
Rectifying Classifier Chains for

Multi-Label Classification∗

Robin Senge1, Juan José del Coz2 and Eyke Hüllermeier1

1Heinz Nixdorf Institute and Department of Computer Science

Paderborn University, Germany
2 Artificial Intelligence Center, University of Oviedo at Gijón,

Campus de Viesques, 33204 Gijón, Spain

Abstract

Classifier chains have recently been proposed as an appealing method for tack-

ling the multi-label classification task. In addition to several empirical studies

showing its state-of-the-art performance, especially when being used in its ensem-

ble variant, there are also some first results on theoretical properties of classifier

chains. Continuing along this line, we analyze the influence of a potential pitfall

of the learning process, namely the discrepancy between the feature spaces used

in training and testing: While true class labels are used as supplementary at-

tributes for training the binary models along the chain, the same models need to

rely on estimations of these labels at prediction time. We elucidate under which

circumstances the attribute noise thus created can affect the overall prediction

performance. As a result of our findings, we propose two modifications of clas-

sifier chains that are meant to overcome this problem. Experimentally, we show

that our variants are indeed able to produce better results in cases where the

original chaining process is likely to fail.

Key words: multi-label classification, classifier chains, label-dependence

1 Introduction

Multi-label classification (MLC) has attracted increasing attention in the machine

learning community during the past few years. Apart from being interesting theo-

retically, this is largely due to its practical relevance in many domains, including text

classification, media content tagging and bioinformatics, just to mention a few. The

goal in MLC is to induce a model that assigns a subset of labels to each example,

∗Extended version of: R. Senge, J. del Coz, E. Hüllermeier. Rectifying Classifier Chains for Multi-

Label Classification. Proceedings Workshop LWA–2013, Lernen–Wissensentdeckung–Adaptivitt,151–

158, Bamberg, Germany, 2013.

1

ar
X

iv
:1

90
6.

02
91

5v
1

 [
cs

.L
G

]
 7

 J
un

 2
01

9

rather than a single one as in multi-class classification. For instance, in a news web-

site, a multi-label classifier can automatically attach several labels—usually called tags

in this context—to every article; the tags can be helpful for searching related news or

for briefly informing users about their content.

Current research on MLC is largely driven by the idea that optimal predictive per-

formance cannot be achieved without modeling and exploiting statistical dependencies

between labels. Roughly speaking, if the relevance of one label may depend on the

relevance of other labels, i.e., if their relevance is not statistically independent, then

labels should be predicted simultaneously and not separately. This is the main argu-

ment against simple decomposition techniques such as binary relevance (BR) learning,

which splits the original multi-label task into several independent binary classification

problems, one for each label.

Until now, several methods for capturing label dependence have been proposed in the

literature. They can be categorized according to two major properties:

(i) the size of the subsets of labels for which dependencies are modeled, and

(ii) the type of label dependence they seek to capture.

Looking at the first property, there are methods that only consider pairwise relations

between labels [9, 10, 21, 26] and approaches that take into account correlations among

larger label subsets [18, 19, 24]; the latter include those that consider the influence of all

labels simultaneously [2, 12, 16]. Regarding the second criterion, it has been proposed

to distinguish between the modeling of conditional and unconditional label dependence

[4, 5], depending on whether the dependence is conditioned on an instance [4, 16, 19, 23]

or describing a kind of global correlation in the label space [2, 12, 26].

In this paper, we focus on a method called classifier chains (CC) [19]. This method

enjoys great popularity, even though it has been introduced only lately. As its name

suggests, CC selects an order on the label set—a chain of labels—and trains a binary

classifier for each label in this order. The difference with respect to BR is that the fea-

ture space used to induce each classifier is extended by the previous labels in the chain.

These labels are treated as additional attributes, with the goal to model conditional

dependence between a label and its predecessors. CC performs particularly well when

being used in an ensemble framework, usually denoted as ensemble of classifier chains

(ECC), which reduces the influence of the label order.

Our study aims at gaining a deeper understanding of CC’s learning process. More

specifically, we address an issue that, despite having been noticed [5], has not been

picked out as an important theme so far: Since information about preceding labels is

only available for training, this information has to be replaced by estimations (coming

from the corresponding classifiers) at prediction time. As a result, CC has to deal with

a specific type of attribute noise: While a classifier is learnt on “clean” training data,

including the true values of preceding labels, it is applied on “noisy” test data, in which

true labels are replaced by possibly incorrect predictions. Obviously, this type of noise

may affect the performance of each classifier in the chain. More importantly, since each

classifier relies on its predecessors, a single false prediction might be propagated and

possibly even multiplied along the whole chain.

The contribution of this paper is twofold. First, we analyze the above problem of “error

propagation” in classifier chains in more detail. Using both synthetic and real data

sets, we design experiments in order to reveal those factors that influence the effect of

error propagation in CC. Second, we propose and evaluate modifications of the original

CC method that are intended to overcome this problem.

The rest of the paper is organized as follows. After a brief discussion of related work,

we introduce the setting of MLC more formally in Section 3, and then explain the

classifier chains method in Section 4. Section 5 is devoted to a deeper discussion of

the aforementioned pitfalls of CC, along with some first experiments for illustration

purposes.1 In Section 6, we introduce modifications of CC and propose a method called

nested stacking. An empirical study, in which we experimentally compare this method

with the original CC approach, is presented in Section 6. The paper ends with a couple

of concluding remarks in Section 8.

