority vote. The kNN classifier is a simple and understandable algorithm and remains popular in

the machine learning community [46] . Several multi-label classifiers based on or extending kNN have been proposed in the

literature. We propose a new member of this family in this contribution and use a novel way to aggregate the labelsets of

the k nearest neighbors to a prediction based on fuzzy rough set theory. 

Fuzzy rough set theory [12] is an alternative to traditional set theory and models uncertainty in data. It covers two

complimentary aspects of uncertainty, namely vagueness (fuzziness) and indiscernibility (roughness). The former relates to

unclear descriptions of concepts, to which elements can belong to a certain degree. As an example, the set of elements that

are similar to a given element x is necessarily fuzzy, since some elements are intrinsically more similar to x than others and

making a strict division between similar and non-similar is difficult. The membership degree of an element to a fuzzy set

is represented by a real number between 0 and 1. Roughness in a dataset concerns the issue when observations that are

indiscernible with respect to their descriptive features have distinct outcomes. In such a situation, it is challenging to sharply

delineate the outcome concept based on the input features. Instead, a lower and an upper approximation are provided. Fuzzy

rough set theory was developed as a hybridization of fuzzy set theory [58] and rough set theory [32] and has been used

successfully in a variety of machine learning techniques [40] . It provides a framework to approximate a concept by two

fuzzy sets, the fuzzy rough lower and upper approximation. 

The fuzzy rough approximation operators are essentially based on a similarity relation that measures the degree to which

elements are similar to each other. As such, they are related to nearest neighbor approaches. In this paper, we use these

operators to derive a consensus prediction from the labelsets of the k nearest neighbors of a target instance. In particular,

each of the neighbors of the target instance may have a different labelset and the challenge is to aggregate this information

to one predicted labelset. Fuzzy rough set theory forms an ideal means to do so. Based on the similarity of the neighbors

to the target, an appropriate consensus labelset is derived. We will experimentally show that our approach can outperform

state-of-the-art nearest neighbor based multi-label classifiers. Following the recent study of Reyes et al. [34] , we limit the

comparison of our proposal to the state-of-the-art within the same classifier family, the nearest neighbor methods 

The remainder of the paper is structured as follows. In Section 2 , we review the existing nearest neighbor based multi-

label classifiers. Section 3 recalls fuzzy rough set theory and describes our proposed classification method. Our method is

carefully evaluated in an experimental study, of which the set-up is described in Section 4 . Section 5 lists and analyzes the

experimental results. Finally, Section 6 concludes the paper. We note that additional content, including the full experimental

results, is made available at our web page http://www.cwi.ugent.be/sarah.php . 

2. Related work: nearest neighbor based multi-label classifiers 

To focus our discussion, we consider a subgroup of multi-label classifiers, namely those based on the nearest neigh-

bor paradigm. Several nearest neighbor based multi-label classifiers have been proposed in the literature. We provide an

overview in this section. In our experimental study, we select a number of these methods to compare among each other

and against our proposed classifier. This selection is made based on the popularity and performance of these methods in

other experimental studies. We also take into account how many parameters should be set by the user. The more parameters

that need to be set manually, the less attractive a method is for practical use. 

http://www.cwi.ugent.be/sarah.php
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2.1. Basic unweighted approaches 

Two basic approaches were proposed in [35] , by combining the LP and BR transformations with the single-label kNN

classifier. The LPKNN method classifies an instance by first locating its k nearest neighbors and then predicting the most

prevalent labelset among these elements. The BRKNN method is equivalent to using the single-label kNN method within a

binary relevance setup, but runs considerably faster, since it computes the nearest neighbors of an instance only once instead

of m times. The classifier assigns x to a class l when this label is present in at least half of its nearest neighbors. Using this

heuristic, it is possible that x is not assigned to any class at all. To address this issue, the authors of [35] developed two

extensions, called BRKNN-a and BRKNN-b. For each class l , these methods set the label confidence score to the percentage

of the nearest neighbors of x that belong to class l . When none of the classes is present in at least half of its neighbors,

BRKNN-a assigns x to the class with the highest label confidence score, while BRKNN-b assigns x to the s classes with the

highest label confidence score, where s is the average size of the labelsets of the neighbors of x . In the later work of Geng

et al. [15] , the authors proposed the BRKNN-new algorithm as an improvement of BRKNN by considering label correlations. 

The class-balanced k nearest neighbor (BKNN, [43] ) and multi-label categorical kNN method (ML-CKNN, [22] ) compute

class scores based on the nearest neighbors of an instance within a class and predict the classes for which the score exceeds

a given threshold. The BRkSC and BRSC methods of Liu et al. [28] follow a similar idea, but are based on the shell-nearest

neighbor algorithm [61] . The so-called class certainty factors are determined based on the approximate shell-nearest neigh-

bors of the instance to classify. 

2.2. Basic weighted approaches 

It is a common idea to incorporate weights in a nearest neighbor method, in order to increase the importance of certain

neighbors. In [8] , the authors propose a ranking-based KNN approach that assigns weights to the nearest neighbors of an

element to reflect how trustworthy their labels are. To classify an instance, its k nearest neighbors are ranked according

to this trust measure and a weighted voting strategy is used to derive the prediction. Similarly, the study of Herrera et al.

[48] proposed a distance-weighted multi-label k nearest neighbor algorithm called MLC-DWkNN, which assigns an instance

to class l when the sum of the weights of the neighbors that belong to l exceeds the sum of the weights of the neigh-

bors that do not. Another weighted nearest neighbor approach to multi-label classification is the Margin-Ratio kNN method

(Mr.kNN, [27] ). Relevance values of training instances, computed based on a modified fuzzy c-means clustering method, are

used as weights in the voting procedure of a k nearest neighbor classifier. 

2.3. MLKNN and related methods 

The MLKNN method from [59] was introduced as one of the first lazy multi-label classifiers and remains popular today.

It makes label predictions based on the maximum a posteriori principle and the k nearest neighbors of a target instance.

Simply put, it counts the occurrences of all classes among the neighbors and evaluates how likely the presence of a class

label is based on these counts. 

It has been pointed out in the literature that a limitation of the MLKNN method is that it does not take label correlations

into account. The DMLKNN method of Younes et al. [52,56] deals with this shortcoming by considering a global maximum a

posteriori rule. The FSKNN method [23] uses a fuzzy similarity measure to first group the training elements into clusters. It

reduces the computational cost of the neighbor search of MLKNN, since it only uses a subset of the clusters to locate them.

2.4. Other nearest neighbor based multi-label classifiers 

The authors of [6] proposed the IBLR method that combines nearest neighbor based learning and logistic regression. The

class labels of the neighbors of an element are considered as supplementary features. One classifier, a logistic regression

model, is trained for each class, but dependencies between labels are taken into account. The IBLR+ generalization takes

additional features of the target instance into account, aside from its neighborhood information. In IBLR, the bias term of

the logistic regression model is constant, while it depends on the target instance in IBLR+. 

The MLRS method was proposed in [57] and is a nearest neighbor method based on neighborhood rough sets [20,51] .

At training time, this method computes, for each pair of labels, the conditional probability that a label l i occurs when the

presence of label l j is already known. Next, to classify an instance x , its k nearest neighbors are located, based on which

the marginal probabilities for the presence of the class labels is determined. Finally, for each class label, the probability that

x belongs to this class is calculated. As additional input, this method requires a threshold on the class probability values,

above which a class label is accepted. 

Two fuzzy nearest neighbor approaches to multi-label classification are the FkNN [2] and Fuzzy Veristic kNN (FV-kNN,

[55] ) methods. The former is an adaptation of the fuzzy nearest neighbor classifier [26] , while the latter uses a fuzzy kNN

rule based on the theory of veristic variables, which can take on several values at once with different degrees. 

Other proposals include a kernel-based kNN approach for multi-label propagation [25] , the Mallows method [7] based

on calibrated label ranking [14] and the Mallows model [30] , the multi-label ranking method kNN-MLR 

∗ [4] , the RW.kNN
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method [47] based on random walks in a neighborhood graph and the evidential multi-label kNN method (EML-kNN,

[53,54] ) based of an extension of the Dempster-Shafer framework to the multi-label setting. 

Finally, we can refer the reader to the recent work of Reyes et al. [34] , where the authors reviewed several nearest

neighbor multi-label classifier and proposed a new method called MLDGC based on the data gravitation based algorithm.

Their proposal is compared to several representatives of the nearest neighbor multi-label classifier family. The authors of

this study also outline guidelines for new proposals within this classifier family, which we follow in this paper. 

3. Fuzzy rough multi-label classifier 

In this section, we present our proposal, that uses fuzzy rough set theory to construct an appropriate consensus among

the labelsets of the k nearest neighbors of a target instance. In Section 3.1 , we first provide the necessary background on

fuzzy rough set theory. Section 3.2 introduces our proposal. 

3.1. Fuzzy rough set theory 

Rough set theory was proposed in [32] and deals with indiscernibility in data. At its core lies the definition of an equiv-

alence relation, that partitions the universe in equivalence classes. Two elements that belong to the same equivalence class

are indiscernible based on the measured features. Commonly, this is the case when they take on the same value for all fea-

tures. When a concept C can be described as an exact union of equivalence classes, there is no ambiguity in its definition. In

the other case, when C contains some equivalence classes only partially, uncertainty is present. Rough set theory describes

such a set C by two other sets, the lower approximation C and upper approximation C , that approximate C in two ways. The

former is defined as the union of equivalence classes fully included in C , while the latter corresponds to the union of the

equivalence classes that have a non-empty intersection with C . 

In order to make rough sets more flexible, e.g. allowing a graded rather than strict similarity between elements, the

authors of [12] combined it with fuzzy set theory [58] and proposed fuzzy rough set theory. When C is a fuzzy set, any

element x can partially belong to it, expressed by its membership degree C ( x ) ∈ [0, 1]. Likewise, a fuzzy relation R ( · , · ) takes

on values between 0 and 1 and expresses how strongly its two arguments are related. In fuzzy rough set theory, a concept C

is approximated by two fuzzy sets, the fuzzy rough lower and upper approximation. In the general implicator/t-norm fuzzy

rough set model [33] , the membership degree of an element x to the lower approximation of C is computed as 

C (x ) = min 

y ∈ X 
[ I(R (x, y ) , C(y ))] , (1)

where the implicator I : [0 , 1] 2 → [0 , 1] is an operator that is decreasing in its first argument, increasing in the second

and satisfies the boundary conditions I(0 , 0) = I(0 , 1) = I(1 , 1) = 1 and I(1 , 0) = 0 . The relation R ( · , · ) computes the

feature similarity between two elements and is assumed to satisfy at least reflexivity ( (∀ x )(R (x, x ) = 1) ) and symmetry

( (∀ x, y )(R (x, y ) = R (y, x )) ). The upper approximation is defined as 

C (x ) = max 
y ∈ X 

[ T (R (x, y ) , C(y ))] , (2)

where the t-norm T : [0 , 1] 2 → [0 , 1] is a commutative and associative operator that is increasing in both arguments and

satisfies the boundary condition (∀ a ∈ [0 , 1])(T (a, 1) = a ) . 

