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Abstract
We address the task of learning ensembles of predictive models for structured output pre-
diction (SOP). We focus on three SOP tasks: multi-target regression (MTR), multi-label 
classification (MLC) and hierarchical multi-label classification (HMC). In contrast to stand-
ard classification and regression, where the output is a single (discrete or continuous) vari-
able, in SOP the output is a data structure—a tuple of continuous variables MTR, a tuple of 
binary variables MLC or a tuple of binary variables with hierarchical dependencies (HMC). 
SOP is gaining increasing interest in the research community due to its applicability in a 
variety of practically relevant domains. In this context, we consider the Extra-Tree ensem-
ble learning method—the overall top performer in the DREAM4 and DREAM5 challenges 
for gene network reconstruction. We extend this method for SOP tasks and call the exten-
sion Extra-PCTs ensembles. As base predictive models we propose using predictive clus-
tering trees (PCTs)–a generalization of decision trees for predicting structured outputs. We 
conduct a comprehensive experimental evaluation of the proposed method on a collection of 
41 benchmark datasets: 21 for MTR, 10 for MLC and 10 for HMC. We first investigate the 
influence of the size of the ensemble and the size of the feature subset considered at each 
node. We then compare the performance of Extra-PCTs to other ensemble methods (ran-
dom forests and bagging), as well as to single PCTs. The experimental evaluation reveals 
that the Extra-PCTs achieve optimal performance in terms of predictive power and com-
putational cost, with 50 base predictive models across the three tasks. The recommended 
values for feature subset sizes vary across the tasks, and also depend on whether the dataset 
contains only binary and/or sparse attributes. The Extra-PCTs give better predictive per-
formance than a single tree (the differences are typically statistically significant). Moreover, 
the Extra-PCTs are the best performing ensemble method (except for the MLC task, where 
performances are similar to those of random forests), and Extra-PCTs can be used to learn 
good feature rankings for all of the tasks considered here.
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1  Introduction

Supervised learning is one of the most widely researched and investigated areas of 
machine learning. The goal in supervised learning is to learn, from a set of examples 
with a known value for a target variable, a function that outputs a prediction for the 
value of a previously unseen example. However, in many real life predictive modeling 
problems the output (i.e., the target) is structured (ISO 2007; Panov et al. 2016), mean-
ing that there can be dependencies among the values of the target variable(s). Some 
examples of structured output datatypes are: a hierarchy of classes (hierarchical multi-
label classification—HMC) (Silla and Freitas 2011; Stojanova et  al. 2013), multiple 
continuous variables (multi-target regression—MTR) (Borchani et  al. 2015; Spyrom-
itros-Xioufis et al. 2016) or multiple binary variables (multi-label classification—MLC) 
(Madjarov et al. 2012; Tsoumakas et al. 2010).

These types of structured output prediction (SOP) problems occur very often in vari-
ous domains, such as life sciences (e.g., predicting gene function, finding disease signa-
tures, predicting toxicity of molecules), ecology (e.g., analysis of remotely sensed data 
and habitat modeling), multimedia (annotation and retrieval of images and videos) and 
the semantic web (categorization and analysis of text and web pages). Bearing in mind 
the needs of these application domains and the increasing quantities of structured data, 
Dietterich et  al. (2008) and Kriegel et  al. (2007) listed the task of “mining complex 
knowledge from complex data” as one of the most challenging problems in machine 
learning.

Several methods for addressing the task of SOP have been proposed (Borchani et al. 
2015; Kocev et  al. 2013; Tsoumakas et  al. 2010). These methods can be categorized 
into two groups (Bakır et al. 2007): (1) local methods construct models for predicting 
parts of the output and then combine the individual models to obtain the overall model 
(i.e., they construct an architecture of several simpler models) and (2) global methods 
that construct models for predicting the complete structure as a whole (also known as 
’big-bang’ approaches). More specifically, the local methods construct a simple model 
for each of the target variables separately for MTR and MLC and simple models for 
parts of the hierarchy for HMC (e.g., one model per hierarchy level, node or branch). 
For the MTR task, the number of local models to be constructed typically corresponds 
to the number of targets considered: for a domain with T target variables one needs to 
construct T predictive models—each predicting a single target. For the MLC task, the 
number of models is typically equal to the number of possible labels L in the binary rel-
evance approach (Tsoumakas et al. 2010), however, this number can be much bigger in 
the pairwise approach ( L(L−1)

2
 models), where every simple model discriminates between 

two class labels. For the HMC task, the number of local models varies depending on 
the selected approach: as small as the number of levels in the hierarchy or as big as the 
number of classes in the hierarchy (Ceci and Malerba 2007). The multiple local models 
(in each of the tasks) are then combined to obtain the overall model. Conversely, the 
global methods construct a single predictive model that is valid for the complete struc-
ture. The prediction of an unseen example here is then obtained by passing the example 
through the model and retrieving its prediction.