2 Related Work

While we are not aware of directly related work in the field of multi-label classification,

it is worth to have a look at other types of applications, which, in one way or the other,

have to deal with problems caused by the propagation/multiplication of prediction

errors. In fact, many methods in which predictions are made in a sequential way are

immediately prone to this kind of problem.

Sequence labeling, for instance, involves the assignment of a categorical label to each

element of a sequence of observed values. A typical example is part of speech tagging:

Given a sentence (or even a whole document) as an input, the task is to assign a part

of speech to each individual word. Obviously, there is a strong dependency between

the labels in a given sequence. Therefore, to make an optimal prediction of the label

for a specific word, it is important to take the context of this label into consideration,

i.e., the (predicted) labels of nearby words. To this end, quite a number of structured

learning algorithms have been developed and applied to this task [17]; examples of

such algorithms include hidden Markov models, conditional random fields, as well as

methods such as SEARN [13] and HC-Search [7, 8], which combine search (in the

output space) and learning.

A specific type of sequence labeling is sequential partitioning, a sequential classification

task for which longer runs of the same label are encountered [3]. Here, instances have

a single binary label (like in binary classification). However, the set of instances to be

classified at prediction time is not drawn independently; instead, they obey a natural

order. As an example, consider the task to identify the signature part of an email. An

instance then refers to a line of text, and each line has to be classified as being part

of the signature or not. The natural order of the lines is given by the structure of the

1This section is partly based on [22]

email. To tackle this problem, the authors in [3] propose a specific type of stacking

approach that bears some resemblance to our method of nested stacking (cf. Section 6).

Yet another direction is sequential decision making problems such as planning and

reinforcement learning, where the goal is to predict an optimal sequence of actions. The

problem of error propagation has been noticed and specifically well studied in the field of

imitation learning. In applications like mobile robot navigation and electronic games,

imitation learning aims at imitating an experts policy which comprises an optimal

selection of sequential actions. By executing actions, the expert and the imitating

machine move from one state to another. Erroneously choosing the wrong action then

requires a dynamic (state-dependent) recovery policy, which cannot be achieved by

simply imitating the faultless expert policy in this situation. In fact, the erroneous

action can lead to a higher probability of subsequent errors [20].

Finally, we also mention that problems of this kind are of course not limited to the case

of categorical predictions but likewise apply to the prediction of real-valued targets, for

example, in time series forecasting or in audio and speech signal processing. However,

since these applications are quite remote from multi-label classification, or at least less

connected than those we discussed above, we refrain from a more detailed discussion

here.

3 Multi-Label Classification

Let L = {λ1, λ2, . . . , λm} be a finite and non-empty set of class labels, and let X be an

instance space. We consider an MLC task with a training set

S =
{

(x1,y1), . . . , (xn,yn)
}

generated independently according to a probability distribution P(X,Y) on X × Y .

Here, Y is the set of possible label combinations, i.e., the power set of L. To ease

notation, we define yi as a binary vector yi = (yi,1, yi,2, . . . , yi,m), in which yi,j = 1

indicates the presence (relevance) and yi,j = 0 the absence (irrelevance) of λj in the

labeling of xi. Under this convention, the output space is given by Y = {0, 1}m. The

goal in MLC is to induce from S a hypothesis h : X −→ Y that correctly predicts the

subset of relevant labels for unlabeled query instances x.

The most straightforward and arguably simplest approach to tackle the MLC problem

is binary relevance (BR) learning. The BR method reduces a given multi-label prob-

lem with m labels to m binary classification problems. More precisely, m hypotheses

h1, h2, . . . , hm are induced, each of them being responsible for predicting the relevance

of one label, using X as an input space:

hj : X −→ {0, 1} (1)

In this way, the labels are predicted independently of each other and no label depen-

dencies are taken into account.

In spite of its simplicity and the strong assumption of label independence, it has been

shown theoretically and empirically that BR performs quite strong in terms of decom-

posable loss functions [4], including the well-known Hamming loss :

LH(y,h(x)) =
1

m

m∑
i=1

[[yi 6= hi(x)]] (2)

The Hamming loss averages the standard 0/1 classification error over the m labels and

hence corresponds to the proportion of labels whose relevance is incorrectly predicted.

Thus, if one of the labels is predicted incorrectly, this accounts for an error of 1
m

.

Another extension of the standard 0/1 classification loss is the subset 0/1 loss :

LZO(y,h(x)) = [[y 6= h(x)]] (3)

Obviously, this measure is more drastic and already treats a mistake on a single label

as a complete failure. The necessity to exploit label dependencies in order to minimize

the generalization error in terms of the subset 0/1 loss has been shown in [4].

4 Classifier Chains

While following a similar setup as BR, classifier chains (CC) seek to capture label

dependencies. CC learns m binary classifiers linked along a chain, where each classifier

deals with the binary relevance problem associated with one label. In the training

phase, the feature space of each classifier in the chain is extended with the actual

label information of all previous labels in the chain. For instance, if the chain follows

the order λ1 → λ2 → . . . → λm, then the classifier hj responsible for predicting the

relevance of λj is of the form

hj : X × {0, 1}j−1 −→ {0, 1} . (4)

The training data for this classifier consists of instances (xi, yi,1, . . . , yi,j−1) labeled with

yi,j, that is, original training instances xi supplemented by the relevance of the labels

λ1, . . . , λj−1 preceding λj in the chain.