It has been noted in the literature that the traditional fuzzy rough set model is highly sensitive to noise in the data

and several robust alternatives have been proposed, see e.g. the review paper [21] . An example noise-tolerant version is

the OWA-based fuzzy rough set model proposed in [10] , which replaces the minimum and maximum operators by ordered

weighted average (OWA, [50] ) aggregations. The OWA aggregation with weight vector W = 〈 w 1 , w 2 , . . . , w p 〉 of a set of values

 = { v 1 , v 2 , . . . , v p } is defined as OWA (V ) = 

∑ p 
i =1 

w i v ′ i , where v ′ 
i 

is the i th largest value in V . The OWA-based lower and upper

approximations are respectively given by 

C (x ) = OWA W L 
({I(R (x, y ) , C(y )) | y ∈ X } ) (3)

and 

C (x ) = OWA W U 
({T (R (x, y ) , C(y )) | y ∈ X } ) . (4)

The weight vectors W L and W U should be chosen appropriately, such that they resemble a minimum and maximum op-

erator respectively. The OWA-based model reduces to the traditional model (1) –(2) , when the weight vectors are set to

 L = 〈 0 , 0 , . . . , 0 , 1 〉 and W U = 〈 1 , 0 , . . . , 0 , 0 〉 . Three other possible choices [38] are additive, exponential and inverse addi-

tive weights, for which the lower approximation weight vectors are defined as 

W 

add 
L = 

〈
2 

p(p + 1) 
, 

4 

p(p + 1) 
, . . . , 

2(p − 1) 

p(p + 1) 
, 

2 

p + 1 

〉

W 

exp 
L 

= 

〈
1 

2 

p − 1 

, 
2 

2 

p − 1 

, . . . , 
2 

p−2 

2 

p − 1 

, 
2 

p−1 

2 

p − 1 

〉
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in v add 
L = 

〈
1 

pD p 
, 

1 

(p − 1) D p 
, . . . , 

1 

2 D p 
, 

1 

D p 

〉
, 

with D p = 

∑ p 
i =1 

1 
i 
, the p th harmonic number. For these weighting schemes, for a given length p , the upper approximation

weight vector W U is a reversal of W L . 

3.2. Proposed method: Fuzzy ROugh NEighborhood Consensus (FRONEC) 

In this section, we develop our fuzzy rough multi-label classifier FRONEC, short for fuzzy rough neighborhood consensus.

It is related to the BRKNN and LPKNN methods ( Section 2.1 ), that first locate the k nearest neighbors of the instance x to

classify. Afterward, BRKNN and LPKNN predict the labels of x by aggregating the labelsets of these neighbors. The former

does so by retaining the labels that appear in at least 50% of the neighbors, while the latter predicts the labelset that most

frequently occurs among the neighbors. We posit that fuzzy rough set theory can provide a more suitable way to construct

a consensus labelset based on the k nearest neighbors of x . 

We base our consensus derivation on the notion of the fuzzy rough positive region. In the traditional fuzzy rough set

model, the membership degree of x to the positive region is defined as 

P OS(x ) = max 
y ∈ X 

[ min 

z∈ X 
[ I(R (z, x ) , R d (y, z)]] , (5)

where X is the training set and relation R d ( · , · ) expresses the label similarity of two elements. This expression can be

summarized as P OS(x ) = max y ∈ X [ q x (y )] , where q x ( y ) measures the quality of y relevant to x . The POS ( · ) operator locates

the element y for which the membership degree of x to the fuzzy concept R d ( y , · ) is largest. In single-instance learning, the

label similarity relation is crisp, that is, two elements x and y either have the same class label ( R d (x, y ) = 1 ) or they do not

( R d (x, y ) = 0 ). In this case, the definition of the positive region reduces to the membership degree of x to its own decision

class [9] . This value has been used as an instance quality measure in e.g. [39] . 

Within FRONEC, when classifying x , we use a quality metric Q x ( · ) that is based on the definition of the positive region.

Our method proceeds as follows: 

1. Define the set N ( x ) of the k nearest neighbors of x in the training set. 

2. Construct the set Y that consists of elements y for which Q x ( y ) is largest ( Section 3.2.1 ). Multiple elements y may tie for

the highest value. 

3. Any class that appears in at least half of the elements of Y is predicted for x . 

Our experiments show that the third step is often superfluous, as the labelsets of all instances in Y usually coincide. Note

that the elements in Y are not required to be located in the vicinity of x (e.g. Y 	⊆ N(x ) ). Only their labelsets, which represent

an appropriate consensus of those of the neighbors, are of importance. The elements in Y have the largest encountered

values of Q x ( y ), that is, the quality of their labelset with relation to x is highest. The selection of the elements with the

largest Q x values relates back to the presence of the maximum operator in (5) . 

3.2.1. Instance quality measure 

The instance quality measure Q x ( · ) is based on the definition of the fuzzy rough positive region (5) . We make two

notable modifications: 

1. In the interest of computational cost, we reduce the set of elements over which the minimum is taken to the k nearest

neighbors of x . This is exactly the set for which we wish to find a consensus labelset. 

2. We replace the minimum operator by an OWA aggregation. In this way, our quality measure can benefit from the supe-

rior robustness properties of the OWA-based fuzzy rough set model. 

We consider three different definitions for Q x ( · ), given the instance x to classify. The quality measure in FRONEC-1 stays

closest to (5) and is defined as 

Q 

(1) 
x (y ) = OWA W L 

({I(R (z, x ) , R d (y, z)) | z ∈ N(x ) } ) . (6)

This measure is related to the OWA-based fuzzy rough lower approximation (3) . In version FRONEC-2, we consider the use

of the fuzzy rough upper approximation and set 

Q 

(2) 
x (y ) = OWA W U 

({T (R (z, x ) , R d (y, z)) | z ∈ N(x ) } ) . (7)

Finally, the third version FRONEC-3 combines both and computes 
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Q 

(3) 
x (y ) = 

Q 

(1) 
x (y ) + Q 

(2) 
x (y ) 

2 

. (8)

3.2.2. Label similarity relation 

A crucial component of the quality calculation is the label similarity relation R d ( · , · ). In a multi-label dataset,

R d ( x, y ) expresses how similar the labelsets of instances x and y are. The comparison between two labelsets L x and L y
can be summarized in a 2x2 table: 

L y = 1 L y = 0 

L x = 1 a b 
L x = 0 c d 

The value of a relates to classes that are present in both labelsets, d to classes that are absent in both and b and c to classes

that occur in only one of the two sets. They can be aggregated to R d (x, y ) = 

a + d 
a + b+ c+ d . We consider two ways to calculate the

values a, b, c and d . 

Firstly, the Hamming based similarity relation R (1) 
d 

(·, ·) is the complement of the normalized Hamming distance between

the labelsets of two elements. It is defined as 

R 

(1) 
d 

(x, y ) = 1 − | L x � L y | 
m 

, (9)

where the � operator constructs the symmetric difference between its two arguments and the | · | operation measures

the cardinality of the resulting set. This relation can take on only a limited set of values, namely those in the set{
i 

m 

| i = 0 , 1 , . . . , m 

}
. Using this relation, the values a, b, c and d in the above table are set to the number of times their

corresponding combination occurs (e.g. a is the number of classes present in both L x and L y ). 

In our second approach, a label distribution based similarity relation R (2) 
d 

(·, ·) , a, b, c and d are based on label distribution

information. Let P = 〈 p 1 , p 2 , . . . , p m 

〉 be the prior class probability vector, where p i represents the ratio of training elements

that belong to the i th class. Relation R (2) 
d 

takes into account whether a label is common or rare. It is based on the fol-

lowing idea. If a rare class label is present in both labelsets, this should be rewarded more than when they both contain

the same common class label. Similarly, when they both do not contain a common class label l , this should be rewarded

more than when a rare class is not present. This relation rewards unexpected behavior (presence of rare labels, absence

of common labels) more than expected behavior. The calculation is presented in Algorithm 1 . In line 5, an update of a is

Algorithm 1 R (2) 
d 

(·, ·) based on the label distribution. 

Input: Training set X , labelsets L 1 and L 2 , prior class probabilities P = 〈 p 1 , p 2 , . . . , p m 

〉 
Output: R (2) 

d 
(L 1 , L 2 ) 

1: a ← 0 , b ← 0 , c ← 0 , d ← 0 

2: for l = 1 , 2 , . . . , m do 

3: if (L 1 ) i = (L 2 ) i then 

4: if (L 1 ) i = (L 2 ) i = 1 then 

5: a ← a + (1 − p i ) 

6: else 

7: d ← d + p i 

8: else 

9: if (L 1 ) i = 1 then 

10: b ← b + 

1 
2 

11: else 

12: c ← c + 

1 
2 

13: R d (L 1 , L 2 ) ← 

a + d 
a + b+ c+ d 

performed when both labelsets contain label l i . We add (1 − p i ) to the current value of a . This implies that a higher reward

is given to less common labels. In line 7, label l i is absent in both labelsets. Since this is more unexpected for a common

label, a higher reward is given depending on how common l i is. In lines 10 and 12, the values of b and c are updated

when a label is present in only one of the two labelsets. We add 

1 
2 to the current value, which is the average of p i and 

(1 − p i ) . 