The global methods have several advantages over the local methods (Blockeel et al. 
1998; Kocev et al. 2013). First, they exploit the dependencies that exist among the com-
ponents of the structured output in the model learning phase, which can result in better 
predictive performance. Next, they are typically more efficient: it can easily happen that 
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the number of components in the output is very large (e.g., hierarchies in functional 
genomics can have several thousands of components), in which case executing a basic 
method for each component is not feasible. Furthermore, these dependencies produce 
models that are typically smaller than the sum of the sizes of the models built for each 
of the components.

In this paper, we propose an extension of the Extra-Trees algorithm based on the pre-
dictive clustering trees (PCTs) framework (Kocev 2011; Kocev et al. 2013). We call this 
extension Extra-PCTs algorithm. PCTs belong to the group of global methods and can be 
considered a generalization of standard decision trees towards predicting structured out-
puts. They offer a unifying approach for dealing with different types of structured outputs 
and construct the predictive models very efficiently. They are able to make predictions for 
several types of structured outputs: tuples of continuous/discrete variables, hierarchies of 
classes and time series. Furthermore, the performance of ensembles of PCTs was exten-
sively evaluated across a variety of tasks and it was shown that they yield state-of-the-art 
predictive performance: For MLC, Madjarov et  al. (2012) and Bogatinovski (2019) per-
formed extensive empirical studies showing random forests of PCTs for MLC among the 
top-performing methods; For MTR, Mileski (2017), Levatić et  al. (2018) and Breskvar 
et al. (2018) performed extensive comparisons to a variety of competing methods, which 
listed ensembles of PCTs for MTR among the top-performing methods; and for HMC, 
ensembles of PCTs yield state-of-the-art predictive performance (Cerri et  al. 2016; Ho 
et al. 2018; Radivojac and colleagues 2013) and have been extensively used for gene func-
tion prediction (Radivojac and colleagues 2013; Schietgat et al. 2010; Škunca et al. 2013).

In (Kocev et  al. 2013), we evaluated the construction of local and global models for 
SOP in the context of ensemble learning. More specifically, we focused on the two most 
widely used ensemble learning techniques: bagging (Breiman 1996) and random forests 
(Breiman 2001). We showed that both global and local tree ensembles perform better than 
their single model counterparts in terms of predictive power. Global and local tree ensem-
bles perform equally well, but global ensembles are more efficient and produce smaller 
models, and need fewer trees in the ensemble to achieve the maximum performance.

In this paper, we investigate a new strategy for learning global models for SOP through 
ensemble learning. In particular, we extend the Extra-Trees algorithm to the context of 
SOP. The Extra-Trees algorithm, proposed by Geurts et al. (2006a), is an algorithm for 
tree ensemble construction, based on extreme randomization of the tree construction algo-
rithm. The algorithm at each node of the tree randomly selects k attributes and, on each of 
them, randomly selects a split. The k candidate splits are then evaluated and the best split 
is put in the node. Geurts et al. (2006a) evaluated their approach in the context of single-
target regression and classification problems, containing only numerical attributes. The 
bias/variance analysis of the error revealed that Extra-Trees decrease the variance, while 
at the same time they increase the bias. If the level of randomization is well adjusted, then 
the variance almost disappears at the cost of a slight increase in the bias with respect to 
that of standard trees. In this study, we perform an empirical evaluation of the Extra-Trees 
algorithm extension in SOP domains, where the descriptive attributes can be continuous, 
categorical or mixed (both continuous and categorical in the same dataset).

Furthermore, traditional decision tree learning mainly requires design decisions on the 
definition of the search space and of the heuristics used to explore the search space. In 
Extra-PCTs, the search space is that of all possible families of trees, where every single 
tree has a randomization mechanism for the determination of the split and has a prototype 
function associated to the leaves. The heuristics and the prototype function in the PCTs 
framework are based on variance reduction and are designed to work for various structured 
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output prediction tasks (i.e., MTR, MLC and HMC). Moreover, the search space and the 
heuristics are not independent since the evaluation function should be coherent with the 
prototype function at the leaves. This means that we have proposed a method that dif-
fers from that proposed in Geurts et  al. (2006a) both in the heuristics and the prototype 
function. In a nutshell, with the Extra-PCTs algorithm, we investigate the effect of two 
competing aspects on tree learning: modified search through the additional randomization 
of the split search procedure and the structured output space through the joint variance 
function.

The Extra-Trees algorithm has been successfully applied to several practically rel-
evant domains including computer vision (Maree et al. 2005) and gene network inference 
(Huynh-Thu et al. 2010; Ruyssinck et al. 2014). The applications in the latter domain are 
especially noticeable: a variant of the method that exploits its feature ranking mechanism 
(GENIE3 algorithm) has been the overall top performer in the DREAM4 and DREAM5 
challenges1 for gene network inference. We fully exploit this aspect and use the Extra-
Trees algorithm not only for prediction purposes, but also for feature ranking in the case 
of SOP: the first feature ranking method that is general enough to perform ranking for the 
different types of outputs with a uniform approach.

The major contribution of the work can be summarized as follows:

•	 An investigation of the effects of the modified search through the space of potential 
splits and the structured output space on tree induction.