At prediction time, when a new instance x needs to be labeled, a label subset y =

(y1, . . . , ym) is produced by successively querying each classifier hj. Note, however, that

the inputs of these classifiers are not well-defined, since the supplementary attributes

yi,1, . . . , yi,j−1 are not available. These missing values are therefore replaced by their

respective predictions: y1 used by h2 as an additional input is replaced by ŷ1 = h1(x),

y2 used by h3 as an additional input is replaced by ŷ2 = h2(x, ŷ1), and so forth. Thus,

the prediction y is of the form

y =
(
h1(x), h2(x, h1(x)), h3(x, h1(x), h2(x, h1(x))), . . .

)
Realizing that the order of labels in the chain may influence the performance of the

classifier, and that an optimal order is hard to anticipate, the authors in [19] propose

the use of an ensemble of CC classifiers. This approach combines the predictions of

different random orders and, moreover, uses a different sample of the training data to

train each member of the ensemble. Ensembles of classifier chains (ECC) have been

shown to increase predictive performance over CC by effectively using a simple voting

scheme to aggregate predicted relevance sets of the individual CCs: For each label λj,

the proportion ŵj of classifiers predicting yj = 1 is calculated. Relevance of λj is then

predicted by using a threshold t, that is, ŷj = [[ŵj ≥ t]].

5 Attribute Noise in Classifier Chains

The learning process of CC violates a key assumption of supervised learning, namely

the assumption that the training data is representative of the test data in the sense of

being identically distributed. This assumption does not hold for the chained classifiers

in CC: While using the true label data yj as input attributes during the training phase,

this information is replaced by estimations ŷj at prediction time. Needless to say, yj
and ŷj are not guaranteed to follow the same distribution; on the contrary, unless the

classifiers produce perfect predictions, these distributions are likely to differ in practice

(in particular, note that the ŷj are deterministic predictions whereas the yj normally

follow a non-degenerate probability distribution).

From the point of view of the classifier hj, which uses the labels y1, . . . , yj−1 as ad-

ditional attributes, this problem can be seen as a problem of attribute noise. More

specifically, we are facing the “clean training data vs. noisy test data” case, which is

one of four possible noise scenarios that have been studied quite extensively in [27]. For

CC, this problem appears to be vital: Could it be that the additional label information,

which is exactly what CC seeks to exploit in order to gain in performance (compared to

BR), eventually turns out to be a source of impairment? Or, stated differently, could

the additional label information perhaps be harmful rather than useful?

This question is difficult to answer in general. In particular, there are several factors

involved, notably the following:

• The length of the chain: The larger the number j − 1 of preceding classifiers

in the chain, the higher is the potential level of attribute noise for a classifier

hj. For example, if prediction errors occur independently of each other with

probability ε, then the probability of a noise-free input is only (1 − ε)j−1. More

realistically, one may assume that the probability of a mistake is not constant

but will increase with the level of attribute noise in the input. Then, due to the

recursive structure of CC, the probability of a mistake will be multiplied and

increase even more rapidly along the chain.

• The order of the chain: Since some labels might be inherently more difficult to

predict than others, the order of the chain will play a role, too. In particular, it

would be advantageous to put simpler labels in the beginning and harder ones

more toward the end of the chain.

2 4 6 8 10

0.
00

0.
04

0.
08

0.
12

label position

po
si

tio
n-

w
is

e
re

la
tiv

e
in

cr
ea

se
 o

f c
la

ss
ifi

ca
tio

n
er

ro
r

BR - all
CC - emotions
CC - scene
CC - yeast-10

Figure 1: Results of the first experiment: position-wise relative increase of classification

error (mean plus standard error bars). The yeast-10 data set used here is a reduced

yeast data set containing only the ten most frequent labels and their instances.

• The accuracy of the binary classifiers : The level of attribute noise is in direct

correspondence with the accuracy of the binary classifiers along the chain. More

specifically, these classifiers determine the input distributions in the test phase.

If they are perfect, then the training distribution equals the test distribution, and

there is no problem. Otherwise, however, the distributions will differ.

• The dependency among labels : Perhaps most interestingly, a (strong enough)

dependence between labels is a prerequisite for both, an improvement and a

deterioration through chaining. In fact, CC cannot gain (compared to BR) in case

of no label dependency. In that case, however, it is also unlikely to lose, because

a classifier hj will most likely2 ignore the attributes y1, . . . , yj−1. Otherwise, in

case of pronounced label dependence, it will rely on these attributes, and whether

or not this is advantageous will depend on the other factors above.

In the following, we present two experimental studies that are meant to illustrate the

above issues. Based on our discussion so far and these experiments, two modifications

of CC will then be introduced in the next sections, both of them with the aim to

alleviate the problems outlined above.

5.1 First Experiment

Our intuition is that attribute noise in the test phase can produce a propagation of

errors through the chain, thereby affecting the performance of the classifiers depending

2The possibility to ignore parts of the input information does of course also depend on the type of

base classifier used.

