
 

252 
 

Induction of decision trees by looking to data 
sequentially and using error correction rule 

NargesSadat Bathaeian 
Computer engineering department 

Bu-Ali Sina University 
Hamedan, I.R. of Iran 
bathaeian@basu.ac.ir 

Muharram Mansoorizadeh 
Computer engineering department 

Bu-Ali Sina University 
Hamedan, I.R. of Iran 
mansoorm@basu.ac.ir

  
Abstract—Decision trees are common algorithms in 

machine learning. Traditionally, these algorithms make 
trees recursively and at each step, they inspect data to 
induce the part of the tree. However decision trees are 
famous for their instability and high variance in error. 
In this paper a solution which adds error correction rule 
to a traditional decision tree algorithm is examined.  In 
fact an algorithm which we call it, ECD3 is introduced. 
Algorithm of ECD3 inspects data sequentially in an 
iterative manner and updates tree only when it finds an 
erroneous observation. This method was first proposed 
by Dr. Utgoff but not implemented. In this paper, the 
method is developed and several experiments are 
performed to evaluate the method. We found that in 
most cases, performance of ECD3 is comparable to its 
predecessors. However ECD3 has some benefits over 
them. First, sizes of its trees are significantly smaller. 
Second, on average, variance of error in ECD3 is lower. 
Furthermore, ECD3 automatically chooses part of data 
for induction of the tree and sets aside others. This 
capability can be exploited for prototype selection in 
various learning algorithms.  To explain these 
observations, we use inductive bias and margin 
definitions in our theories. We introduce a new 
definition of margin in ordinary decision trees based on 
shape, size and splitting criteria in trees. We show that 
how ECD3 expands the margins and enhances precision 
over test data. 

Keywords— decision tree; sequential reading of data; 
error correction rule; injecting randomness; margin; 
entropy; induction bias 

I.  INTRODUCTION 
Algorithms for decision trees, like CART and C4.5 
[1], look through the entire data and find the best 
discriminator attribute. Then they break data based on 
the selected attribute and repeat that process 
recursively until reaching a point that the remained 
data can’t be broken. In that situation, they decide 
based on the majority label of data. These algorithms 
act greedily to find the smallest tree.  
On the other hand, there are some algorithms that 
don’t look through the entire data but read and use 
them one by one. Algorithms which use error 

correction rule are in this group. Perceptron is a 
neural network that uses error correction rule in order 
to update its weights [2]. It reads individual input and 
calculates the output for that input. If there is a 
difference between the desired and real outputs, then 
it updates the weights. Perceptron acts iteratively. In 
each round, so called epoch, it looks to same data and 
decides on each of them individually.  
At first glance, the property of decision trees, looking 
to whole data, is an advantage for them. It is believed 
that these algorithms exploit the statistical property of 
all the samples and they are less sensitive to errors in 
individual training examples [3]. Nevertheless, 
decision tree can be unstable because small variations 
in the data might result in a completely different tree 
being generated [4]. In other words, variance of error 
is high. Literatures propose different solutions for that 
problem. For example:   Making a forest of trees by, 
among other procedures, bootstrapping or boosting 
and then deciding based on voting [5,29] might solve 
that problem. However, the forest of trees misses the 
most important advantage of an individual tree which 
is interpretability [6]. Some literatures consider 
splitting criteria [7]. Several solutions let the tree 
grow and then focus on pruning of tree [8]. Others 
stop the growing of the tree based on statistical 
measures [9]. Also recent studies show that in the 
case of number of classes<5, balanced data are more 
prone to instability of decision trees [10].  
However as a new solution for that problem, this 
paper focuses on the method of reading and choosing 
data. We aim to find out the difference between a 
decision tree algorithm that looks through entire data 
to build the best tree and an iterative algorithm which 
looks to data one by one and improves its 
representation when an error occurs. We show that 
the new algorithm builds trees that function at least as 
well as the traditional algorithms. Nevertheless, it has 
some preferences over them. The experiments show 
that when the size of decision tree is a criterion or 
when attributes are numerical; it performs 
significantly better. It has less variance of errors, so it 

2016 Eighth International Conference on Information and Knowledge Technology (IKT), Hamedan, Iran 

978-1-5090-4335-4/16/$31.00 ©2016 IEEE 



 

253 
 

can be a solution for instability of trees. In addition, it 
can choose essence of dataset. That is an opportunity 
for some algorithms like k-nearest-neighbor. 
Rest of the paper is organized as follows: the 
following section describes the proposed algorithm 
which we call it ECD3. Section three shows 
experimental results. Section four concludes the paper 
and gives some suggestions for improvement of 
implementation of the algorithm. 