•	 An extension of the Extra-Trees algorithm towards the task of structured output pre-
diction, including multi-target regression, multi-label classification and hierarchical 
multi-label classification.

•	 A comprehensive experimental evaluation of the proposed Extra-PCTs algorithm, 
including its parametrization.

•	 A general feature ranking algorithm for an arbitrary SOP task.

The work presented in this paper builds upon our previous preliminary work presented in 
(Kocev and Ceci 2015), which only considers the MTR task. We extend this work along 
several dimensions. First of all, we extend the proposed algorithm towards a more general 
SOP setting, so as to also include MLC and HMC tasks. Consequently, we evaluate the 
proposed extension on benchmark datasets from the corresponding tasks. Moreover, we 
consider 11 additional datasets for the MTR task. Next, we include a comparison with the 
bagging of PCTs (in addition to the random forests of PCTs). Furthermore, we investigate 
several design choices for parametrization of the proposed method, in terms of selecting 
the optimal feature subset sizes. We also provide a detailed overview of the related work. 
Finally, we propose a feature ranking algorithm that treats all of the SOP tasks in a uniform 
way. We also illustrate the usefulness of the proposed feature ranking algorithm across all 
of the tasks. All in all, this study is qualitatively and quantitatively improved compared 
with the previous study.

The remainder of this paper is organized as follows. Section 2 outlines the task defini-
tions and the related work. Section 3 presents the proposed Extra-PCTs algorithm for SOP 
and feature ranking. Next, Section  4 provides details on the design of the experimental 
evaluation, whose results are presented and discussed in Section 5. Finally, Section 6 con-
cludes the paper and provides directions for further work.

1  For more information, visit http://dream​chall​enges​.org/.

http://dreamchallenges.org/
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2 � Background and related work

2.1 � Definition of the tasks

A formal task definition and description for the three SOP tasks addressed in this work 
are given separately in Kocev et al. (2013), Madjarov et al. (2012) and Vens et al. (2008). 
Namely, Kocev et al. (2013) provide a definition for the of MTR, Madjarov et al. (2012) 
provide a definition for the of MLC, and (Vens et  al. 2008) provide a definition for the 
of HMC. Considering all of the above definitions, we formally define the task of SOP as 
follows.

Given:

•	 A description space X spanned over D independent variables of primitive data types 
(discrete or continuous), i.e. for each tuple xi ∈ X, xi = (xi1 , xi2 , ..., xiD );

•	 A target space Y which consists of variables and a definition of some constraints SY on 
the variables in Y according to which variables are related/ordered;

•	 A set of examples E, where each example is a pair of tuples from the description and 
the target space, respectively, i.e., E = {(xi, yi)|xi ∈ X, yi ∈ Y , 1 ≤ i ≤ N} and N is the 
number of examples in E ( N = |E|);

•	 A quality criterion q, which rewards models with high predictive accuracy and low 
complexity.

Find: A function f ∶ X → Y  such that f maximizes q.
Here, the function f is represented with ensembles of extremely randomized predictive 

clustering trees. Depending on the definition of the constraints among the variables ( SY ), 
we can instantiate the three tasks as follows. If the variables in Y are continuous and SY 
specifies that these variables should be considered as a tuple, then the task at hand is MTR. 
Next, if the variables from Y are binary and SY specifies that these variables should be con-
sidered as a tuple (or as a set, cf. (Gjorgjioski et al. 2011)), then the task at hand is MLC. 
Finally, if the variables from Y are binary and SY specifies that there are parent-child rela-
tionships among the variables which express a partial order among them, then it is possible 
to express a hierarchy constraint and specify that if an item belongs to a parent class, it also 
belongs to a child class. In this case, the task at hand is HMC.

2.2 � Related work

The multi-target regression (MTR) task has received increased attention by the research 
community over the past decade. It is also known under the name of multi-output, multi-
response or multivariate regression. Borchani et al. (2015) consider two groups of meth-
ods for MTR: problem transformation and algorithm adaptation. This division corresponds 
to the more general grouping of methods for SOP, outlined in the introduction: local and 
global methods, respectively.

The simplest approach to MTR is to consider it as multiple single-target regression tasks 
and then apply a standard regression algorithm on each of the single-target tasks (i.e., con-
struct local models). Within this approach it is possible to use any regression method to 
obtain the local predictive models and then combine their outputs to obtain the predictions 
for the multiple target variables (Kocev et al. 2013).
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As for global methods, in statistics, Brown and Zidek (1980) extend the standard ridge 
regression to multivariate ridge regression, while Breiman and Friedman (1997) propose 
the Curds&Whey method, where the relations among the tasks are modeled in a post-pro-
cessing phase. More recently, some authors investigated kernel/SVM-based methods for 
MTR. For example, Evgeniou et al. (2005) extend the kernel methods to the case of multi-
task learning, using a particular type of kernel (multi-task kernel). They show experimen-
tally that the support vector machines (SVMs) with multi-task kernels have significantly 
better performance than the ones with single-task kernels. Liu et  al. (2009) propose an 
approach to define the loss functions on the output manifold by considering it a Riemann-
ian submanifold, in order to include its geometric structure in the learning (regression) pro-
cess. The proposed approach can be used in the context of any regression algorithm.