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

label 1

x1

x2

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

label 2

x1

x2

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

label 3

x1

x2

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

label 1

x1

x2

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

label 2

x1

x2

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

label 3

x1

x2

Figure 2: Example of synthetic data: the top three labels are generated using τ = 0,

the three at the bottom with τ = 1.

on their position in the chain. More specifically, we expect classifiers in the beginning

of the chain to systematically perform better than classifiers toward the end. In order

to verify this conjecture, we perform the following simple experiment: We train a CC

classifier on 500 randomly generated label orders. Then, for each label order and each

position, we compute the performance of the classifier on that position in terms of

the relative increase of classification error compared to BR. Finally, these errors are

averaged position-wise (not label-wise). For this experiment, we used three standard

MLC benchmark data sets whose properties are summarized in Table 1 (shown in

Section 6).

The results in Figure 1 clearly confirm our expectations. In two cases, CC starts to

lose immediately, and the loss increases with the position. In the third case, CC is able

to gain on the first positions but starts to lose again later on.

5.2 Second Experiment

In a second experiment, we use a synthetic setup that was proposed in [5] to analyze

the influence of label dependence. The input space X is two-dimensional and the

underlying decision boundary for each label is linear in these inputs. More precisely,

the model for each label is defined as follows:

hj(x) =

{
1 aj,1x1 + aj,2x2 ≥ 0

0 otherwise
(5)

5 10 15 20 25

1.
05

1.
10

1.
15

1.
20

tau = 0 (high label dependence)

number of labels

(s
ub

se
t 0

/1
 lo

ss
) /

 B
ay

es

BR
CC
NS

5 10 15 20 25

1.
45

1.
50

1.
55

1.
60

1.
65

1.
70

tau = 0 (high label dependence)

number of labels

(H
am

m
in

g
lo

ss
) /

 B
ay

es

BR
CC
NS

5 10 15 20 25

1.
05

1.
10

1.
15

1.
20

1.
25

1.
30

1.
35

tau = 1 (low label dependence)

number of labels

(s
ub

se
t 0

/1
 lo

ss
) /

 B
ay

es

BR
CC
NS

5 10 15 20 25

1.
5

1.
6

1.
7

1.
8

1.
9

2.
0

tau = 1 (low label dependence)

number of labels

(H
am

m
in

g
lo

ss
) /

 B
ay

es

BR
CC
NS

Figure 3: Results of the second experiment for τ = 0 (top—high label dependence)

and τ = 1 (bottom—low label dependence).

The input values are drawn randomly from the unit circle. The parameters aj,1 and

aj,2 for the j-th label are set to

aj,1 = 1− τr1, aj,2 = τr2 , (6)

with r1 and r2 randomly chosen from the unit interval. Additionally, random noise is

introduced for each label by independently reversing a label with probability π = 0.1.

Obviously, the level of label dependence can be controlled by the parameter τ . Figure

2 shows two example data sets with three labels. The first one (pictures on the top) is

generated with τ = 0, the second one (bottom) with τ = 1. As can be seen, the label

dependence is quite strong in the first case, where the model parameters (6) are the

same for each label. For the second case, the model parameters are different for each

label. There is still label dependence, but certainly less pronounced.

For different label cardinalities m ∈ {5, 10, 15, 20, 25}, we run 10 repetitions of the

following experiment: We created 10 different random model parameter sets (two for

each label) and generated 10 different training sets, each consisting of 50 instances. For

each training set, a model is learnt and evaluated (in terms of Hamming and subset

0/1 loss) on an additional data set comprising 1000 instances.

Figure 3 summarizes the results in terms of the average loss divided by the correspond-

ing Bayes loss (which can be computed since the data generating process is known);

thus, the optimum value is always 1. Apart from BR and CC, we already include

the performance curve for the method to be introduced in the next section (NS); this

should be ignored for now. Comparing BR and CC, the big picture is quite similar to

the previous experiment: The performance of CC tends to decrease relative to BR with

an increasing number of labels. In the case of low label dependence, this can already be

seen for only five labels. The case of high label dependence is more interesting: While

CC seems to gain from exploiting the dependency for a small to moderate number of

labels, it cannot extend this gain to more than 15 labels.

6 Nested Stacking

A first very simple idea to mitigate the problem of attribute noise in CC is to let a

classifier hj use predicted labels ŷ1, . . . , ŷj−1 as supplementary attributes for training

instead of the true labels y1, . . . , yj−1. This way, one could make sure that the data

distribution is the same for training and testing. Or, stated differently, the situation

faced by a classifier during training does indeed equal the one it will encounter later

on at prediction time. Since then a classifier is trained on the predictions of other

classifiers, this approach fits the stacked generalization learning paradigm [25], also

simply known as stacking.

6.1 Stacking versus Nested Stacking

The idea of stacking has already been used in the context of MLC by Godbole and

Sharawagi [12]. In the learning phase, their method builds a stack of two groups of

classifiers. The first one is formed by the standard BR classifiers:

h1(x) = (h11(x), . . . , h1m(x)) .

On a second level, also called meta-level, another group of binary models (again one

for each label) is learnt, but these classifiers consider an augmented feature space that

includes the binary outputs of all models of the first level:

h2(x,y′) = (h21(x,y
′), . . . , h2m(x,y′)) ,

where y′ = h1(x). The idea is to capture label dependencies by learning their relation-

ships in the meta-level step. In the test phase, the final predictions are the outputs of

the meta-level classifiers, h2(x), using the outputs of h1(x) exclusively to obtain the

values of the augmented feature space.