It should be clear from their description that the characteristics of these two label similarity relations are different. As

an example, we evaluate the similarity between selected labelsets of a dataset included in our experimental study, with

P = 〈 0 . 439 , 0 . 234 , 0 . 151 , 0 . 650 , 0 . 250 , 0 . 202 , 0 . 565 , 0 . 209 , 0 . 0 6 6 , 0 . 049 〉 . We assess the label similarity of an instance x with

L x = 〈 1 , 1 , 0 , 1 , 1 , 1 , 1 , 1 , 1 , 0 〉 with several other elements: 
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R 

(1) 
d 

R 

(2) 
d 

R 

(1) 
d 

R 

(2) 
d 

L 1 = 〈 1 , 1 , 0 , 1 , 1 , 1 , 1 , 1 , 0 , 0 〉 0 . 90 0 0 0 . 9029 L 6 = 〈 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 〉 0 . 40 0 0 0 . 3419 

L 2 = 〈 1 , 1 , 0 , 1 , 1 , 0 , 1 , 0 , 0 , 0 〉 0 . 70 0 0 0 . 6712 L 7 = 〈 0 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 〉 0 . 40 0 0 0 . 3049 

L 3 = 〈 0 , 0 , 0 , 1 , 0 , 1 , 1 , 1 , 0 , 0 〉 0 . 60 0 0 0 . 5627 L 8 = 〈 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 〉 0 . 30 0 0 0 . 2447 

L 4 = 〈 1 , 1 , 1 , 1 , 0 , 0 , 1 , 0 , 0 , 0 〉 0 . 50 0 0 0 . 4637 L 9 = 〈 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 〉 0 . 30 0 0 0 . 1357 

L 5 = 〈 1 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 0 〉 0 . 50 0 0 0 . 3821 L 10 = 〈 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 〉 0 . 10 0 0 0 . 0324 

As stated above, the Hamming based relation R (1) 
d 

can only take on a limited set of values, while relation R (2) 
d 

has no such

prior restriction. It is important to note that labelsets that have the same value for the first relation, do not necessarily

coincide in the second relation. For example, consider L 8 and L 9 , which both only contain one label and have a Hamming-

based similarity of 0.3 with L x . However, the label distribution based relation value of the former is almost twice as large as

that of the latter. The reason is that both L x and L 8 contain the rare class label l 9 , while the shared label l 4 of L x and L 9 is

far more common in the dataset. We also observe large differences between some values of the two relations. As a result,

we can expect different classification results from the FRONEC method when either R (1) 
d 

or R (2) 
d 

is used. 

3.2.3. Computational complexity 

Having described all components of our proposal, we are now in a position to evaluate its computational complexity.

Despite its nearest neighbor approach, which generally implies a lazy learning nature and therefore a negligible training

phase, FRONEC can precompute and store all pairwise label similarity values between the training instances. As should

be clear from the quality measures definitions (6) –(8) , label similarity comparisons are only computed between training

elements. This allows these results to be precomputed, such that repeated calculations are avoided at classification time.

The cost of this calculation is quadratic in the number of instances, but needs to be performed only once during training.

The cost of one pairwise label similarity calculation is linear in the number of labels, independent of whether R (1) 
d 

or R (2) 
d 

is used. 

To classify an instance x , the procedure described in the introduction of Section 3.2 is applied: 

1. The first step is to construct the set N ( x ) of the k nearest neighbors of x in the training set. This process has a computa-

tional cost that is linear in the number of instances and linear in the number of features. The latter is due to the cost of

the feature similarity (or distance) calculation. These feature similarity values are also used in the second step. If these

values can be stored, repeated calculations are avoided. 

2. Next, the quality value Q x ( y ) is calculated for every training element y . Since the quality of y depends on the target

instance x , it can not be precomputed during training. Since all R ( · , x ) and R d ( · , · ) similarity values have already been

determined, the construction of the sets to aggregate in (6) and (7) is linear in the number of neighbors k . The OWA

aggregation has a cost of O(k log (k )) , due to the sorting step in its definition. Quality calculation (8) is slightly more

costly, since it includes both (6) and (7) . In particular, two sorting operations are required. In total, the second step of

the classification procedure is linear in the number of instances and linearithmic in k . 

3. Finally, the predicted labelset for x needs to be constructed. This requires a pass through set Y , for which the cost is

linear in | Y |. This value is upper bounded by the total number of training instances. The presence of each class label

needs to be evaluated. The third step in the classification of x is consequently linear in the number of training instances

and the number of possible class labels. 

In summary, if n is the number of training instances, m the number of possible class labels, d the number of features

and k the number of neighbors, the computational cost of the training phase of FRONEC is O(n 2 · m ) and the cost to classify

an instance is O(n · d · m · k log (k )) . 

4. Experimental set-up 

In this section, we establish the details of our experimental study, of which the results will be reported in Section 5 . We

describe the datasets ( Section 4.1 ) on which we conduct our experiments and the metrics we use to evaluate the classifi-

cation performance of the multi-label methods ( Section 4.2 ). In Section 4.3 , we specify how the different parameters of the

algorithms are set. Section 4.4 describes the statistical tests used in our analysis. 

4.1. Datasets 

The majority of the publicly available multi-label datasets have a very high dimensionality, which may form an issue

for nearest neighbor based classifiers [1] . To avoid this problem, we use the Mldatagen generator [36] to create synthetic

multi-label datasets. We have used the HyperSpheres strategy and have fixed the number of features to 20, the number of

labels to 10 and the number of instances to 50 0 0. We have created a total number of 30 datasets, by varying the number

of relevant, irrelevant and redundant features as well as the percentage of class noise. The names of the datasets reflect

the characteristics of the attributes and the percentage of class noise. For example, dataset ‘d-5-10-5-p30’ has 5 relevant

attributes, 10 irrelevant attributes, 5 redundant attributes and 30% class noise. We use 5-fold cross validation in all ex-

periments. Aside from the synthetic datasets, we also include six real-world multi-label dataset with a relatively moderate
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Table 1 

Real-world multi-label datasets. We list the number of instances (nInst), fea- 

tures (nFeat) and number of possible labels (nLab). 

Dataset nInst nFeat nLab 

Birds 645 260 19 

Emotions 593 72 6 

Flags 194 19 7 

Music 592 71 6 

Scene 2407 294 6 

Yeast 2417 103 14 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dimensionality. Their characteristics are listed in Table 1 . These datasets are used in a final comparison between our proposal

and state-of-the-art nearest neighbor multi-label classifiers in Section 5.3 . All datasets and used partitions are available at

http://www.cwi.ugent.be/sarah.php . 

4.2. Evaluation metrics 

There exists a wide spectrum of metrics to evaluate the performance of multi-label classifiers. We use the Hamming

loss, F -measure, recall, precision and subset accuracy. These measures are example-based and expect a strict assignment of

instances to classes (i.e. instead of a label ranking). This is appropriate in the context of nearest neighbor classification. 

Let x ∈ X be a test instance, L x its true class vector and 

ˆ L x the predicted class vector. The above evaluation metrics are

defined as follows: 

• Hamming loss: 

hloss = 

1 

| X | 
1 

m 

∑ 

x ∈ X 
| L x �ˆ L x | , 

with the � operator measures as defined in Section 3.2.2 . The total number of prediction errors is divided by both the

number of instances | X | and number of labels m . 
• F -measure: 

F = 

2 · p · r 

p + r 
, 

where p and r are the precision and recall measures given by 

p = 

1 

| X | 
∑ 

x ∈ X 

| L x ∩ ̂

 L x | 
| ̂ L x | 

and r = 

1 

| X | 
∑ 

x ∈ X 

| L x ∩ ̂

 L x | 
| L x | . 

For each instance x , the recall compares the number of correctly predicted labels for x to all labels of x , while the

precision compares the number of correctly predicted labels to all predicted labels. 
• Subset accuracy: 

SubAcc = 

1 

| X | 
∑ 

x ∈ X 
I(L x = 

ˆ L x ) , 

where the indicator function I ( · ) evaluates to 1 if its argument is true and to 0 otherwise. This is the most stringent

metric of the three, because it evaluates full equality of L x and 

ˆ L x . 

4.3. Methods and parameter settings 

From the nearest neighbor based methods described in Section 2 , we select the BRKNN-b, LPKNN, MLKNN, IBLR+ and

MLDGC methods as representative methods. From a preliminary comparison, we observed that these methods have a good

classification performance. Furthermore, their operation is easy to understand and they require only the k parameter to be

set by the user. The MLKNN and IBLR methods are often included in experimental comparisons of newly proposed multi-

label classifiers. MLDGC is a recently proposed method from [34] . Similar to our set-up, the authors compared this method

within the family of nearest neighbor multi-label classifiers. MLDGC was shown to outperform the other methods in this

study, but, as noted in the conclusion of Reyes et al. [34] , it remains important to compare newly proposed nearest neighbor

multi-label methods to both MLDGC and the other state-of-the-art nearest neighbor classifiers. We follow their guideline

here. 

Since these methods are all related to the nearest neighbor classification paradigm, they all depend on the parameter k ,

the number of nearest neighbors used in the prediction process. In other experimental studies, its value is usually set to

10. However, in this paper, we do not fix this value beforehand, but allow the classifier to set its own k value during the

training phase, depending on the data at hand. A method does so by evaluating its classification performance, measured by

http://www.cwi.ugent.be/sarah.php


104 S. Vluymans et al. / Information Sciences 433–434 (2018) 96–114 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the leave-one-out subset accuracy on the training set, for values of k between 1 and 20. It sets the parameter to the value

yielding the best performance. We have opted to use the subset accuracy as evaluation measure during this process, because

it is the most exact one, that is, it counts predictions that are entirely correct. Using leave-one-out validation on the training

set is a valid parameter validation procedure, as the test set is kept completely separate during the optimization step. The

results reported in Section 5 are evaluations on the test set, that was not known during the parameter tuning process. 

We evaluate and compare six alternatives of our FRONEC method. As described in Section 3.2.1 , versions FRONEC-1,

FRONEC-2 and FRONEC-3 differ from each other by their use of the instance quality measure. Each of these methods

has a choice between the two label similarity relations described in Section 3.2.2 . As part of our experimental study,

we compare these six alternatives among each other. In expressions (6) –(8) , we use the Łukasiewicz connectives, that is,

I(a, b) = min (1 , 1 − a + b) and T (a, b) = max (a + b − 1 , 0) . 

The fuzzy rough operators within FRONEC depend on the definition of the feature similarity relation R ( · , · ). For two

instances x and y , we set the value of this relation to 

R (x, y ) = 

1 

|F| 
∑ 

f∈F 
R f (x, y ) , (10) 

where F is the set of all features in the dataset. The feature-wise relation is defined as 

R f (x, y ) = 1 − | f (x ) − f (y ) | 
range ( f ) 

when f is a numeric feature. In this expression, range ( f ) evaluates to the range of the feature f and f ( x ) and f ( y ) are the

values of x and y for this feature. When f is nominal, we set 

R f (x, y ) = 

{
1 if f (x ) = f (y ) 
0 if f (x ) 	 = f (y ) . 