Another line of research adapts methods for MLC towards the task of MTR. More spe-
cifically, Tsoumakas et  al. (2014) present an ensemble method for MTR that constructs 
new target variables via random linear combinations of existing targets. The augmented 
output space is then exploited by adapting the MLC algorithm RAkEL for MTR. Next, 
Spyromitros-Xioufis et al. (2016) propose two methods: the stacked single-target regres-
sion method and the ensemble of regressor chains. The former method corresponds to the 
binary relevance approach with the addition that it constructs meta-models that exploit the 
estimated values of the other target variables. The latter method corresponds to the classi-
fier chains method for MLC (Read et al. 2011): it selects a random chain (permutation) of 
the target variables and builds a predictive model for each target, by considering the predic-
tions of the targets earlier in the chain. The ensemble is constructed by multiple random 
selections of the chains.

Finally, there are several methods that adapt regression trees and rules for the task of 
MTR. First of all, Struyf and Džeroski (2006) propose multi-target regression trees and 
adapt pruning techniques to improve their predictive power. Next, Appice and Džeroski 
(2007) adapt model trees for MTR. Furthermore, Kocev et al. (2013) consider the multi-
target regression trees in an ensemble setting. Finally, Aho et al. (2012) use the ensembles 
of multi-target regression trees to obtain multi-target regression rule sets.

Multi-label classification (MLC) is already an established predictive modeling task. 
The methods addressing this task are classified in two groups: problem transformation or 
algorithm adaptation methods (Tsoumakas et al. 2010). The problem transformation meth-
ods transform the multi-label learning problem into one or more single-label classification 
problems. For smaller single-label problems, there exists a plethora of machine learning 
algorithms.

Problem transformation methods can be grouped into three categories: binary relevance, 
label power-set and pair-wise methods. Binary relevance methods use the one-against-all 
strategy to convert the multi-label problem into several binary classification problems. A 
closely related method is the classifier chain method and its ensemble extension (Read 
et al. 2011). This method constructs L binary classifiers linked along a chain. Label power-
set (LP) methods combine entire label sets into atomic (single) labels to form a single-label 
problem (i.e., single-class classification problem). For the single-label problem, the set of 
possible single labels represents all distinct label subsets from the original multi-label rep-
resentation. In this way, LP based methods directly take into account the label correlations. 
Two representative methods are HOMER (Tsoumakas et al. 2008) and RAkEL (Tsouma-
kas and Vlahavas 2007). HOMER first constructs a hierarchy of the multiple labels and 
then constructs a classifier for the label sets in each node of the hierarchy. RAkEL con-
structs each base classifier by considering a small random subset of labels and learning 
a single-label classifier for the prediction of each element in the power-set of this subset. 
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Pair-wise methods perform pair-wise or round robin classification with binary classifiers, 
using Q ⋅ (Q − 1)∕2 classifiers covering all pairs of labels (Fürnkranz 2002). To combine 
these classifiers, the pairwise classification method uses majority voting.

The algorithm adaptation methods extend and customize existing machine learning 
algorithms for the task of MLC. There are extensions of the following machine learn-
ing algorithms: boosting, k-nearest neighbors, decision trees and neural networks. The 
extended methods are able to directly handle multi-label data. AdaBoost.MH and Ada-
Boost.MR (Schapire and Singer 2000) are two extensions of AdaBoost for multi-label 
data. While AdaBoost.MH is designed to minimize Hamming loss, AdaBoost.MR is 
designed to find a hypothesis which ranks the correct labels at the top. Next, several vari-
ants for multi-label learning (ML-kNN) of the popular k-Nearest Neighbors (kNN) lazy 
learning algorithm have been proposed (Zhang and Zhou 2007). The retrieval of the k near-
est neighbors is the same as in the traditional kNN algorithm. The main difference is the 
determination of the label set of a test example. Decision tree extension is proposed within 
the predictive clustering framework (Blockeel et al. 1998). A single predictive clustering 
tree (PCTs) is constructed by using a splitting criterion that considers all of the labels. The 
PCTs for MLC are also used in an ensemble setting (Kocev et al. 2013). Neural networks 
have also been adapted for MLC by introducing a new error function that takes multiple 
labels into account (Crammer and Singer 2003).

Hierarchical multi-label classification (HMC) is a variant of classification, where a sin-
gle example may belong to multiple classes at the same time and the classes are organized 
in a form of hierarchy. Silla and Freitas (2011) survey and categorize the HMC methods, 
based on some of their characteristics and their application domains. Here, we present 
and group some existing methods based on the learning technique they use. We group the 
methods as follows: network based methods, kernel based methods and decision tree based 
methods.