Mimicking the chain structure of CC, our variant of stacking is a nested one: Instead

of a two-level architecture as in standard stacking, we obtain a nested hierarchy of

stacked (meta-)classifiers. Hence, we call it nested stacking (NS). Moreover, each of

these classifiers is only trained on a subset of the predictions of other classifiers. Like

in CC, m models need to be trained in total, while 2m models are trained in standard

stacking.

6.2 Out-of-Sample versus Within-Sample Training

To make sure that the distribution of the labels ŷ1, . . . , ŷj−1, which are used as supple-

mentary attributes by the classifier hj, is indeed the same at training and prediction

time, these labels should be produced by means of an out-of-sample prediction pro-

cedure. For example, an internal leave-one-out cross validation procedure could be

implemented for this purpose.

Needless to say, a procedure of that kind is computationally complex, even for clas-

sifiers that can be trained and “detrained” incrementally (such as incremental and

decremental support vector machines [1]). In our current version of NS, we therefore

implement a simple within-sample strategy. In several experimental studies, we found

this strategy to perform almost as good as out-of-sample training, while being signifi-

cantly faster. In fact, methods such as logistic regression, which are not overly flexible,

are hardly influenced by excluding or including a single example.

6.3 A First Experiment

To get a first impression of the performance of NS, we return to the experiment in

Section 5.2. As can be seen in Figure 3, NS does indeed gain in comparison to CC

with an increasing number of labels; only if the labels are few, CC is still a bit better.

This tendency is more pronounced in the case of strong label dependency, whereas the

differences are rather small if label dependence is low.

To explain the competitive performance of CC if the number of labels is small, note that

replacing “clean” training data y1, . . . , yj−1 by possibly more noisy data ŷ1, . . . , ŷj−1,

as done by NS, may not only have the positive effect of making the training data

more authentic. In fact, it may also make the problem of learning hj more difficult

(because the dependency y1, . . . , yj−1 → yj might be “easier” than the dependency

ŷ1, . . . , ŷj−1 → yj). Apparently, this effect plays an important role if the number of

labels is small, whereas the positive effect dominates for longer label chains.

6.4 Subset Correction

Our second modification is motivated by the observation that the number of label

combinations that are commonly observed in MLC data sets is only a tiny fraction of

the total number |Y| = 2m of possible subsets; see Table 1, which reports the value

|YD|2−m, where YD is the set of unique label combinations contained in the data D,

as the “observation rate” in the last column. Moreover, if a label combination y has

an occurrence probability of ε > 0, then the probability that it has never be seen in

a data set of size n reduces to (1 − ε)n. Thus, by contraposition, one may argue that

such a label combination is indeed unlikely to exist at all (at least for large enough n).

Our idea of “subset correction”, therefore, is to restrict a learner to the prediction of

label combinations whose existence is testified by the (training) data. More precisely,

let YS denote the set of label subsets y that have be seen in the training data S. Then,

given a prediction ŷ produced by a classifier h, this prediction is replaced by the “most

similar” subset y∗ ∈ YS:

y∗ ∈ argmin
y′∈YS

LH(ŷ,y′) (7)

Thus, y∗ is eventually returned as a prediction instead of ŷ. If the minimum in (7)

is not unique, those label combinations with higher frequency in the training data are

preferred.

In principle, the Hamming loss could of course be replaced by other MLC loss functions

in (7). Its use here is mainly motivated by the fact, that it is used for a similar purpose,

namely decoding, in the framework of error correcting output codes (ECOC). As such,

it has been applied in multi-class classification [6] and lately also in MLC [14],[11].

7 Nested Stacking versus Classifier Chains

In this section, we compare NS and CC, both with and without subset correction,

on real MLC benchmark data. As can be seen in Table 1, the data sets differ quite

significantly in terms of the number of attributes, examples, labels, cardinality (number

of labels per example) and the observation rate.

Logistic regression was used as a base learner for binary prediction in all MLC methods

[15]. Unlike [19], we do not apply any threshold selection procedure; instead, we

simply used t = 0.5 for deciding the relevance of a label. In fact, our goal is to study

the behavior of CC and NS without the influence of other factors that may bias the

results.

Since CC’s main goal is to detect conditional label dependence, we used example-based

metrics for evaluation. In addition to Hamming and subset 0/1 loss introduced earlier,

we also applied the F1 and Jaccard index defined, respectively, as follows (note that

these are accuracy measures instead of loss functions):

F1(y,h(x)) =
2
∑m

i=1[[yi = 1 and hi(x) = 1]]∑m
i=1([[yi = 1]] + [[hi(x) = 1]])

(8)

Table 1: Properties of the data sets used in the experiments.

Data set Attributes Examples Labels Cardinality Observation Rate

bibtex 1836 7395 159 2.40 3.9E-45

emotions 72 593 6 1.87 4.0E-1

enron 1001 1702 53 3.38 8.3E-14

genbase 1185 662 27 1.25 2.3E-7

image 135 2000 5 1.24 6.0E-1

mediamill 120 5000 101 4.27 2.5E-27

medical 1449 978 45 1.25 2.6E-12

reuters 243 7119 7 1.24 1.9E-1

scene 294 2407 6 1.07 2.3E-1

slashdot 1079 3782 22 1.18 3.7E-5

yeast 103 2417 14 4.24 1.2E-2

Jaccard(y,h(x)) =

∑m
i=1[[yi = 1 and hi(x) = 1]]∑m
i=1[[yi = 1 or hi(x) = 1]]

(9)

The value for a test set is defined as the average over all instances. The scores reported

in Tables 2 and 3 were estimated by means of 10-fold cross-validation, repeated three

times. We used a paired t-test for establishing statistical significance on each data set.