For the sake of a sensible and fair comparison, we set the distance relation d ( · , · ) used by all other methods to the com-

plement of the similarity relation, that is, d(x, y ) = 1 − R (x, y ) . This implies that the k nearest neighbors of an element x are

those that are most similar to this instance according to relation (10) . 

4.4. Statistical analysis 

We complement the experimental results with a statistical analysis using non-parametric tests. To make a pairwise com-

parison between the performance of two methods, we rely on the Wilcoxon signed-ranks test [45] . To compare methods

M1 and M2, the differences in their performance results (in absolute value) are ranked. The smallest difference is assigned

rank 1, the largest rank D , with D the number of datasets in the study. The ranks of positive and negative differences are

summed up to R + and R − respectively. The former refers to wins for method M1, the latter to wins for M2. A test statistic

and associated p -value are derived from R + and R −. When the p -value is lower than the predefined significance level α, a

significant difference in performance is concluded. In this study, we set the significance level to α = 0 . 05 . When reporting

results of the Wilcoxon test, we list R + , R − and the p -value. 

To assess whether significant differences exist within a group of methods, we use the Friedman test [13] and Holm post-

hoc procedure [19] . The former ranks the performances of the methods and decides whether any significant differences

are present among them. If the associated p -value is smaller than the significance level α, it is concluded that significant

differences exist, but there is no indication as to where these may be found. The post-hoc procedure is used for this purpose.

The lowest ranked method is used as control method to which all other methods are compared. When the p -value of such a

comparison is smaller than α, we conclude that the control method significantly outperforms the method it was compared

to. 

5. Experimental evaluation 

We now proceed with the empirical analysis of our proposal and a comparison of FRONEC to popular nearest neighbor

multi-label classifiers. In Section 5.1 , we compare the six versions of FRONEC among each other. Sections 5.2 and 5.3 com-

pare our proposal to the five selected nearest neighbor multi-label classifiers. The former does so on the 30 synthetic

datasets, while the latter uses the six real-world datasets listed in Table 1 . As a reminder, the full experimental results

are available on http://www.cwi.ugent.be/sarah.php . 

5.1. FRONEC variants 

In this section, we use the 30 synthetic datasets described in Section 4.1 to compare six versions of our proposal, namely

the FRONEC-1, FRONEC-2 and FRONEC-3 methods with the two possible label similarity relations R (1) 
d 

and R (2) 
d 

. In this

stage, we fix the value of k to 20 and select the additive OWA weighting scheme within the instance quality calculations

(6) –(8) . We observed that these settings provide good results on average. In later sections, we use the procedure described

in Section 4.3 to allow FRONEC to choose the OWA weighting scheme and k value itself during the training phase. 

http://www.cwi.ugent.be/sarah.php
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Table 2 

Comparison of the different FRONEC methods using the additive weighting 

scheme for the OWA aggregations. The value of k was set to 20. 

hloss F SubAcc 

R (1) 
d 

R (2) 
d 

R (1) 
d 

R (2) 
d 

R (1) 
d 

R (2) 
d 

FRONEC-1 0.2666 0.2776 0.4174 0.4396 0.0625 0.0603 

FRONEC-2 0.2653 0.2787 0.4290 0.4489 0.0720 0.0679 

FRONEC-3 0.2616 0.2722 0.4251 0.4476 0.0700 0.0685 

Table 3 

Results of the Wilcoxon test comparison of the quality measures (6) –(8) within FRONEC for both label 

similarity relations. P -values that imply significant differences at the 5% significance level are printed in 

boldface. 

R (1) 
d 

R (2) 
d 

Comparison R + R − p Comparison R + R − p 

hloss Q (2) vs Q (1) 316.0 149.0 .080864 Q (1) vs Q (2) 243.0 192.0 .565543 

Q (3) vs Q (1) 465.0 0.0 .0 0 0 0 01 Q (3) vs Q (1) 425.5 9.5 .0 0 0 0 05 

Q (3) vs Q (2) 432.5 2.5 .0 0 0 0 02 Q (3) vs Q (2) 465.0 0.0 .0 0 0 0 01 

F Q (2) vs Q (1) 422.0 13.0 .0 0 0 0 09 Q (2) vs Q (1) 477.0 18.0 .0 0 0 0 09 

Q (3) vs Q (1) 407.0 58.0 .0 0 0297 Q (3) vs Q (1) 422.0 43.0 .0 0 0 093 

Q (2) vs Q (3) 328.0 137.0 .047743 Q (2) vs Q (3) 266.5 198.5 .475675 

SubAcc Q (2) vs Q (1) 373.0 62.0 .0 0 0672 Q (2) vs Q (1) 370.5 94.5 .004289 

Q (3) vs Q (1) 453.5 11.5 .0 0 0 0 05 Q (3) vs Q (1) 455.0 10.0 .0 0 0 0 05 

Q (2) vs Q (3) 291.5 143.5 .103411 Q (3) vs Q (2) 288.0 177.0 .246954 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Table 2 , we present the average results of the six methods taken over the 30 synthetic datasets. We use the Hamming

loss, F -measure and subset accuracy measures to evaluate their classification performance. Aside from these average results,

we also take statistical comparisons by means of the Wilcoxon test into account. 

5.1.1. Choice of label similarity relation 

We observe that the choice of label similarity relation has the largest influence on the Hamming loss and F -measure

metrics. This is reflected in the average values reported in the table, but also in the results per dataset available on our

web page. For the Hamming loss, almost all datasets prefer the R (1) 
d 

relation, while R (2) 
d 

gives better F -measure values on

all datasets. When comparing the results of the two label similarity relations with the Wilcoxon test, we observe that

R (1) 
d 

is always significantly better than R (2) 
d 

for the Hamming loss ( R + = 453 , R − = 12 , p = . 0 0 0 0 05 for FRONEC-1; R + =
465 , R − = 0 , p = . 0 0 0 0 01 for FRONEC-2; R + = 435 , R − = 0 , p = . 0 0 0 0 02 for FRONEC-3), while the reverse holds for the F -

measure ( R + = 465 , R − = 0 , p = . 0 0 0 0 01 for FRONEC-1; R + = 464 , R − = 1 , p = . 0 0 0 0 02 for FRONEC-2; R + = 465 , R − = 0 ,

p = . 0 0 0 0 02 for FRONEC-3). With respect to the subset accuracy, the results are less clear-cut, although the majority of the

datasets prefer R (1) 
d 

, which is also expressed by the average values reported in Table 2 and the results of the Wilcoxon test

comparing R (1) 
d 

to R (2) 
d 

( R + = 379 . 5 , R − = 85 . 5 , p = . 002353 for FRONEC-1; R + = 433 , R − = 32 , p = . 0 0 0 031 for FRONEC-

2; R + = 306 , R − = 129 , p = . 051715 for FRONEC-3). Since there does not seem to be a general inclination towards one of

the two label similarity relations, we continue to use both. It would not be prudent to discard R (2) 
d 

, as it significantly

outperforms R (1) 
d 

with respect to the F -measure. 

The difference in the relation preferences can be explained by the fact that more labels are generally predicted when

R (2) 
d 

is used, that is, the size of the predicted labelsets is larger on average when using R (2) 
d 

compared to using R (1) 
d 

. This

will be shown and discussed in further detail in the remainder of the paper. An explanation of this behavior lies with

the comparison conducted in Section 3.2.2 . Due to its definition and the fact that R (1) 
d 

can take on only a limited set of

values, less extreme differences in the values of this relation between large and small labelsets are observed. Small labelsets

are not so easily dominated by larger ones, while, based on the example comparison in Section 3.2.2 , R (2) 
d 

seems to be

more sensitive to the size of a labelset. Furthermore, when comparing the labelsets of two instances x and y , the situation

( L x ) i 	 = ( L y ) i is penalized more severely by R (1) 
d 

than by R (2) 
d 

. As a result, the latter is naturally allowed to make more guesses

in its predictions and will lead to more predicted labels. Its superior values for the F -measure show that this characteristic

is not taken to the extreme (e.g. predicting every label) and a favorable balance between recall and precision is obtained.

We come back to this point later in this paper. 

5.1.2. Choice of quality measure 

The results of the Wilcoxon tests comparing FRONEC-1, FRONEC-2 and FRONEC-3 can be found in Table 3 . When com-

paring the three versions, we observe that the latter two provide better results than the former, both on average as well

as based on the results per dataset and the statistical analysis. The difference between these methods lies with their use

of the instance quality measure. The inclusion of the operator related to the fuzzy rough upper approximation is shown

to be more beneficial than that of the one related to the lower approximation. The lower approximation relies on a fuzzy
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Table 4 

Summary of the classification results on the 30 synthetic datasets. We present the average (av) and standard 

deviation (stdev) across these datasets, as well as the number of times a method attained the best or worst result 

for a measure. The best average values are printed in bold. 

BRKNN-b LPKNN MLKNN IBLR + 

hloss av ± stdev 0.2785 ± 0.0847 0.3093 ± 0.0998 0.2461 ± 0.0859 0.2395 ± 0.0848 

nBest/nWorst 0/4 0/23 2/0 28/0 

SubAcc av ± stdev 0.0591 ± 0.0499 0.0571 ± 0.0600 0.0445 ± 0.0412 0.0514 ± 0.0433 

nBest/nWorst 1/0 0/17 2/11 10/0 

F av ± stdev 0.4438 ± 0.1202 0.4211 ± 0.1071 0.3398 ± 0.2016 0.3659 ± 0.2042 

nBest/nWorst 8/0 4/10 0/17 6/2 

p av ± stdev 0.4986 ± 0.1339 0.4343 ± 0.0918 0.6244 ± 0.0770 0.6463 ± 0.0715 

nBest /nWorst 0/4 0/23 4/0 26/0 

r av ± stdev 0.4101 ± 0.1255 0.4125 ± 0.1225 0.2634 ± 0.1826 0.2870 ± 0.1922 

nBest/nWorst 7/0 8/0 0/27 0/3 

MLDGC FRONEC- R (1) 
d 

FRONEC- R (2) 
d 

hloss av ± stdev 0.2710 ± 0.0792 0.2685 ± 0.0875 0.2823 ± 0.0929 

nBest/nWorst 0/3 0/0 0/0 

SubAcc av ± stdev 0.0557 ± 0.0474 0.0715 ± 0.0621 0.0672 ± 0.0619 

nBest/nWorst 1/2 15/0 2/2 

F av ± stdev 0.4161 ± 0.1457 0.4293 ± 0.1337 0.4471 ± 0.1250 

nBest/nWorst 0/1 0/0 13/0 

p av ± stdev 0.4994 ± 0.1238 0.5096 ± 0.1114 0.4789 ± 0.0987 

nBest/nWorst 0/3 0/0 0/0 

r av ± stdev 0.3738 ± 0.1652 0.3806 ± 0.1487 0.4259 ± 0.1489 

nBest/nWorst 0/0 0/0 15/0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

implicator I, which models an implication. The quality Q 

(1) 
x (y ) in the prediction of x evaluates how strongly the similarity

between x and its neighbors z implies the similarity of the labelsets L y and L z . The upper approximation on the other hand

uses a t-norm T , related to a conjunction. Since a t-norm is commutative, the similarity between x and its neighbors z and

the similarity between L y and L z have equal importance. The value of Q 

(2) 
x (y ) aggregates the fuzzy conjunctions of these two

types similarity values. In the search of a consensus labelset among those of the nearest neighbors of x , the second approach

seems more intuitive. We conclude that the FRONEC-2 alternative can be preferred overall, since it obtains good classifica-

tion results and is computationally more efficient than FRONEC-3 ( Section 3.2.3 ), while not being significantly inferior to

the latter for all evaluation measures. Nevertheless, Table 3 does show that FRONEC-3 significantly outperforms FRONEC-2

with respect to the Hamming loss. If a user is particularly interested in this metric, we advise the use of FRONEC-3 instead

of FRONEC-2. 