II. ECD3: ERROR CORRECTOR DECISION TREE 

A. Brief Description and Algorithm 
 

In order to briefly describe ECD3, one can say it 
assumes a decision tree based on entropy. Then it 
looks to each sample individually and decides whether 
to update the decision tree or not. It repeats that task 
until it reaches a consistent tree. To better explain 
ECD3, we use notations used in describing 
Perceptron: 

Perceptron is a neural network’s algorithm that 
incorporates error correction rule to find a 
discriminator line. Eventually, after enough repeats, it 
reaches to desired discriminator. Error correction rule 
can be described as (1): 

          

(1) 

Here we use almost the same rule to induce ECD3. 
Normally, a decision tree is made by looking among 
the whole data, but in ECD3, the algorithm looks to 
each individual input and based on the output of the 
current tree, decides to whether update the tree or not. 
Equation 2 shows the use of error correction rule in 
ECD3: 

     

    (2) 

Formula 2 expresses that if no error occurs then the 
dataset for inducing the tree remains unchanged and so 
the tree will remain unchanged too. However if by 
looking to a sample, tree couldn’t recognize the true 
class for that, then dataset along with tree would be 
updated. Fig.1 shows the algorithm of ECD3. 
Presentation of the algorithm is based on the 
algorithmic framework which was described in [11]. 

 
Figure 1. Algorithm of ECD3. Procedure TreeGrowing(S; A; y) 

makes the decision tree. The inputs are S (Training Set), A (Input 
Feature Set) and y (Target Feature). 

Both Perceptron and ECD3 act iteratively to reach 
the target, but unlike Perceptron which investigates all 
data in each epoch; ECD3 uses data that have not 
produced errors in previous epoch. In other words, it 
investigates data which are not contributed in building 
the current tree. Therefore, there are three sets of data 
in ECD3: D1, D2 and D3. Initially, D1 is set to the 
whole input data. In each epoch, ECD3 looks to it and 
picks an input for evaluation. D2 is the set of data that 
has produced errors. So if an input is incorrectly 
classified by current tree, it would be added to D2 and 
the tree will be rebuilt. In contrast, if the current tree 
correctly classifies an input, that input would be added 
to D3. At the end of each epoch, D1 is replaced by D3 
and above process is repeated. 

There is an issue must be considered here. There is a 
big difference between ECD3 and some well-known 
trees so called incremental trees. Incremental decision 
tree learning may be seen as some variation of ECD3. 
These algorithms assume data come in a stream [12]. 
However, there is no repetition in those algorithms 
and each sample would be processed once in a time.    
Utgoff raised an idea of training in error correction 
mode with the pool regimen [13] which would be a 
work that can be compared to ECD3. However his 
idea has not implemented yet. So he didn’t present the 
detail description and experimentations of that 
algorithm. 

 

B. An Illustrative Example 
In this example, table 1 gives a set of observed 

data and Fig.2 depicts the steps of ECD3 algorithm.  