The network based approaches exploit the information in interaction networks among 
the examples to obtain a better predictive model (Stojanova et al. 2013). Since the network 
based approaches are typically based on label propagation, a number of approaches have 
been proposed to combine predictions of functional networks with those of a predictive 
model. Tian et al. (2008) use logistic regression to combine predictions from a functional 
association network with predictions from a random forest.

Barutcuoglu et al. (2006) propose a kernel-based method that uses unthresholded SVMs 
learned for each class separately and then combine the SVMs by using a Bayesian network, 
so that the predictions are consistent with the hierarchical relationships. Valentini and Re 
(2009) also propose a hierarchical ensemble method that uses probabilistic SVMs as base 
learners. The method combines the predictions by propagating the weighted true path rule 
both top-down and bottom-up through the hierarchy, which ensures consistency with the 
hierarchy constraint. Rousu et al. (2006) present a method that defines a joint feature map 
over the input and output space. Next, it applies SVM based techniques to learn the weights 
of a discriminant function (defined as the dot product of the weights and the joint feature 
map). Furthermore, Gärtner and Vembu (2009) propose using counting of super-structures 
from the output to efficiently calculate (in polynomial time) the argmax of the discriminant 
function.

Clare (2003) adapts a decision tree algorithm to cope with the issues introduced by the 
HMC task and, specifically, the main contribution is to use the sum of the entropies of the 
class variables to select the best split. The algorithm, called C4.5H, predicts classes on 
several levels of the hierarchy and assigns a larger cost to misclassifications in the higher 
levels of the hierarchy. The resulting tree is then transformed into a set of rules, and the 
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best rules are selected, based on a significance test on a validation set. Geurts et al. (2006b) 
present a decision tree based approach related to predictive clustering trees (which we use 
in this paper). This approach starts from a different definition of variance and then ker-
nelizes this variance function. The result is a decision tree induction system that can be 
applied to structured output prediction, using a method similar to the large margin methods 
mentioned above. Therefore, this system could also be used for HMC after defining a suit-
able kernel. To this end, an approach similar to that of Rousu et al. (2006) could be used.

Blockeel et al. (2002) proposed the idea of using predictive clustering trees (Blockeel 
et al. 1998) for HMC tasks (PCTs for HMC). Their work presents the first thorough empiri-
cal comparison of a HMC decision tree method in the context of tree-shaped class hierar-
chies. Vens et  al. (2008) extend the algorithm towards hierarchies structured as directed 
acyclic graphs (DAGs) and show that learning one decision tree for predicting all classes 
simultaneously outperforms learning one tree per class (even if those trees are built by tak-
ing into account the hierarchy, via so-called hierarchical single-label classification–HSC). 
Stojanova et al. (2013) adapt the PCTs to consider also the network context of the exam-
ples by defining a new distance function that includes also the interaction networks. Kocev 
et al. (2013) extend the PCT framework in the context of ensemble learning. Finally, Cerri 
et al. (2015) analyse decision tree methods and evaluation measures for the task of HMC.

Although all the aforementioned methods consider the learning tasks addressed in this 
paper, none of them proposes an elegant way to tackle all of the considered variants of SOP 
learning tasks with the same algorithm. Moreover, only a few of them exploit the ensem-
ble learning paradigm, that typically provides significant improvements in the prediction 
capabilities when compared to their non-ensemble counterparts. In any case, none of the 
approaches mentioned before exploit the idea of the Extra-PCTs algorithm and extend it 
to deal with SOP tasks.

3 � Extra‑PCTs for structured output prediction

3.1 � Learning a single Extra‑PCT

The predictive clustering tree framework views a decision tree as a hierarchy of clusters 
(Blockeel et al. 1998; Kocev 2011; Kocev et al. 2013). The top-node corresponds to one 
cluster containing all the data, which is recursively partitioned into smaller clusters, while 
moving down in the tree. The PCT framework is implemented in the CLUS system.2

PCTs are induced with a standard top-down induction of decision trees (TDIDT) algo-
rithm (Breiman et al. 1984). Table 1 outlines the general algorithm for PCT induction. It 
takes as input a set of examples (E) and outputs a tree. It also defines the prototype func-
tions used in each tree leaf for predicting the label of new examples (e.g., for MTR it cal-
culates the average values for each target from the examples belonging to a given leaf). The 
heuristic (h) used for selecting the tests (t) in a regular PCT, is the reduction in variance 
caused by the partitioning ( P ) of the instances corresponding to the tests (t) (see line 7 of 
the FindTest procedure in Table 2). Intuitively, by maximizing the variance reduction, the 
cluster homogeneity is maximized and the predictive performance is improved.

2  CLUS is available for download at http://clus.sourc​eforg​e.net.

http://clus.sourceforge.net
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The extremely randomized variant of PCTs introduces randomization in the test selec-
tion (Table 2) (Geurts et al. 2006a; Kocev and Ceci 2015). More specifically, it requires an 
input parameter (k) that controls the number of attributes considered at each node of the 
tree. The test selection procedure randomly selects k attributes and from each attribute ran-
domly selects a split. For each of the k selected attributes, the algorithm selects the split in 
two different ways, depending on the attribute type. If the attribute is numeric the splitting 
point is selected randomly from the set of possible splitting points. Possible splitting points 
are found in the set of values of the attribute in the training set associated to the specific 
node. If the attribute is categorical (i.e., nominal), then a non-empty subset of values of the 
attribute in the training set associated to the specific node is randomly selected.