5.2. Comparison on synthetic datasets 

In this section, we compare the performance of FRONEC to the selected nearest neighbor based multi-label classifiers on

the 30 synthetic datasets described in Section 4.1 . The comparison on the real-world datasets from Table 1 is postponed

to Section 5.3 . We use version FRONEC-2, which we denote as FRONEC in the remainder of this discussion. Our method

depends on two internal parameters, the number of neighbors k and the weighting scheme for the OWA aggregation in (7) .

We use the optimization procedure in Section 4.3 to let FRONEC select its own setting during the training phase, depending

on the data under consideration. For k , it evaluates all natural numbers between 1 and 20. The candidate weighting schemes

are the additive, exponential and inverse additive weights listed in Section 3.1 as well as the weights that correspond to the

traditional fuzzy rough model, by using the strict maximum in (7) . The median k values selected by the internal optimization

procedures are 18.5 (BRKNN-b), 19 (LPKNN), 17 (MLKNN), 15.5 (IBLR+), 15 (MLDGC), 19 (FRONEC- R (1) 
d 

) and 19 (FRONEC- R (2) 
d 

).

The FRONEC methods most often select the additive OWA weight setting. Note that although FRONEC sets two parameters

instead of one, this does not lead to an unfair comparison with the other methods. The reason is that BRKNN-b, LPKNN,

MLKNN, IBLR+ and MLDGC have only one user-defined value, which is k . They do not require the specification of additional

parameters. Furthermore, since the FRONEC methods usually select the additive OWA weighting scheme, fixing this choice

would not greatly harm the performance either. This can also be taken into account when the parameter optimization step

of FRONEC is deemed too time-consuming and the user would prefer to only optimize the k parameter. 

The full results for the different performance metrics are again made available on our web page. A summary of these

results is presented in Table 4 . We provide the average value and standard deviation of the results across the 30 synthetic

datasets. For each evaluation measure, the best average value is printed in bold. Note that for the F -measure, recall, precision

and subset accuracy the best result is the highest value, while for the Hamming loss this is the lowest one. For each method,

we also count the number of times it yielded the best (nBest) or worst (nWorst) result on these datasets. 

To complement these results, we report the results of the statistical analysis in Tables 5 –6 . The former presents the

analysis of the Friedman test and Holm post-hoc procedure, while the latter conducts a pairwise comparison of the FRONEC
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Table 5 

Statistical analysis of the results summarized in Table 4 . We use the Friedman test and the Holm post- 

hoc procedure. P -values of the latter implying statistical significance are printed in bold. 

Hamming loss ( p Friedman ≤ . 0 0 0 0 01 ) Subset accuracy ( p Friedman = . 0 0 0 0 01 ) 

Method Friedman rank p Holm Method Friedman rank p Holm 

BRKNN-b 4.5667 ≤ .0 0 0 0 01 BRKNN-b 3.6333 .046302 

LPKNN 6.70 0 0 ≤ .0 0 0 0 01 LPKNN 5.60 0 0 ≤ . 0 0 0 0 01 

MLKNN 1.9333 .120233 MLKNN 4.7167 .0 0 0126 

IBLR + 1.0667 – IBLR + 3.5833 .046302 

MLDGC 4.3333 ≤ .0 0 0 0 01 MLDGC 4.2167 .003643 

FRONEC- R (1) 
d 

3.9333 .0 0 0 0 01 FRONEC- R (1) 
d 

2.3667 –

FRONEC- R (2) 
d 

5.4667 ≤ .0 0 0 0 01 FRONEC- R (2) 
d 

3.8833 .019635 

F -measure ( p Friedman ≤ .0 0 0 0 01) Precision ( p Friedman ≤ . 0 0 0 0 01 ) 

BRKNN-b 2.5833 .135166 BRKNN-b 4.5667 ≤ . 0 0 0 0 01 

LPKNN 4.70 0 0 .0 0 0 0 01 LPKNN 6.70 0 0 ≤ . 0 0 0 0 01 

MLKNN 6.4333 ≤ .0 0 0 0 01 MLKNN 1.8667 .188593 

IBLR + 4.6167 .0 0 0 0 01 IBLR + 1.1333 –

MLDGC 4.3167 .0 0 0 013 MLDGC 4.50 0 0 ≤ . 0 0 0 0 01 

FRONEC- R (1) 
d 

3.60 0 0 .001821 FRONEC- R (1) 
d 

3.8667 .0 0 0 0 02 

FRONEC- R (2) 
d 

1.7500 – FRONEC- R (2) 
d 

5.3667 ≤ . 0 0 0 0 01 

Recall ( p Friedman ≤ .0 0 0 0 01) 

BRKNN-b 2.8667 .019769 

LPKNN 3.0667 .014322 

MLKNN 6.90 0 0 ≤ .0 0 0 0 01 

IBLR + 5.9667 ≤ .0 0 0 0 01 

MLDGC 3.80 0 0 .0 0 0193 

FRONEC- R (1) 
d 

3.8333 .0 0 0193 

FRONEC- R (2) 
d 

1.5667 –

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

methods to the other methods by means of the Wilcoxon test. We include the pairwise comparison to better evaluate the

individual differences between our proposal and the state-of-the-art nearest neighbor based multi-label methods. 

5.2.1. Summary of results 

Based on the results in Table 4 and the statistical analysis in Tables 5 –6 , we can observe the following: 

• Hamming loss: the dominance of the IBLR+ method is clear. It has the lowest average result and yields the best value on

28 out of the 30 datasets. The statistical analysis in Table 5 shows that IBLR+ significantly outperforms all others except

MLKNN for this evaluation measure. The results of the Wilcoxon tests confirm that IBLR+ significantly outperforms our

proposal with respect to the Hamming loss. The same holds for MLKNN. MLDGC also significantly outperforms FRONEC-

R (2) 
d 

. However, FRONEC- R (1) 
d 

is significantly better than FRONEC- R (2) 
d 

as well as LPKNN for this measure. This version also

outperforms BRKNN-b and MLDGC, albeit not significantly. 
• Subset accuracy: the highest average result is obtained by our FRONEC method using relation R (1) 

d 
. It also attains the

most wins, namely on 15 out of the 30 datasets. This method is assigned the lowest Friedman rank in Table 5 and

significantly outperforms all others. This is remarkable, because, as described in Section 4.3 , all methods optimize this

measure internally, so we could have expected their results to be competitive with each other. This is not the case and

our FRONEC- R (1) 
d 

is the best general option when one is most interested in the subset accuracy measure. The dominance

of FRONEC- R (1) 
d 

is confirmed by the Wilcoxon tests in Table 6 . 
• F-measure, recall and precision: the highest average value for the F -measure is obtained by our FRONEC method using

label similarity relation R (2) 
d 

. This method also obtains the most wins, namely on 13 out of the 30 datasets. It is closely

followed by BRKNN-b. In the statistical analysis in Table 5 , FRONEC- R (2) 
d 

is assigned the lowest Friedman rank and is

shown to significantly outperform all other methods except BRKNN-b. The same holds for the Wilcoxon test in Table 6 . 

Although the same phenomenon can be observed in the experimental results of [34] , it is remarkable that IBLR+ and

MLKNN perform so poorly in terms of the F -measure, while they provided the best Hamming loss results. The explana-

tion lies with their recall and precision values, which are not at all balanced. These methods yield very poor results for

the former measure and very good for the latter. This means that most of their predicted labels are correct (high preci-

sion), but they fail to predict many relevant labels (low recall). The other methods, in particular FRONEC- R (2) 
d 

, obtain a

better recall-precision balance, which is reflected in a superior F -measure. 

In summary, we can conclude that FRONEC performs best for the subset accuracy, F -measure and recall, but that IBLR+

is preferred in the evaluation by the Hamming loss and precision. As should be clear from the descriptions provided in

Section 4.2 , the subset accuracy and recall are related measures, as are the Hamming loss and precision. Consequently, it

is not surprising that a method that performs well for one measure in a pair, also attains good results for the other. The

F -measure evaluates the trade-off between recall and precision. Since no method dominates all others for both measures,
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Table 6 

Pairwise comparison between FRONEC (FR) and other methods with the Wilcoxon test. P -values implying signifi- 

cant differences at the 5% significance level are printed in boldface (in favor of a FRONEC method) or underlined 

(in favor of some other method). 