Continuing to the third epoch isn’t necessary. 
Since the tree obtained from second epoch produces 
right answer for input 4. As the result, tree is based on 
the inputs 1, 2 and 3 

 

Initialize flag to false 
Set D1 as the input training dataset 
Initialize datasets D2 and D3 to empty 
Initialize decision tree T to empty 
 While (flag) 
        flag  false 
        For each  xi   in D1 
             If (T doesn’t classify xi correctly) 
                  Add xi to D2 
                  T= TreeGrowing(D2, A, y) 
                            flag  true 
             Else 
                  Add xi to D3 
        Clear D1 
        Copy D3 to D1 
       Clear D3



 

254 
 

TABLE 1. A CONTINGENCY TABLE WHICH SHOWS OBSERVED DATA  

 A B C Class 
1 0 1 0 T 
2 1 0 1 T 
3 0 0 1 F 
4 0 0 0 F 

 

Epoch 1: 
D1 : 1, 2, 3, 4 
 

D2 : 1 
 

D2 : 1           
D3 : 2  

D2 : 1, 3       
D3 : 2 

 

D2 : 1, 3       
D3 : 2,4 

 

Epoch 2: 
D1 : 2,4 

D2 : 1, 2, 3   

 

D2 : 1, 2, 3   
D3 : 4 

 

Figure 2.  Steps of ECD3 algorithm for data set of table I 

III. EMPIRICAL BEHAVIORE OF ECD3 
Back to the earlier section, error correction which 

was proposed by Utgoff by some means has to do with 
ECD3. Utgoff [13] saw some preferences in error 
correction mode of inducing decision trees. He stated 
that error correction mode produces a tree which is 
often smaller and more accurate than a tree based on 
all the instances presented. He added that the reason 
for this phenomenon is still unknown [13]. Here, we 
want to report empirical behavior of the ECD3 more 
precisely. Three issues will be addressed here:  

• First, sizes of the trees in both algorithms 
will be compared.  

• Second, performance of ECD3 will be 
compared with its predecessors. It is done 
by calculating average and variance of 
errors at the test phase.  

• Third, performance of ECD3 as a 
prototype selection method will be 
investigated. 

In order to carry out those experiments, we 
developed a java programmed tool named 
DecisionTrees. Two algorithms; ID3 and ECD3; are 

implemented in the tool. ID3 is implemented as 
presented in Tom Mitchell’s text book [3].  In the case 
of numeric attributes, we followed the C4.5 algorithm 
[11]. In other words, we used binary splits approach 
for numeric attributes. Missing attributes are 
considered as ignorance ones. In our implementation, 
ECD3 uses that algorithm for updating the tree too. 
DecisionTrees is available at 
http://profs.basu.ac.ir/bathaeian/index.php?L=free 

We used 23 data sets, from UCI repository [14].  
First column in table 2 shows the list of them. 

TABLE 2.  EXPERIMENTAL RESULTS. THE FIRST COLUMN SHOWS THE 
NAME OF DATASET. THE PLUS SIGNS IN COLUMN 2 AND 3 INDICATE 
THAT AVERAGE AND VARIANCE OF ERROR IN ECD3 ARE LESS. THE 

PLUS SIGNS IN FOURTH COLUMN SHOW THAT SIZE OF ECD3 IS 
SMALLER. THE LAST COLUMN SHOWS THAT WHAT PERCENT OF 

DATA IS USED FOR INDUCTION OF ECD3. 

 Data set Ave. 
error 

Var. 
erro
r 

H0 (tree 
size) 

Sample used 
(%) 

audiology  + 53.43 
breast_cance
r  

 + 63.99 

credit_a - + 55.39 
diabetes +  + 69.49 
glass +  64.97 
heart_c  + 62.93 
heart_h + + + 51.66 
heart_stat  + 65.02 
hepatites + + 56.14 
iris + + 22.22 
kr_vs_kp + + 5.55 
labor  + 51.35 
led24_2000_
10  

 + 71.90 

lymph - + + 60.30 
primary_tum
or - + + 81.63 

segment +  + 21.78 
sick_noTBG + + + 8.06 
solar + + 76.28 
sonar + 74.41 
Tic-tac-toe + + + 55.96 
vehicle + + 65.67 
vot + + + 39.18 
wine + + + 25.34 

 

A. Method 
We used k-fold cross validation to get k 

opportunities for doing experiments. This approach is 
very common and we implemented it in our tool. 
Therefore we describe it briefly here. In that approach, 
first we partition the training set into k segments. 
Second we set aside a segment and build classifier 
based on the remaining ones.  Then repeatedly, we 
replace the removed segment with another one and 
construct a new classifier. By this manner, we would 
have k classifiers built on slightly different training 
sets. In our experiments, we assumed 10 for k. So for 
each data set 10 times algorithms ID3 and ECD3 are 
run. On each run, we may use the remaining segment 
as the test set and figure out the differences between 
errors of both classifiers. Average and variances of 



 

255 
 

these outputs are feed to appropriate hypothesis tests 
to prove our claims. We also performed similar 
calculation to figure out the differences between sizes 
of constructed trees in both algorithms. 