It is noteworthy that our approach shows the best benefits with respect to classical 
regression/decision tree learning in the case of categorical attributes. In fact, differently 
from continuous attributes, where the number of possible splitting points evaluated in 
classical regression/decision tree learning is proportional to the number of examples, 
in the case of categorical attributes the possible number of splits is proportional to 2p , 

Table 1   The top-down induction algorithm for PCTs. E is the dataset, k is the size of the attribute subset, t 
is the split test, h is the heuristic score, P is the partitioning of the instances, and Prototype(E) is the proto-
type function that calculates the predictions

Table 2   Extremely randomized test selection for PCTs
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where p is the number of distinct values for the specific attribute. Although a theorem 
by Breiman et  al. (1984) (Theorem  4.5, Proposition 8.16) proves that the best binary 
split can be identified among p − 1 partitions of attribute values, this theorem requires 
an ordering of the attribute values on the basis of the simple mean of Y, which means 
that it only applies when simple regression functions are associated to the leaves (which 
is not the case of SOP). This discussion further motivates our approach that does not 
(cannot) resort to this theorem, but is potentially able to evaluate any possible partition-
ing of categorical attributes without posing any constraint on the partitions.

The k-candidate tests are evaluated using the variance reduction heuristic and the best 
test is selected. Obviously, the larger the variance reduction (h in the procedure FindTest-see 
Table 2), the better the split. If we set the value of k to 1, this algorithm works in the same 
way as the Random Tree algorithm proposed by Witten and Frank (2005). The advantage 
with respect to the Random Tree algorithm is that in the approach we adopt there is still a 
non-random selection based on some evaluation measure (i.e., variance reduction).

In order to take into account the structure of the output space, the variance Var(E) needs 
to be instantiated differently for the various output structures (Kocev 2011; Kocev et  al. 
2013).

PCTs for MTR. For the MTR task, the variance is calculated as Var(E) =
∑T

j=1
Var(E, Yj) , 

where Var(E, Yj) is the normalized variance (using the standard deviation of the variables) 
of the variable Yj in the set E, and T is the number of target variables. The variances of the 
target variables are normalized so that each target variable contributes equally to the over-
all variance. This is due to the fact that the target variables can have completely different 
ranges. The prototype function returns, for each example, a vector whose elements repre-
sent the values of the target variables.

PCTs for MLC. These are PCTs able to predict multiple binary (and thus discrete) tar-
gets simultaneously. Therefore, the variance function for the PCTs for MLC is computed 
as the sum of the Gini indices of the target variables, i.e., Var(E) =

∑T

j=1
Gini(E, Yj) . The 

prototype function returns a vector of probabilities that an instance belongs to a given class 
for each target variable. Once these probabilities are computed, a threshold can be used to 
determine the actual classes of instances.

PCTs for HMC . The variance and prototype for PCTs for the HMC are defined as fol-
lows. First, the set of labels of each example is represented as a vector with binary compo-
nents; the j-th component of the vector is 1 if the example belongs to class cj and 0 other-
wise. The variance of a set of examples E is defined as the average squared distance 
between each example’s class vector (Li) and the set’s mean class vector (L) : 
Var(E) =

1

�E� ⋅
∑

Ei∈E
d(Li,L)

2. The similarity at higher levels of the hierarchy is more 
important than the similarity at lower levels. Hence, the distance measure used is a 
weighted Euclidean distance: d(L1, L2) =

�∑T

j=1
w(cl) ⋅ (L1,j − L2,j)

2 , where Li,j is the j th 

component of the class vector Li of an instance Ei , T is the size of the class vector, and the 
class weights w(c) decrease with the depth of the class in the hierarchy. More precisely, 
w(c) = w0 ⋅ w(p(c)) , where p(c) denotes the parent of class c and 0 < w0 < 1 ). The mean L̄ 
of the class vectors of the examples in the leaf is stored as a prediction (prototype func-
tion). Note that the value for the i th component of L̄ can be interpreted as the probability 
that an example arriving at the given leaf belongs to class ci . The prediction for an example 
that arrives at the leaf can be obtained by applying a user-defined threshold � to the proba-
bility. Moreover, when a PCT makes a prediction, it preserves the hierarchy constraint 
(each instance that belongs to a class c also belongs to the ancestor classes of c). More 
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details about the variance instantiation of PCTs for the different tasks can be found in 
(Kocev et al. 2013; Vens et al. 2008).