Looking at the comparison between CC and NS (without subset correction) as shown

in Table 2), the first thing to mention is the strong performance of NS in terms of Ham-

ming loss (8 significant wins and 3 losses). In terms of their properties, the three data

sets on which NS loses do indeed seem to be favorable for CC: Since slashdot, medical

and genbase all have a rather low Hamming loss, the danger of error propagation is

limited. Thus, the results are completely in agreement with our expectations.

For Jaccard and F1, the picture is not as clear. In both cases, NS wins 6 times. Again,

like for Hamming loss, NS outperforms CC on data sets with many labels (bibtex,

enron, mediamill) or a relatively high Hamming loss (yeast), whereas CC is better for

data sets with only a few labels (image, reuters) or with high accuracy (genbase).

The picture for CC and NS with subset correction (denoted CCSC and NSSC , respec-

tively) is quite similar (Table 3), although the performance differences tend to decrease

in absolute size. On subset 0/1 loss, for which the original CC performs quite strong

and typically outperforms NS, the corrected version NSSC even achieves 3 significant

wins over CCSC .

To analyze the effect of subset correction in more detail, Table 4 provides a summary

of a comparison of Table 2 and Table 3. Interestingly enough, subset correction yields

improvements on almost every experiment, regardless of the performance measure,

Table 2: Experimental results of NS and CC on benchmark data sets. � (�) means

that NS is significantly better (worse) than CC at level p < 0.01 (↑ and ↓ at level

p < 0.05) in a paired t-test.
F1 Jaccard Index

m CC NS CC NS

bibtex 159 0.1697±.0071 0.1747±.0077 � 0.1098±.0060 0.1133±.0064 �
emotions 6 0.5883±.0534 0.6028±.0500 ↑ 0.5003±.0521 0.5144±.0514 ↑
enron 53 0.3483±.0191 0.3729±.0214 � 0.2474±.0163 0.2693±.0178 �
genbase 27 0.9863±.0090 0.9854±.0085 ↓ 0.9804±.0115 0.9789±.0109 ↓
image 5 0.5556±.0284 0.4780±.0299 � 0.5196±.0271 0.4460±.0278 �
mediamill 101 0.5326±.0054 0.5619±.0053 � 0.4280±.0052 0.4459±.0052 �
medical 45 0.6462±.0331 0.6444±.0340 0.5828±.0343 0.5804±.0356
reuters 7 0.8599±.0128 0.8570±.0116 � 0.8336±.0138 0.8302±.0129 �
scene 6 0.5969±.0403 0.6031±.0348 0.5745±.0405 0.5766±.0344
slashdot 22 0.3278±.0185 0.3259±.0186 0.2747±.0176 0.2726±.0180
yeast 14 0.5836±.0182 0.6068±.0172 � 0.4848±.0198 0.4990±.0183 �

Hamming Loss Subset 0/1 Loss

m CC NS CC NS

bibtex 159 0.0724±.0020 0.0672±.0016 � 0.9837±.0052 0.9833±.0052
emotions 6 0.2367±.0268 0.2169±.0253 � 0.7578±.0575 0.7477±.0633
enron 53 0.1233±.0051 0.1050±.0051 � 0.9565±.0135 0.9510±.0133 ↑
genbase 27 0.0019±.0011 0.0020±.0010 ↓ 0.0408±.0211 0.0443±.0213 ↓
image 5 0.2104±.0127 0.1962±.0119 � 0.5857±.0269 0.6468±.0249 �
mediamill 101 0.0303±.0004 0.0291±.0004 � 0.8752±.0049 0.8969±.0048 �
medical 45 0.0248±.0031 0.0249±.0031 0.5890±.0425 0.5934±.0463
reuters 7 0.0506±.0046 0.0483±.0043 � 0.2454±.0173 0.2499±.0175 ↓
scene 6 0.1470±.0143 0.1397±.0124 � 0.4918±.0434 0.5019±.0355 ↓
slashdot 22 0.0908±.0027 0.0913±.0028 ↓ 0.8652±.0185 0.8678±.0198
yeast 14 0.2242±.0093 0.2069±.0087 � 0.8104±.0229 0.8469±.0231 �

and most of these improvements are even significant. More specifically, counting the

number of significant wins, subset correction appears to be most beneficial for subset

0/1 loss and least beneficial for Hamming loss. In fact, for Hamming loss, subset

correction loses for data sets with only a few labels (reuters, scene, yeast and image)

and a relatively high observation rate. Comparing NS and CC, the former seems to

benefit even more from subset correction than the latter, except for Hamming loss, on

which NS is already strong in its basic version. In terms of subset 0/1 loss, however,

significant improvements can be seen on every single data set. In light of the simplicity

of the idea, these effects of subset correction are certainly striking.