B. Comparision of Tree Sizes 
Number of nodes in a decision tree can be 

accounted for its size. We claim that in the 95% 
confidence interval, average tree-size of ECD3 (s2) is 
smaller than or equal to average tree-size of ID3 (s1). 
So the H0 hypothesis would be (3). 

H0: s2  s1    (3) 

And alternative hypothesis would be (4). 

H1: s2 > s1    (4) 

We performed one-sided t test to prove our claim. 
We found H0 is true for all data sets. In addition, for 
18 of 23 data sets, tree-sizes in ECD3 are significantly 
smaller than tree-sizes in ID3. In table 2, these data 
sets are shown by plus sign in the fourth column. 

C. Comparision of Errors 
We claim that in the 95% confidence interval, 

average errors of ECD3 (e2) is smaller than or equal to 
average errors of ID3 (e1). So the H0 hypothesis would 
be (5). Alternative hypothesis would be (6).  

H0: e2  e1    (5) 

H1: e2 > e1    (6) 

We performed one-sided t test to prove our claim. 
We found that for 20 of 23 data sets, H0 is accepted. In 
10 datasets, ECD3 performs significantly better than 
ID3. In table 1, these data sets are shown by plus sign 
in the second column. In only three of 23 datasets H1 is 
accepted. These data sets are shown by minus sign in 
the third column of table 1.  

We also claim that in the 95% confidence interval, 
variance of errors in ECD3 (v2) is smaller than or 
equal to variance of errors in ID3 (v1). So the H0 
hypothesis would be (7). Alternative hypothesis would 
be (8).  

H0: v2  v1    (7) 

H1: v2 > v1    (8) 

We performed one-sided t test to prove our claim. 
We found that for all data sets, H0 is accepted. In 14 
datasets, ECD3 performs significantly better than ID3. 
In table 1, these data sets are shown by plus sign in the 
third column.  

So we can conclude that ECD3 performs 
significantly better than ID3 and variance of errors in 
ECD3 is significantly lower. 

D. ECD3 as a Method for Prototype Selection 
Prototype selection can be used in several 

applications such as compressing [15] or 
preprocessing of datasets. For example, it can be 
adopted in the preprocessing phase of K-Nearest 
Neighbors (KNN) which is one of the well-known 
classifiers [16]. KNN belongs to the family of lazy 
learners. Lazy learners first store training samples. 
Then they do the most of the task and computation 
when they are presented with a test sample. This 
method suffers from several drawbacks. Need for big 
storages to save patterns as well as huge computation 
in test or apply phase are parts of its weaknesses. To 
overcome those difficulties, some preprocessing 
algorithms are used. In fact, KNN isn’t a completely 
lazy method! [17]. For example, finding the optimum 
K and selecting a prototype of the data set are types of 
solutions. Prototype selection means choosing subset 
of training samples instead of all of them [15, 16]. 
This subset must be a condensation of the whole 
original data set. The condensed data set of course 
must not decrease the generalization accuracy of 
classifier. As the second example, prototype selection 
is used in down-sampling of imbalanced data sets. 
Reference [13] introduced an algorithm for selection 
of a prototype of majority class. 

Inspecting the algorithm of ECD3 carefully, we 
understand that generated tree is consistent with whole 
data but the samples used for construction of the tree 
make a subset of primary dataset. Assume D1 as the 
input dataset and D2 as a subset of D1 which actually 
contributes in building the tree. If we take members of 
D2 as random variables, then we get (9):  

         (9) 

Above formula shows that ECD3 chooses subset 
of training data which has minimum size and creates 
the same classifier as one created by the whole data. 
Therefore D2 is a prototype selected by ECD3. 
Column five of table 2 shows the average percentage 
of samples used in ECD3 learning. The percentage of 
reduction varies from 20% to 95%. On average ECD3 
reduces number of samples to 55%. 