3.2 � Creating an ensemble of Extra‑PCTs algorithm

The extremely randomized PCTs are very unstable predictive models because of the intense 
randomization at each node. Consequently, such PCTs are only meaningful when used in 
combination with an ensemble learning framework. In this work, we construct ensembles 
of extremely randomized PCTs (Extra-PCTs) by learning each of the base predictive mod-
els on the complete training set and each of them uses different, randomly selected attrib-
utes in the nodes. The randomization introduced at each node of the Extra-PCTs ensures 
that the base predictive models will be diverse among themselves. It is clear that the level 
of randomization is strongly dependent on the selection of the parameter K—the num-
ber of attributes that are retained at each node. Similarly as in random forests ensemble 
method, it is given by a function of the total number of descriptive attributes D (e.g., k = 1 , 
k = ⌊

√
D + 1⌋ , f (D) = ⌊log2(D) + 1⌋ , k = D ) (Breiman 2001).

Depending on the application, one can choose to use different values for k. In this study, 
we investigate the effect of the function used to initialize k on the performance of the 
ensemble for the three SOP tasks: MTR, MLC and HMC.

In the Extra-PCTs algorithm ensemble, the prediction for a new instance is obtained by 
combining the predictions of all the base predictive models. For the different tasks this is 
performed as follows:

–	 For the MTR task, the prediction for each target variable is computed as the average 
of the predictions obtained from each tree. Note that this solution exploits possible 
dependencies in the output space, since clusters used for prediction (and their hierarchi-
cal organization, i.e., the tree) have been built by taking into account the whole output 
space.

–	 For the MLC task, the prediction for each target variable is computed as the average of 
the probabilities per class (i.e., probability distribution vote (Bauer and Kohavi 1999) 
obtained from each tree.

–	 For the HMC task, the prediction of the whole output hierarchy is obtained by averag-
ing the predictions of the base predictive models (i.e., the probabilities for each of the 
labels) and then applying the same thresholding procedure as the prototype calculation 
in each tree leaf.

3.3 � Feature ranking for structured outputs with Extra‑PCTs

Tree-based ensembles can be used to obtain feature a ranking of the descriptive variables. 
Breiman (2001) proposed exploiting the random forest mechanism to obtain a feature rel-
evance, by using random permutations of the values of the descriptive variables (in the 
so-called out-of-bag) to assess their relevance to the target variable. However, the permuta-
tion of the values of the descriptive variables (for each base predictive model) entails addi-
tional computational cost in domains with a large number of descriptive variables and a 
large number of examples. One way to address this issue is to consider a different variable 
importance score.

In order to avoid this problem, Huynh-Thu et  al. (2010) propose using the reduction 
of the variance in the output space at each test node in the tree (the resulting algorithm is 
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named GENIE3). Namely, the variables that reduce the variance of the output more are, 
consequently, more important than the ones that reduce the variance less. Hence, for each 
descriptive variable we measure the reduction of variance it produces when selected as a 
splitting variable. If a variable is never selected as a splitting variable (in any of the trees in 
the ensemble) then its importance will be 0.

The GENIE3 algorithm has been heavily evaluated for single-target regression tasks 
(e.g., for gene regulatory network reconstruction) (Huynh-Thu et al. 2010). Here, we extend 
it towards the three SOP tasks discussed and name the resulting algorithm ExtraPCTs-
GENIE3. The basic idea adopted for feature ranking follows the spirit of GENIE3, but we 
use the Extra-PCTs algorithm for building the ensemble. This gives us the opportunity to 
directly exploit the variance functions defined in Section 3.1 when measuring the reduction 
of variance that a variable produces.

Recall that there are two competing aspects in the Extra-PCTs learning at play: modified 
search through the additional randomization of the split search procedure and the struc-
tured output space through the joint variance function. The effects of these were not pre-
viously investigated in the context of learning predictive models, even less so, this was 
studied for the task of feature ranking for structured output prediction. There are only a 
handful of methods available to perform feature ranking for a specific structured output 
prediction task (e.g., feature ranking for MLC or HMC) and there are no other methods 
outside the predictive clustering framework that can perform feature ranking for all of the 
structured output prediction tasks. Now, the two competing aspects of Extra-PCTs learn-
ing also influence the subsequent feature rankings—here, we illustrate that the proposed 
methodology indeed can yield a relevant feature ranking across the spectrum of structured 
output prediction tasks considered.

3.4 � Computational complexity of the Extra‑PCTs algorithm

One of the best advantages of the Extra-PCTs ensembles is their computational efficiency. 
In (Kocev et al. 2013), we discuss the computational cost of an ordinary PCT and ensem-
bles of PCTs extensively. The computational cost of constructing an ordinary PCT for SOP 
can be summarized as

where D is the number of descriptive attributes, N is the number of examples and T is the 
size of the output measures as the number of target variables (for MTR and MLC) or the 
number of classes in the hierarchy (for HMC). The three terms of the computational cost 
can be related to different phases of the tree learning procedure: The first term of the cost 
relates to the sorting of the (numeric) attributes at each node, the second term relates the 
cost of calculating the best split and the third term relates to sorting the examples to the 
subtrees, i.e., applying the split on the training instances. These terms consider that the 
tree is balanced and bushy, as in (Witten and Frank 2005), hence its depth is in the order of 
logN.