Hamming loss Subset accuracy 

Comparison R + R − p Comparison R + R − p 

FR- R (1) 
d 

vs BRKNN-b 303.0 162.0 .143162 FR- R (1) 
d 

vs BRKNN-b 416.5 48.5 .0 0 0136 

FR- R (1) 
d 

vs LPKNN 465.0 0.0 .0 0 0 0 02 FR- R (1) 
d 

vs LPKNN 465.0 0.0 .0 0 0 0 02 

MLKNN vs FR- R (1) 
d 

465.0 0.0 .0 0 0 0 02 FR- R (1) 
d 

vs MLKNN 400.0 65.0 .0 0 0531 

IBLR+ vs FR- R (1) 
d 

465.0 0.0 .0 0 0 0 02 FR- R (1) 
d 

vs IBLR+ 314.0 151.0 .090014 

FR- R (1) 
d 

vs MLDGC 270.0 195.0 .432080 FR- R (1) 
d 

vs MLDGC 376.5 58.5 .0 0 0544 

BRKNN-b vs FR- R (2) 
d 

287.0 178.0 .256721 FR- R (2) 
d 

vs BRKNN-b 288.0 177.0 .249392 

FR- R (2) 
d 

vs LPKNN 465.0 0.0 .0 0 0 0 02 FR- R (2) 
d 

vs LPKNN 454.5 10.5 .0 0 0 0 04 

MLKNN vs FR- R (2) 
d 

465.0 0.0 .0 0 0 0 02 FR- R (2) 
d 

vs MLKNN 331.5 133.5 .040187 

IBLR+ vs FR- R (2) 
d 

465.0 0.0 .0 0 0 0 01 FR- R (2) 
d 

vs IBLR+ 269.0 196.0 .445469 

MLDGC vs FR- R (2) 
d 

380.0 85.0 .002334 FR- R (2) 
d 

vs MLDGC 318.0 147.0 .075401 

FR- R (1) 
d 

vs FR- R (2) 
d 

465.0 0.0 .0 0 0 0 01 FR- R (1) 
d 

vs FR- R (2) 
d 

402.0 33.0 .0 0 0 063 

F -measure Precision 

Comparison R + R − p Comparison R + R − p 

BRKNN-b vs FR- R (1) 
d 

407.5 57.5 .0 0 0296 FR- R (1) 
d 

vs BRKNN-b 299.5 165.5 .162853 

FR- R (1) 
d 

vs LPKNN 314.0 151.0 .091680 FR- R (1) 
d 

vs LPKNN 465.0 0.0 .0 0 0 0 02 

FR- R (1) 
d 

vs MLKNN 464.0 1.0 .0 0 0 0 02 MLKNN vs FR- R (1) 
d 

465.0 0.0 .0 0 0 0 02 

FR- R (1) 
d 

vs IBLR+ 404.0 61.0 .0 0 0390 IBLR+ vs FR- R (1) 
d 

465.0 0.0 .0 0 0 0 02 

FR- R (1) 
d 

vs MLDGC 368.0 97.0 .005039 FR- R (1) 
d 

vs MLDGC 309.0 156.0 .113248 

FR- R (2) 
d 

vs BRKNN-b 294.0 171.0 .202225 BRKNN-b vs FR- R (2) 
d 

328.0 137.0 .048318 

FR- R (2) 
d 

vs LPKNN 412.5 52.5 .0 0 0198 FR- R (2) 
d 

vs LPKNN 465.0 0.0 .0 0 0 0 02 

FR- R (2) 
d 

vs MLKNN 465.0 0.0 .0 0 0 0 02 MLKNN vs FR- R (2) 
d 

465.0 0.0 .0 0 0 0 02 

FR- R (2) 
d 

vs IBLR+ 404.0 31.0 .0 0 0 053 IBLR+ vs FR- R (2) 
d 

465.0 0.0 .0 0 0 0 02 

FR- R (2) 
d 

vs MLDGC 465.0 0.0 .0 0 0 0 02 MLDGC vs FR- R (2) 
d 

349.0 116.0 .016106 

FR- R (2) 
d 

vs FR- R (1) 
d 

462.0 3.0 .0 0 0 0 02 FR- R (1) 
d 

vs FR- R (2) 
d 

463.0 2.0 .0 0 0 0 02 

Recall 

Comparison R + R − p 

BRKNN-b vs FR- R (1) 
d 

394.0 71.0 .0 0 0810 

LPKNN vs FR- R (1) 
d 

371.0 94.0 .004250 

FR- R (1) 
d 

vs MLKNN 465.0 0.0 .0 0 0 0 02 

FR- R (1) 
d 

vs IBLR+ 464.0 1.0 .0 0 0 0 02 

FR- R (1) 
d 

vs MLDGC 290.5 174.5 .227683 

FR- R (2) 
d 

vs BRKNN-b 304.0 161.0 .137613 

FR- R (2) 
d 

vs LPKNN 325.0 140.0 .055767 

FR- R (2) 
d 

vs MLKNN 465.0 0.0 .0 0 0 0 02 

FR- R (2) 
d 

vs IBLR+ 465.0 0.0 .0 0 0 0 02 

FR- R (2) 
d 

vs MLDGC 465.0 0.0 .0 0 0 0 02 

FR- R (2) 
d 

vs FR- R (1) 
d 

465.0 0.0 .0 0 0 0 02 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

it is important to include the F -measure as summary metric to evaluate this trade-off. The results in Tables 4–6 show that

FRONEC provides the best F -measure results, which can be interpreted as the most appropriate way to balance the different

behavior measured by the recall and precision. From this observation, we can conclude that our method is the overall best

one, taking all included evaluation measures into account. 

The results in Table 6 also stress the large effect that the choice of label similarity relation has on the performance

of FRONEC. For each evaluation measure, the difference between FRONEC- R (1) 
d 

and FRONEC- R (2) 
d 

is found to be significant,

sometimes in favor of the former (Hamming loss, subset accuracy, precision) and sometimes in favor of the latter ( F -measure,

recall). The characteristics of the two label similarity relations have been explained in Section 5.1 . 

Interestingly, the MLDGC method, although recently proposed and shown in the original paper to outperform the other

included methods, does not perform notably well on these datasets. The explanation lies with the characteristics of the

datasets used in our study. First, we have opted to limit ourselves to relatively low dimensional datasets, as the suitability of

a nearest neighbor approach decreases when the number of features increases and the locality property is lost. As we focus

on nearest neighbor related methods, we feel it is appropriate to limit the number of features. When a high dimensional

dataset needs to be processed with our proposal or one of the other included methods, we advise the application of a

feature selection technique prior to the classification step. Considering the results in [34] , it can be observed that MLDGC

obtains the most wins and highest performance differences on relatively high dimensional datasets. This indicates that this

method may be more robust against the high dimensionality than other nearest neighbor classifiers, but it does not take

away from the fact that the intuition behind it is somehow lost in the process. A second dataset property that causes the

inferior performance of MLDGC is the label density of our datasets, measured as the average number of labels per sample

divided by the total number of possible classes. The authors of [34] acknowledged that their method performed best on



S. Vluymans et al. / Information Sciences 433–434 (2018) 96–114 109 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

datasets with a low label density. The label density of the datasets in [34] ranges from 0.009 to 0.485, while it ranges

between 0.119 and 0.429 for our synthetic datasets, with an average of 0.282. These values are relatively high compared to

those in the MLDGC study, which explains the lesser performance of this method. 

We also wish to stress the comparison between FRONEC on the one hand and BRKNN-b and LPKNN on the other. These

methods are highly related. To classify an instance, they first determine its k nearest neighbors. Next, the labelsets of these

neighbors are aggregated into a prediction. BRKNN-b and LPKNN do so by considering the labelsets of the neighbors them-

selves, while FRONEC searches the dataset for a labelset that forms an appropriate consensus. The results in Table 4 show

that more accurate predictions are obtained by using the fuzzy rough approach incorporated in FRONEC. 

5.2.2. Deeper discussion on FRONEC, IBLR+ and MLKNN 

A pertinent question is why the precision (and consequently the Hamming loss) of FRONEC is relatively low compared to

that of IBLR+ and MLKNN, which are the best performers for this measure. IBLR+ and MLKNN are popular methods used in

comparative studies on multi-label classifiers, so a careful comparison of our proposal with these algorithms is warranted.

The results above show that FRONEC outperforms IBLR+ and MLKNN with respect to the subset accuracy, F -measure and

recall, but not for the precision and Hamming loss. As stated above, the superior F -measure result of FRONEC shows that

it reaches the best trade-off between the two different prediction aspects represented by precision and recall. However, it

remains crucial to understand why the precision of FRONEC is relatively low. 

The answer to our question lies with the cardinality of the predicted labelsets. Based on our empirical evidence, the

IBLR+ and MLKNN methods make consistently fewer predictions than FRONEC, that is, the number of labels predicted for

an instance x by IBLR+ or MLKNN is lower than the number predicted by FRONEC. On our 30 synthetic datasets, for which

the highest possible cardinality of a labelset is m = 10 , the average difference in cardinality between the true and predicted

labelsets is 1.5519 (IBLR+), 1.6238 (MLKNN), 0.7558 (FRONEC- R (1) 
d 

) and 0.3417 (FRONEC- R (2) 
d 

). The higher these values, the

smaller the predicted labelsets are compared to the true ones. For completeness, the average values for BRKNN-b, LPKNN

and MLDGC are 0.5132, 0.1306 and 0.7638 respectively. The differences in label cardinality per dataset can be found on

the associated web page. On each dataset, MLKNN and IBLR+ yield the largest difference in true and predicted labelset

cardinality and consequently the smallest predicted labelsets. 

In the definition of the precision recalled in Section 4.2 , the size of the predicted labelset appears in the denominator.

When the denominator of a fraction decreases, the overall value increases. As the predicted labelset sizes are smaller for

IBLR+ and MLKNN than they are for FRONEC and these values are used in the denominator of the precision definition,

a higher result for the first two methods is a logical consequence. We also note the difference between the values for

FRONEC- R (1) 
d 

and FRONEC- R (2) 
d 

, which relates back to a point made in Section 5.1 . The only difference between these two

methods is their label similarity relation. Using relation R (2) 
d 

tends to result in more predictions, which is reflected in its

smaller difference between the true and predicted labelset cardinalities, larger labelset sizes and, finally, its lower precision

value. 

One could argue that the predicted labelset cardinality is not the only component influencing the precision measure.

Indeed, even when only a few labels are predicted, the precision will still be low when these predictions are incorrect.

In order to verify whether the size of the predicted labelset is truly the most important factor influencing the precision

difference between IBLR+ and MLKNN and FRONEC in our study, we have examined whether the correct predictions made

by the former two methods are also discovered by FRONEC. This is the case. On average over the 30 datasets, FRONEC- R (1)
d 

finds 93.36% of the correct predictions made by IBLR+ and 96.90% of the correct predictions made by MLKNN. For FRONEC-

R (2) 
d 

, these values are 93.54% and 96.19% respectively. This implies that our method very rarely misses a correct prediction

of IBLR+ or MLKNN and corroborates our statement that, when taking the five evaluation measures into account, FRONEC

can be preferred over IBLR+ and MLKNN. 