8 Conclusion

This paper has thrown a critical look at the classifier chains method for multi-label

classification, which has been adopted quite quickly by the MLC community and is now

commonly used as a baseline when it comes to comparing methods for exploiting label

dependency. Notwithstanding the appeal of the method and the plausibility of its basic

idea, we have argued that, at second sight, the chaining of classifiers begs an important

flaw: A binary classifier that has learnt to rely on the values of previous labels in the

chain might be misled when these values are replaced by possibly erroneous estimations

at prediction time. The classification errors produced because of this attribute noise

may subsequently be propagated or even multiplied along the entire chain. Roughly

Table 3: Experimental results of NSSC and CCSC on benchmark data sets. � (�)

means that NSSC is significantly better (worse) than CCSC at level p < 0.01 (↑ and ↓
at level p < 0.05) in a paired t-test.

F1 Jaccard Index

m CCSC NSSC CCSC NSSC

bibtex 159 0.2026±.0119 0.2090±.0113 � 0.1528±.0099 0.1582±.0100 �
emotions 6 0.5905±.5905 0.6132±.6132 � 0.5027±.0521 0.5239±.0525 �
enron 53 0.3843±.3843 0.4016±.4016 � 0.2821±.0190 0.3005±.0238 �
genbase 27 0.9843±.9843 0.9838±.9838 0.9807±.0129 0.9802±.0125
image 5 0.5557±.5557 0.5315±.5315 � 0.5197±.0272 0.4972±.0304 �
mediamill 101 0.5328±.0054 0.5610±.0052 � 0.4282±.0052 0.4457±.0050 �
medical 45 0.6220±.6220 0.6231±.6231 0.5898±.0435 0.5900±.0460
reuters 7 0.8624±.8624 0.8639±.8639 0.8367±.0142 0.8382±.0126
scene 6 0.5921±.5921 0.6105±.6105 � 0.5739±.0423 0.5873±.0370 �
slashdot 22 0.3271±.3271 0.3248±.3248 0.2843±.0186 0.2818±.0202
yeast 14 0.5889±.5889 0.6141±.6141 � 0.4890±.0200 0.5104±.0200 �

Hamming Loss Subset 0/1 Loss

m CCSC NSSC CCSC NSSC

bibtex 159 0.0282±.0008 0.0270±.0006 � 0.9592±.0080 0.9568±.0082 ↑
emotions 6 0.2363±.0268 0.2190±.0266 � 0.7555±.0581 0.7404±.0652 ↑
enron 53 0.0819±.0023 0.0766±.0030 � 0.9491±.0130 0.9346±.0156 �
genbase 27 0.0019±.0012 0.0019±.0012 0.0332±.0176 0.0337±.0172
image 5 0.2104±.0127 0.2199±.0140 � 0.5855±.0270 0.6027±.0277 �
mediamill 101 0.0302±.0004 0.0291±.0003 � 0.8750±.0049 0.8925±.0051 �
medical 45 0.0210±.0025 0.0210±.0027 0.5017±.0465 0.5037±.0514
reuters 7 0.0513±.0049 0.0506±.0042 0.2403±.0177 0.2391±.0167
scene 6 0.1479±.0147 0.1441±.0130 ↑ 0.4802±.0449 0.4815±.0386
slashdot 22 0.0840±.0026 0.0842±.0028 0.8348±.0186 0.8380±.0201
yeast 14 0.2243±.0093 0.2089±.0097 � 0.8073±.0230 0.8097±.0237

speaking, what looks as a gift at training time may turn out to become a handicap in

prediction.

Our results have shown that the problem of error propagation is highly relevant, and

that it may strongly impair the performance of CC. In order to avoid this problem, the

method of nested stacking proposed in this paper uses predicted instead of observed

label relevances as additional attribute values in the training phase. Our experimental

studies clearly confirm that, although NS does not consistently outperform CC, it seems

to have advantages for those data sets on which error propagation becomes an issue,

namely data sets with many labels or low (label-wise) prediction accuracy.

There are several lines of future work. First, it is of course desirable to complement

this study by meaningful theoretical results supporting our claims. Second, it would

be interesting to investigate to what extent the problem of attribute noise also applies

to the probabilistic variant of classifier chains introduced in [4]. Last but not least,

given the interesting effects that are produced by the simple idea of subset correction,

this approach seems to be worth further investigation, all the more as it is completely

general and not limited to specific MLC methods such as those considered in this paper.

References

[1] Cauwenberghs, G., Poggio, T.: Incremental and decremental support vector ma-

chine learning. Proc. NIPS pp. 409–415 (2001)

[2] Cheng, W., Hüllermeier, E.: Combining instance-based learning and logistic re-

gression for multilabel classification. Machine Learning 76(2-3), 211–225 (2009).

DOI 10.1007/s10994-009-5127-5.

[3] Cohen, W.W.: Stacked sequential learning. Tech. rep., DTIC Document (2005)

[4] Dembczyński, K., Cheng, W., Hüllermeier, E.: Bayes optimal multilabel classifi-

cation via probabilistic classifier chains. In: ICML, pp. 279–286 (2010)

[5] Dembczyński, K., Waegeman, W., Cheng, W., Hüllermeier, E.: On label depen-

dence and loss minimization in multi-label classification. Machine Learning 88,

5–45 (2012)

[6] Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-

correcting output codes. Journal of Artificial Intelligence Research 2, 263–286

(1995)

[7] Doppa, J.R., Fern, A., Tadepall, P.: HC-Search: Learning heuristics and cost

functions for structured prediction. In: Proc. AAAI, National Conference on

Artificial Intelligence (2012)

[8] Doppa, J.R., Fern, A., Tadepall, P.: Output space search for structured prediction.