E. Discussion 
Just like ID3, ECD3 is a consistent algorithm. In 

fact, at the worst case, all samples are incorporated to 
induce the tree. So, considering the fact that both 
ECD3 and ID3 make decision trees as well as the fact 
that ECD3 uses ID3 algorithm to induce the tree, 
equivalence of these algorithms isn’t surprising.  

Nevertheless, there are some differences between 
the trees obtained by these algorithms. We believe that 
two reasons are accounting for those differences: 
inductive bias and chance of creating different margin.  

Normally, inductive bias of ID3 is related to its 
search strategy [3]. It searches incompletely through 



 

256 
 

the hypothesis space, from simple decision trees to 
complex ones, until it finds a decision tree consistent 
with the data. ECD3 follows a similar approach except 
that it combines the strategy with gradient descent 
search approach. As the result, ECD3 can build a 
different and in most cases smaller decision tree than 
ID3.  

Further, we see some differences between errors of 
both trees. Margin might explain those variations. In 
definition, margin is a quantity to measure the 
confidence [19]. Larger margins create much more 
reliance on the classifier. So margins have specific 
contribution in generalization errors. In the case of 
decision trees, there is no formal definition for margin. 
Some researches try to inject directly margin concept 
into the decision tree [20 and 21]. However, decision 
trees in our research are based on the traditional 
definition of ID3 and we can’t use direct definition of 
margin in this area. Apparently, error bias and 
variance account for confidence of a learning 
algorithm. In addition, we know that decision trees 
with different sizes and nodes have different error bias 
and variance [22]. We showed that in most cases tree-
size of ECD3 is shorter than tree-size of ID3. This can 
be meant that trees induced by ECD3 have different 
error variances and consequently different 
confidences.  

Other explanation for this phenomenon is possible 
too. One can define margin as dissimilarities between 
rules generated by decision trees. For example in Fig.3 
two decision trees and generated rules are shown.  

In Fig.3-a, h1 and h3 have two distinctions but h2 
and h3 have one of it. Provided that minimum margin 
is 2 then we can conclude that one irregularity is 
happened. However in Fig.3-b, two of these 
irregularities are seen: one between h2 and h3, other 
one between h1 and h4. One conclusion might be that 
more unbalanced trees produce fewer irregularities on 
the presumed margin. All trees produced by ECD3 
have fewer nodes than those generated by ID3 but the 
height of both trees are equal. Therefore we can 
conclude that ECD3 generate more unbalanced trees 
compare to ID3. 

  In the case of numeric attributes, when we use 
binary splits, split position depends on the selected 
adjacent points belonging to different classes. In ID3, 
these adjacent points are constant in a data set but in 
ECD3, the inner loop of the algorithm makes 
alternatives of these points. For example in Fig.4, we 
have three points belonged to two different classes 
(circles and multiplication sign). 

In this situation, we can use alternative definition 
of margin introduced in support vector networks [23]. 
According to that definition, margin is the minimum 
distance between training samples of two classes. In 
order to construct an optimal separator, one only has to 
take into account a small amount of the training data, 
so called support vectors, which determine this 

margin. C4.5 definitely chooses points 1 and 2 as 
adjacent points (support vectors) and then outputs line 
A as separator threshold. Here, margin of two classes 
would be the distance between points 1 and 2. On the 
other hand, ECD3 acts randomly for choosing the 
samples. So, there is a probability of 0.5 that it 
chooses point 3 instead of point 2 and consequently it 
reaches to line B as a splitting line. Because of larger 
distance between point 1 and 3, we would have greater 
margin than previous one. Nevertheless, both 
separators correctly distinguish between two classes in 
the phase of training. We expect that classifier with 
larger margin perform better in the testing phase. 