The choice between FRONEC and IBLR+ and MLKNN depends on the relative importance or cost of false positive and

false negative predictions. Only in applications where false positives are severely penalized should IBLR+ and MLKNN be

used instead of FRONEC. This comes at the risk of possibly missing many correct classes (low recall). 

5.2.3. Complexity comparison 

When we compare the execution time of these methods, we observe average training times of 10.3279 s (LPKNN),

15.9900 s (MLDGC), 16.9344 s (BRKNN-b), 18.4833 s (MLKNN) and 69.3622 s (IBLR+) compared to 184.7964 s and 185.1450 s

for FRONEC- R (1) 
d 

and FRONEC- R (2) 
d 

respectively. These values are taken as averages over ten runs of the algorithms and the

results per dataset can be found on our web page. The higher training time of FRONEC is mainly due to its optimization of

an additional parameter during the procedure described in Section 4.3 . While its competing methods only need to set the

value for k , FRONEC also makes a choice between four candidate OWA weighting schemes. In terms of the testing time, all

methods can be considered fast with average times of 2.1851 s (BRKNN-b), 1.8784 s (LPKNN), 1.8891 s (MLKNN), 2.0514 s

(IBLR+), 1.8982 s (MLDGC), 6.6611 s (FRONEC- R (1) 
d 

) and 6.9777 s (FRONEC- R (2) 
d 

) to classify a full test set. The test sets of the

synthetic datasets all consist of 10 0 0 instances. A more detailed discussion on execution times can be found in Section 5.3.2 ,

but we discuss the theoretical complexity of the methods here. Recall that the theoretical complexity of our proposal has

been derived in detail in Section 3.2.3 . We disregard the parameter optimization step in this analysis. 
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Training. The simplest methods are BRKNN-b and LPKNN, since they have no real training phases and simply store all

training instances for later use. MLKNN, MLDGC, IBLR+ and FRONEC do perform some calculations at training time. 

For each training instance, MLKNN locates its nearest neighbors and counts the occurrences of the classes among these

elements. The combined cost of these two procedures is O(n 2 · d + n · k · m ) . It is also beneficial to compute and store the

class counts of the training instances only once, which has a cost O(n · m ) . Based on the precomputed values, MLKNN

derives prior and posterior probabilities of all classes. The calculation of the former depends on the overall class counts and

can be computed at O(m ) total cost. The latter requires the construction of two frequency arrays, which takes up O(n + k )

for each class. In total, the probability calculations can be obtained at O(m · (n + k )) cost and the complete training phase

complexity of MLKNN is O(n 2 · d + n · k · m ) . 

In [34] , the reported training cost of MLDGC is O(n 2 · d) . This corresponds to locating the nearest neighbors for each

training instance. However, the additional cost of the remaining internal calculations is ignored. The label similarity values

between all pairs of training instances are derived in O(n 2 · m ) , while the neighborhood weight values can be determined

at a total cost of O(n · k ) . The total training cost of MLDGC is therefore O(n 2 · (d + m ) + n · k ) . 

The IBLR+ method constructs a binary logistic regression classifier for each class at training time. It first transforms the

data such that the logistic regression method uses neighborhood information, represented in class confidence values, as

well as original data features as predictors. For each class l , the class confidence feature is computed as the percentage of

neighbors of the training instance that belong to class l . The construction of the new dataset requires the neighborhood

calculation for all training instances ( O(n 2 · d) ) and the label confidence calculation for all training instances ( O(n · k · m ) )

and has a total cost of O(n 2 · d + n · k · m ) . The training time of a logistic classifier is dominated by the cost of the internal

optimization procedure, needed to determine the logistic regression coefficients. We denote this cost as O(Opt) . Among

other things, this incorporates the cost of computing the objective function and gradient (both O(n · d) ) in each iteration.

Since a classifier is constructed for each class, the total cost is O(m · Opt) . The total training cost of IBLR+ is O(n 2 · d + n · k ·
m + m · Opt) . 

Recall that FRONEC has a training cost of O(n 2 · m ) . This cost is quadratic in n , as is the cost of MLKNN and MLDGC. The

training cost of IBLR+ is at least quadratic in n . BRKNN-b and LPKNN have negligible training phases. These derivations are

reflected in the runtime values listed above and in Section 5.3.2 . 

Classification. To classify an instance, BRKNN-b, LPKNN, MLKNN and MLDGC first locate its nearest neighbors in the training

set, which can be achieved at O(n · d) cost. In each of these methods, the class prediction procedure following the neigh-

borhood calculation costs O(k · m ) . Their total classification is therefore O(n · d + k · m ) . To classify a test instance, the IBLR+

method determines its nearest neighbors ( O(n · d) ) and derives the class confidence scores ( O(m · k ) ). For each class, the

corresponding logistic classifier is called to classify the instance ( O(d) ). The total classification cost of IBLR+ is therefore

O(n · d + m · (k + d)) . FRONEC has a classification cost of O(n · d · m · k log (k )) . The runtime comparisons show that FRONEC

has the highest classification time, although it is close to that of the other methods. 

5.3. Comparison on real-world datasets 

In Section 5.2 , we experimentally compared the performance of the BRKNN-b, LPKNN, MLKNN, IBLR+ and MLDGC meth-

ods to our FRONEC- R (1) 
d 

and FRONEC- R (2) 
d 

proposals. We now proceed with a comparison of these algorithms on the six real-

world multi-label datasets described in Table 1 . As before, we use them in a 5-fold cross validation setup. In Section 5.3.1 ,

we list and discuss the complete prediction results. Section 5.3.2 compares the classifiers in terms of their execution times.

We report average values of the timing experiments, but the full results, based on ten runs of the methods, can be obtained

from our web page. We refer back to Section 5.2.3 for a comparison of the theoretical complexity of the classifiers. 

5.3.1. Prediction performance 

Tables 7 and 8 present the classification results. For each dataset, the best result is printed in bold and the worst result

is underlined. The most remarkable observation is the poor performance of the IBLR+ method on these datasets, which is in

contrast with its good results on the synthetic datasets in Section 5.2 . Moreover, as we noted and explained in Section 5.2.1 ,

the MLDGC method does not perform as well in our study as it did in its original proposal. It is outperformed by FRONEC

for all evaluation measures. 

As we observed in the analysis of the synthetic datasets, our FRONEC method makes the most accurate predictions based

on the most stringent evaluation measure, the subset accuracy. FRONEC also retains the best balance between the recall and

precision measures, as reflected in its value for the F -measure. On the real-world datasets, LPKNN achieves a good trade-off

between precision and recall as well, such that a competitive F -measure value is obtained. Looking back at Table 4 , the

precision and recall values of LPKNN on the synthetic datasets were close together as well, although they were both lower

than the results of FRONEC- R (2) 
d 

. 

FRONEC- R (2) 
d 

yields the best average result for the subset accuracy and F -measure. The highest average recall is obtained

by BRKNN-b, which is mainly due to its outlying strong performance on the Birds dataset for this measure. However, for each

other measure, BRKNN-b yields the worst result on this dataset, such that we can safely ignore it as a strong competitor. Its

high recall is due to the high number of label predictions it makes for the elements in this dataset. The average difference

between the true and predicted label cardinality on Birds is −6.5126, meaning that BRKNN-b predicts more than six labels
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Table 7 

Experimental results of the seven multi-label classifiers on the datasets in Table 1 for the Hamming 

loss and subset accuracy measures. 

Hamming loss 

Dataset BRKNN-b LPKNN MLKNN IBLR + MLDGC FRONEC- R (1) 
d 

FRONEC- R (2) 
d 

Birds 0.3820 0.0450 0.0410 0.1030 0.0420 0.0422 0.0446 

Emotions 0.1902 0.2094 0.1932 0.2136 0.1946 0.1964 0.1978 

Flags 0.2860 0.2674 0.2670 0.2696 0.2876 0.2664 0.2664 

Music 0.1840 0.2024 0.1840 0.2154 0.1954 0.1946 0.1962 

Scene 0.0872 0.0876 0.0814 0.1264 0.0956 0.0824 0.0816 

Yeast 0.2248 0.2100 0.1928 0.2024 0.2314 0.2030 0.2062 

Mean 0.2257 0.1703 0.1599 0.1884 0.1744 0.1642 0.1655 

Subset accuracy 

Dataset BRKNN-b LPKNN MLKNN IBLR + MLDGC FRONEC- R (1) 
d 

FRONEC- R (2) 
d 

Birds 0.1410 0.5036 0.5454 0.3700 0.5224 0.5284 0.5240 

Emotions 0.3204 0.3372 0.3018 0.2560 0.3186 0.3454 0.3574 

Flags 0.1652 0.2120 0.1494 0.1914 0.1712 0.1992 0.2158 

Music 0.3428 0.34 4 4 0.3128 0.2530 0.3158 0.3360 0.3480 

Scene 0.6998 0.7072 0.6598 0.4870 0.6604 0.7256 0.7272 

Yeast 0.2154 0.2592 0.1966 0.1826 0.2254 0.2704 0.2656 

Mean 0.3141 0.3939 0.3610 0.2900 0.3690 0.4008 0.4063 

Table 8 

Experimental results of the seven multi-label classifiers on the datasets in Table 1 for the F -measure, 

precision and recall measures. 