In: Proc. ICML, International Conference on Machine Learning. Scotland, UK

(2012)

[9] Elisseeff, A., Weston, J.: A Kernel Method for Multi-Labelled Classification. In:

ACM Conf. on Research and Develop. in Infor. Retrieval, pp. 274–281 (2005).

[10] Fürnkranz, J., Hüllermeier, E., Menćıa, E., Brinker, K.: Multilabel classification

via calibrated label ranking. Machine Learning 73, 133–153 (2008). DOI 10.1007/

s10994-008-5064-8.

[11] Fürnkranz, J., Park, S.H.: Error-correcting output codes as a transformation from

multi-class to multi-label prediction. In: Proc. Discovery Science, pp. 254–267

(2012). DOI 10.1007/978-3-642-33492-4 21.

[12] Godbole, S., Sarawagi, S.: Discriminative methods for multi-labeled classification.

In: Pacific-Asia Conf. on Know. Disc. and Data Mining, pp. 22–30 (2004)

[13] III, H.D., Langford, J., Marcu, D.: Search-based structured prediction. Machine

Learning 75(3), 297–325 (2009)

[14] Kajdanowicz, T., Kazienko, P.: Multi-label classification using error correcting

output codes. International Journal of Applied Mathematics and Computer Sci-

ence 22(4), 829–840 (2012)

[15] Lin, C.J., Weng, R.C., Keerthi, S.S.: Trust region Newton method for logistic

regression. Journal of Machine Learning Research 9(Apr), 627–650 (2008)

[16] Montañés, E., Quevedo, J.R., del Coz, J.J.: Aggregating independent and depen-

dent models to learn multi-label classifiers. In: Proc. ECML/PKDD (2011)

[17] Nguyen, N., Guo, Y.: Comparisons of sequence labeling algorithms and extensions.

In: Proc. ICML, International Conference on Machine Learning (2007)

[18] Read, J., Pfahringer, B., Holmes, G.: Multi-label classification using ensembles of

pruned sets. In: IEEE Int. Conf. on Data Mining, pp. 995–1000. IEEE (2008).

DOI 10.1109/ICDM.2008.74.

[19] Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label

classification. Machine Learning 85(3), 333–359 (2011)

[20] Ross, S., Bagnell, D.: Efficient reductions for imitation learning. In: International

Conference on Artificial Intelligence and Statistics, pp. 661–668 (2010)

[21] Schapire, R.E., Singer, Y.: Boostexter: A boosting-based system for text catego-

rization. In: Machine Learning, pp. 135–168 (2000)

[22] Senge, R., del Coz, J.J., Hüllermeier, E.: On the problem of error propagation

in classifier chains for multi-label classification. In: Conference of the German

Classification Society (2012)

[23] Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multi-label data. In: Data

Mining and Knowledge Discovery Handbook, pp. 667–685 (2010)

[24] Tsoumakas, G., Vlahavas, I.: Random k-Labelsets: An Ensemble Method for

Multilabel Classification. In: Proc. ECML/PKDD, LNCS, pp. 406–417. Springer

(2007). DOI 10.1007/978-3-540-74958-5\ 38.

[25] Wolpert, D.H.: Stacked generalization. Neural Networks 5, 214–259 (1992)

[26] Zhang, M.L., Zhou, Z.H.: Multilabel neural networks with applications to func-

tional genomics and text categorization. IEEE Trans. on Knowl. and Data Eng.

18, 1338–1351 (2006). DOI http://dx.doi.org/10.1109/TKDE.2006.162.

[27] Zhu, X., Wu, X.: Class noise vs. attribute noise: a quantitative study of their

impacts. Artificial Intelligence Review 22(3), 177–210 (2004). DOI 10.1007/

s10462-004-0751-8

Table 4: The effect of subset correction in terms of statistical significance. The cor-

responsing loss/accuracy values can be found in Tables 2-3. � (�) means that NSSC

(CCSC) is significantly better (worse) than NS (CC) at level p < 0.01 (↑ and ↓ at level

p < 0.05) in a paired t-test.
NS vs. NSSC

m Hamming Subset 0/1 Jaccard F1

bibtex 159 � � � �
emotions 6 � � �
enron 53 � � � �
genbase 27 �
image 5 � � � �
mediamill 101 � � �
medical 45 � � ↑ �
reuters 7 � � � �
scene 6 � � � �
slashdot 22 � � �
yeast 14 � � � �

CC vs. CCSC

m Hamming Subset 0/1 Jaccard F1

bibtex 159 � � � �
emotions 6 ↑
enron 53 � � � �
genbase 27 �
image 5

mediamill 101 � � � �
medical 45 � � �
reuters 7 � � � �
scene 6 ↓ � �
slashdot 22 � � �
yeast 14 � � �

	1 Introduction
	2 Related Work
	3 Multi-Label Classification
	4 Classifier Chains
	5 Attribute Noise in Classifier Chains
	5.1 First Experiment
	5.2 Second Experiment

	6 Nested Stacking
	6.1 Stacking versus Nested Stacking
	6.2 Out-of-Sample versus Within-Sample Training
	6.3 A First Experiment
	6.4 Subset Correction

	7 Nested Stacking versus Classifier Chains
	8 Conclusion