 

A B 

 

Figure 3. Generated rules of two decision trees 

 

 
Figure 4. Two classes of data and their separators obtained from 

two algorithms (A for algorithm C4.5 and B for algorithm ECD3) 

That fact can be clearly seen in our experiments.  
ECD3 induced larger tress for datasets of Iris, Glass 
and Hepatitis but surprisingly their performance in 
term of generalization error is much better than ones 
produced by ID3. It’s because all attributes of those 
datasets are numeric.   

IV. CONCLUSIONS AND FUTURE WORKS 
In this paper a new algorithm, ECD3, was 

introduced for decision tree induction. ECD3 uses ID3 
or C4.5 as its base classifier but it uses data differently 
for inducing the tree. In our experiments, in most 
cases, ECD3 produces smaller trees compared to ID3 
and in some cases it performs better than ID3. 
Distinctions between inductive biases and margins 
somehow can explain the differences.  Other 
explanations are possible too. For example we didn’t 
consider the randomization property of ECD3 and its 
ability to choose variant support vectors. These are 
phenomenon might account for differences.  



 

257 
 

Several applications of ECD3 algorithm are 
possible. For example, an issue that was not addressed 
here is that some machine learning algorithms benefit 
from randomness in classifier. Specifically, those 
classifiers used in ensemble learning [24] would be 
better if they have diverse errors [25]. Due to 
sequentially entrance of data to ECD3, it may be 
dependent on the place of individual samples in the 
queue. By running one round of algorithm, we get a 
tree which is consistent with part of the data. This task 
can be done repeatedly to make variant trees; each one 
is consistent with different part of the data. 

Although in this paper, ECD3 is introduced as a 
method for prototype selection, more studies are 
required to measure its performance comparing with 
other prototyping techniques.  

We defined margin in decision trees based on the 
shape and size of tree. However considering [26 and 
27] which introduce growing of decision tree as a 
boosting method; other definitions and more specific 
mathematical proofs might be possible too. That is the 
area which has more works to do.  

ECD3 is slower than ID3. In our implementation, 
in each inner loop, if the required condition was hold, 
ECD3 is built from scratch. Algorithm of ITI is a state 
of the art in incremental learning of decision trees 
[13]. However more recent and optimal algorithms are 
presented that can be used in some way. For example 
[28] introduces an algorithm for efficient 
representation of incoming data.  

REFERENCES 
[1] S. B. Kotsiantis, (2013) Decision trees: a recent overview, Artif 
Intell Rev, 39:261–283, Springer. 
[2] Alpaydin, E. (2004) Introduction to Machine Learning. 
Massachusetts Institute of Technology. 
[3] Mitchell, T. (1997) Machine Learning. McGraw-Hill. 
[4] Li RH, Belford GG (2002) Instability of decision tree 
classification algorithms. In: Proceedings of the eighth ACM 
SIGKDD international conference on knowledge discovery and 
data mining, pp 570–575. ACM, New York, NY, USA. 
[5] Lior Rokach , (2016) Decision forest: Twenty years of research, 
Information Fusion, Volume 27, Pages 111–125, Elsevier B.V 
[6] Zurada, J., (2010) Could Decision Trees Improve the 
Classification Accuracy and Interpretability of Loan Granting 
Decisions?, 43rd Hawaii International Conference on System 
Sciences (HICSS),  pp.1-9. 
[7] Kweku-Muata Osei-Bryson, Kendall Giles, (2006) Splitting 
methods for decision tree induction: An exploration of the relative 
performance of two entropy-based families, Information Systems 
Frontiers, July, Volume 8, Issue 3, pp 195-209. 
[8] Abdulaziz Alkhalid, Igor Chikalov, and Mikhail Moshkov, 
(2013) Comparison of Greedy Algorithms for Decision Tree 
Optimization, A. Skowron and Z. Suraj (Eds.): Rough Sets and 
Intelligent Systems, ISRL 43, pp. 21–40, Springer-Verlag Berlin 
Heidelberg  
[9] Tomas Aluja-Banetl and Eduard Nafria2, (2003) Stability and 
scalability in decision trees, Computational Statistics , 18:505-520, 
Springer. 