F -measure 

Dataset BRKNN-b LPKNN MLKNN IBLR + MLDGC FRONEC- R (1) 
d 

FRONEC- R (2) 
d 

Birds 0.1512 0.5506 0.5024 0.3212 0.5322 0.4822 0.4960 

Emotions 0.6918 0.6674 0.6698 0.6496 0.6782 0.6864 0.6882 

Flags 0.7022 0.7170 0.7212 0.7240 0.6952 0.7224 0.7200 

Music 0.7028 0.6826 0.6876 0.6466 0.6748 0.6916 0.6922 

Scene 0.7536 0.7472 0.7566 0.6580 0.7196 0.7628 0.7646 

Yeast 0.6240 0.6446 0.6510 0.6462 0.6194 0.6562 0.6520 

Mean 0.6043 0.6682 0.6648 0.6076 0.6532 0.6669 0.6688 

Precision 

Dataset BRKNN-b LPKNN MLKNN IBLR + MLDGC FRONEC- R (1) 
d 

FRONEC- R (2) 
d 

Birds 0.0858 0.5886 0.7234 0.2472 0.6646 0.6976 0.6222 

Emotions 0.6972 0.6596 0.7162 0.6642 0.6986 0.6840 0.6764 

Flags 0.7090 0.7368 0.7280 0.7168 0.7154 0.7312 0.7340 

Music 0.7080 0.6680 0.7300 0.6618 0.7020 0.6836 0.6774 

Scene 0.7622 0.7720 0.8152 0.6386 0.7576 0.7884 0.7902 

Yeast 0.6344 0.6604 0.7192 0.6866 0.6176 0.6736 0.6666 

Mean 0.5994 0.6809 0.7387 0.6025 0.6926 0.7097 0.6945 

Recall 

Dataset BRKNN-b LPKNN MLKNN IBLR + MLDGC FRONEC- R (1) 
d 

FRONEC- R (2) 
d 

Birds 0.6330 0.5204 0.3858 0.4590 0.4516 0.3716 0.4144 

Emotions 0.6874 0.6754 0.6288 0.6358 0.6594 0.6896 0.7002 

Flags 0.6992 0.6994 0.7162 0.7316 0.6766 0.7142 0.7068 

Music 0.6986 0.6986 0.6510 0.6324 0.6496 0.7002 0.7076 

Scene 0.7452 0.7244 0.7062 0.6794 0.6854 0.7392 0.7406 

Yeast 0.6150 0.6296 0.5948 0.6102 0.6214 0.6398 0.6380 

Mean 0.6797 0.6580 0.6138 0.6247 0.6240 0.6424 0.6513 

 

 

 

 

 

 

 

too many on average, which is about a third of the number of possible labels. The MLKNN method wins for the remaining

two evaluation measures, the Hamming loss and precision, but has the lowest average result for the recall. 

Linking this discussion back to the details provided in Section 5.2.2 , the average difference between the cardinality of

the true and predicted labelsets is −1.0465 (BRKNN-b), 0.0706 (LPKNN), 0.3045 (MLKNN), −0.0621 (IBLR+), 0.1364 (MLDGC),

0.1267 (FRONEC- R (1) 
d 

) and 0.0941 (FRONEC- R (2) 
d 

). As before, the high value of MLKNN explains its superior precision value.

Among the labels correctly predicted by MLKNN, FRONEC- R (1) 
d 

and FRONEC- R (2) 
d 

also derive 93.35% and 93.17% respectively,

which show that the correct predictions of MLKNN are almost always made by our method as well. 

5.3.2. Timing comparison 

To complement the prediction performance analysis, we provide an indication of the execution times of these methods,

both in the training and testing phases. The former includes two components: (i) the time spent to select an appropriate
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parameter setting and (ii) the remaining work required during training. Our FRONEC method needs to set both a value for k

and an OWA weighting scheme, while the other methods only need to decide their k value. This is reflected in the relatively

high parameter selection time of FRONEC- R (1) 
d 

(13.1974 s) and FRONEC- R (2) 
d 

(13.1185 s) compared to the values of BRKNN-b

(0.8369 s), LPKNN (1.0060 s), MLKNN (0.8025 s) and MLDGC (0.8503 s). However, the time spent by IBLR+ to select a good

k value is notably higher at 6 8.4 973 s on average. The high computational expense of IBLR+ has been commented on in

[34] as well. 

Once the parameters have been set, a method may perform some additional operations during its training phase. As

discussed in Section 3.2.3 , FRONEC precomputes the label similarity between each pair of training instances. This is achieved

in 0.0210 s and 0.0338 s by FRONEC- R (1) 
d 

and FRONEC- R (2) 
d 

respectively. The MLKNN and MLDGC methods also perform some

additional calculations at an average cost of 0.7598 s and 0.7933 s. IBLR+ needs to construct a binary classifier for each

class, which comes at the relatively high cost of 9.3378 s. The BRKNN-b and LPKNN do little else at training time apart from

selecting their k value, such that their additional training time is negligible at 0.0023 s and 0.0010 s respectively. 

The average total testing times of the BRKNN-b, LPKNN, MLKNN and MLDGC methods on these six datasets are close

together, namely 0.3450 s, 0.3462 s, 0.3359 s and 0.3343 s respectively. This is the average time to predict the outcomes

of the full test sets. The values of IBLR+ and our FRONEC- R (1) 
d 

and FRONEC- R (2) 
d 

methods are slightly higher at 0.4735 s,

1.0482 s and 1.0487 s respectively. Nevertheless, these values are still low and, in all, we can conclude that each of the

seven included methods has a fast classification time. 

In summary, we find that our proposal is also competitive with the state-of-the-art in terms of its execution time. It takes

a slightly longer time to set its internal parameters compared to BRKNN-b, LPKNN, MLKNN and MLDGC, but this is due to

the fact that an additional parameter (the OWA weighting scheme) needs to be chosen. If necessary, the total training time

of FRONEC can be reduced by fixing the OWA weighting scheme or limiting the number of possibilities. Notwithstanding,

compared to IBLR+, the training time of FRONEC remains very moderate. With respect to the testing time, all methods are

able to derive their predictions acceptably fast. 

6. Conclusion 

In a multi-label classification dataset, each observation is associated with one or more classes. The challenge is to predict

all classes at once, between which correlations may exist. Among the multi-label classifiers proposed in the literature, we

have reviewed the family of methods based on the nearest neighbor classification principle. Generally put, the predicted

labelset is derived based on the information contained in the k nearest neighbors of the instance to classify. 

We have proposed a new multi-label nearest neighbor classifier based on fuzzy rough set theory, called FRONEC. It is re-

lated to the existing methods BRKNN-b and LPKNN and shares their intuitive nature. To classify an instance, FRONEC locates

its k nearest neighbors in the training set. Instead of aggregating the classes of these neighbors to derive the prediction like

BRKNN-b or LPKNN do, our method uses a fuzzy rough quality measure to locate the training instances whose labelsets

represent a consensus of the labelsets of the neighbors. This consensus forms the predicted labelset for the test element. 

Our instance quality measure depends on a fuzzy relation that measures the similarity in the labelsets of observations.

We have proposed and evaluated two candidate label similarity relations. We have explained why the preference for a

particular relation depends on the evaluation metric and included both alternatives in the comparison with other nearest

neighbor based methods. 

We have carefully compared our proposal to five popular nearest neighbor based multi-label classifiers, using five eval-

uation measures. Our comparison includes the MLKNN and IBLR+ methods, which are commonly used as state-of-the-art

methods in comparative studies, and the recent proposal MLDGC. As advised in [34] , we limited the comparison to the

family of nearest neighbor based multi-label classifiers, which are competitive to each other with respect to their under-

standable character. More complex multi-label classifiers have been proposed in the literature, but a comparison with them

is outside the scope of this paper. Our aim has been to provide the community with a new strong representative of the

nearest neighbor classifier family. We have succeeded in this objective and have shown that our proposal could even re-

place MLKNN and IBLR+ in future studies. In the first part of our experimental study, conducted on 30 synthetic multi-label

datasets, our method outperformed its competitors in terms of the F -measure and subset accuracy. With respect to the F -

measure, we observed that we achieve an appropriate balance between the recall and precision, even outperforming the

other methods in terms of the former. The MLKNN and IBLR+ methods obtained a high precision at the cost of a low recall.

Secondly, we repeated the analysis on six real-world multi-label datasets, on which IBLR+ did not perform well at all. Our

FRONEC method and MLKNN provided good results, although the latter did yield the lowest average recall among the com-

pared algorithms. Taking both parts of the experimental evaluation into account, we can conclude that we have proposed

a competitive classifier within the nearest neighbor family, that is easy to understand and implement and has a strong

classification performance. 

One possible line of future research is the combination of our FRONEC method with multi-instance classifiers for appli-

cation in the area of multi-instance multi-label classification [62] . We can opt to use the method in full or only use its core

characteristics, like the label similarity relation or the consensus derivation. Of particular interest would be the interaction

of FRONEC with our earlier fuzzy and fuzzy rough multi-instance classifiers [41,42] . These methods classify multi-instance

observations by computing their membership degree to the possible classes using notions from fuzzy or fuzzy rough set

theory. If more than one class can be assigned to the same observation, the consensus approach used in FRONEC can be
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integrated in the existing classifiers to accommodate for this possibility. From a different viewpoint, we can also generalize

the full FRONEC method to handle multi-instance data. The crucial modification lies with the feature similarity relation, for

which alternatives evaluated in [41] can be used. 

A second interesting aspect for future study is related to the label similarity relation. In this paper, we have discussed

(and experimentally demonstrated) the strong influence of the choice of the label similarity relation on the results of

FRONEC. A more in-depth study of alternative relations may lead to additional insights into the characteristics of the method

and can result in further performance enhancements. 

Acknowledgments 

The research of Sarah Vluymans is funded by the Special Research Fund (BOF) of Ghent University (Grant no.

BOF.DOC.2014.0074 ). Yvan Saeys is an ISAC Marylou Ingram Scholar. 

References 

[1] K. Beyer , J. Goldstein , R. Ramakrishnan , U. Shaft , When is nearest neighbor meaningful? in: Proceedings of the International Conference on Database
Theory, Springer, 1999, pp. 217–235 . 

[2] P. Bhowmick , A. Basu , P. Mitra , A. Prasad , Sentence level news emotion analysis in fuzzy multi-label classification framework, Special issue: Natural

Lang. Process. Appl. (2010) 143 . 
[3] M. Boutell , J. Luo , X. Shen , C. Brown , Learning multi-label scene classification, Pattern Recognit. 37 (9) (2004) 1757–1771 . 

[4] K. Brinker , E. Hüllermeier , Case-based multilabel ranking, in: Proceedings of the 20th International joint conference on Artificial Intelligence, 2007,
pp. 702–707 . 

[5] J. Chen , Y. Tang , C. Chen , B. Fang , Y. Lin , Z. Shang , Multi-label learning with fuzzy hypergraph regularization for protein subcellular location prediction,
IEEE Trans. Nanobiosci. 13 (4) (2014) 438–447 . 

[6] W. Cheng , E. Hüllermeier , Combining instance-based learning and logistic regression for multilabel classification, Mach. Learn. 76 (2–3) (2009)

211–225 . 
[7] W. Cheng , E. Hüllermeier , A simple instance-based approach to multilabel classification using the mallows model, in: Working Notes of the First

International Workshop on Learning from Multi-Label Data, 2009, pp. 28–38 . 
[8] T. Chiang , H. Lo , S. Lin , A ranking-based KNN approach for multi-label classification., ACML 25 (2012) 81–96 . 
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