[10] [4-5] José Augusto Baranauskas , (2015) The number of 
classes as a source for instability of decision tree algorithms in high 
dimensional datasets, , Artif Intell Rev, 43:301–310, Springer. 
[11] Rokach, L.; Maimon, O., (2005) Top-down induction of 
decision trees classifiers – a survey,” Systems, Man, and 
Cybernetics, Part C: Applications and Reviews, IEEE Transactions 
on , vol.35, no.4, pp.476-487.  
[12] Gama, J., Fernandes, R., & Rocha, R. (2006) Decision trees 
for mining data streams. Intelligent Data Analysis, 10, pp. 23-45, 
IOS Press 
[13] Utgoff, P.E. (1994) An improved algorithm for incremental 
induction of decision trees. Proceedings of the 11th international 
conference on machine learning, pp 318–325. 
 [14] Bache, K. and Lichman, M. (2013) UCI Machine Learning 
Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of 
California, School of Information and Computer Science. 
[15] Schiilkop, B., Burgest, P., and Vapnik, V. (1995) Extracting 
support data for a given task, Proceeding of Knowledge Discovery 
and Data Mining, pp 252-257, AAAI Press. 
[16] Garcia, S., Derrac, J., Cano, J., and Herrera, F. (2012) 
Prototype selection for nearest neighbor classification: taxonomy 
and empirical study. IEEE Trans. On Pattern Analysis And 
Machine Intelligence, 34, no. 3, 417-435. 
[17] Garcia, S., Feldman, M.R., Gupta, and Srivastava, S. (2010) 
Completely lazy learning. IEEE Trans. Knowledge and Data Eng., 
22, no. 9, 1274-1285. 
[18] Han, F., Lei, M., Zhao, W., and Yang, J. (2012) A new support 
vector machine for imbalance data classification. Intelligent 
automation and soft computing, 18, no. 6,  679-686, Taylor & 
Francis. 
[19] Schapire, R.E., Freund, Y., Bartlett, P., and Lee, W.S. (1997) 
Boosting the margin: a new explanation for the effectiveness of 
voting methods. Proceedings of the Fourteenth International 
Conference on Machine Learning, Morgan Kaufmann Publishers 
Inc. 
[20] Y ld z, O.T. (2012) Univariate decision tree Induction using 
maximum margin classification. The Computer Journal, 55, issue 3, 
293-298, Oxford Press. 
[21] Tibshirani, R. (2007) Margin trees for high-dimensional 
classification. Journal of Machine Learning Research, 8, 637-652, 
JMLR.org. 
[22] Domingos, P. (2000) A unifeid bias-variance decomposition 
and its applications. Proceedings of the Seventeenth International 
Conference on Machine Learning, pp.231-238, Morgan Kaufmann 
Publishers Inc. 
[23] Cortes, C. and Vapnik,V. (1995) Support-vector networks. 
Machine Learning, 20, no. 3, 273-297. 
[24] Banfield, R.E., Hall, L.O., Bowyer, K.W., and Kegelmeyer, 
W.P. (2007) A comparison of decision tree ensemble creation 
techniques. IEEE Trans. On Pattern Analysis And Machine 
Intelligence, 29, no. 1. 
[25] Kuncheva, L. and Whitaker, C. (2003) Measures of diversity 
in classifier ensembles and their relationship with the ensemble 
accuracy. Machine Learning, 51, no. 2, 181 -207, Springer. 
[26] Kearns, M. and Mansour, Y. (1999) On the boosting ability of 
top_down decision tree learning algorithms. Journal of Computer 
and System Sciences, 58, 109-128, Elsevier BV. 
[27] Takimoto, E. and Maruoka, A. (2003) Top-down decision tree 
learning as information based boosting. Theoretical Computer 
Science, 292, 447–464, Elsevier BV. 
[28] Swere, E., Mulvaney, D., and Sillitoe, I. (2006) A fast 

memory-efficient incremental decision tree algorithm in its 
application to mobile robot navigation,” IEEE/RSJ 
International Conference on Intelligent Robots and Systems, 
pp. 645-650. 

[29] Breiman, L., 2001. Random forest. Mach. Learn. 45, 5–32

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