The cost of constructing Extra-PCTs can be derived as follows. Two procedures are 
executed during the construction of each node of the tree: calculating the best split out of 
the k randomly selected candidate splits at a cost of O(k ⋅ T ⋅ N) , and applying the split to 
the training instances with a cost of O(N) . Furthermore, we assume that the tree is bal-
anced and bushy, hence its depth is in the order of logN , i.e., O(logN) . Bearing this in 
mind, the total computational cost of constructing a single tree is

(1)O(D ⋅ N log2 N) +O(D ⋅ T ⋅ N logN) +O(N logN),
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Comparing formulas (1) and (2), we can note that Extra-PCTs have lower computational 
complexity as compared to regular PCTs. The ensembles usually amplify the computa-
tional cost of the base predictive models linearly with the number of base models. Conse-
quently, the cost of an Extra-PCTs ensemble is lower than the cost of a regular ensemble.

4 � Experimental design

In order to empirically evaluate Extra-PCTs, we perform experiments for all the SOP 
learning tasks considered: MTR, MLC and HMC. In this section, we first describe the 
datasets used, then we introduce the research questions guiding the experimental design 
and, finally, we describe the experimental setting.

4.1 � Data description

The datasets with multiple continuous targets for the MTR task (21 in total, see Table 3) 
are mainly from the domain of ecological modeling. The datasets with multiple binary tar-
gets for the MLC task (10 in total, see Table 4) are from three domains: biology, multime-
dia and text categorization. The datasets that have classes organized in a hierarchy for the 

(2)O(k ⋅ T ⋅ N logN) +O(N logN).

Table 3   Properties of the 
datasets with multiple continuous 
targets (MTR): number of 
examples (N), number of 
descriptive attributes (discrete/
continuous, D/C), and number of 
target attributes (T)

Name of dataset N D/C T

atp1d 337 0/411 6
atp7d 296 0/411 6
collembolaV2 393 8/39 3
edm1 154 0/16 2
enb 768 0/8 2
Forestry-LIDAR-Landsat 6218 0/150 2
Forestry-LIDAR-IRS 2731 0/29 2
Forestry-LIDAR-Spot 2731 0/49 2
jura 359 0/15 3
oes10 403 0/298 16
oes97 334 0/263 16
osales 639 0/401 12
PPMI 713 0/138 35
rf1 9125 0/64 8
rf2 9125 0/576 8
scm1d 9803 0/280 16
scm20d 8966 0/61 16
scpf 1137 3/4 3
soil-quality 1944 0/142 3
VegetationCondition 16967 1/39 7
Water-quality 1060 0/16 14
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HMC task (10 in total, see Table 5) come from various domains: biology, text classifica-
tion and image annotation/classification. Note that two datasets from the biological domain 
have the hierarchy of labels organized as a DAG (they have GO - Gene ontology - in the 
dataset name), while the remaining datasets have the hierarchy of labels organized as a 
tree. The datasets for the MLC and HMC task come pre-divided into training and testing 
parts, thus, in the experiments, we use them in their original format as typically done in the 
literature (Kocev et al. 2013; Madjarov et al. 2012). The training part usually comprises 
around 2/3 of the complete dataset, while the testing part the remaining 1/3 of the dataset. 
For more information on the datasets, we refer the reader to the repositories available at: 
http://mulan​.sourc​eforg​e.net/datas​ets-mlc.html, https​://dtai.cs.kuleu​ven.be/clus/hmc-ens/ 
and http://kt.ijs.si/Dragi​Kocev​/PhD/resou​rces/, as well as (Kocev et  al. 2013; Madjarov 
et al. 2012) and the references therein.

In order to facilitate replication of all the experiments, we implemented the method pro-
posed in this paper in the latest version of CLUS, already available in the public CLUS 
repository at http://clus.sourc​eforg​e.net.

Table 4   Properties of the 
datasets with multiple binary 
targets (MLC): number of 
examples in the training/testing 
dataset (N

tr
∕N

te
 ), number of 

descriptive attributes (discrete/
continuous, D/C), the total 
number of labels (Q) and label 
cardinality ( l

c
)

The problems are ordered by their overall complexity roughly calcu-
lated as #tr.e. × D × Q

N
tr
∕N

te
D/C Q l

c

birds 322/323 2/258 19 1.01
emotions 391/202 0/72 6 1.87
scene 1211/1159 0/294 6 1.07
yeast 1500/917 0/103 14 4.24
medical 645/333 1449/0 45 1.25
enron 1123/579 1001/0 53 3.38
corel5k 4500/500 499/0 374 3.52
tmc2007 21519/7077 500/0 22 2.16
mediamill 30993/12914 0/120 101 4.38
bibtex 4880/2515 1836/0 159 2.40

Table 5   Properties of the 
datasets with hierarchical targets 
(HMC): number of examples in 
the training/testing dataset  
(N

tr
∕N

te
 ), number of descriptive 

attributes (discrete/continuous, 
D/C ), number of classes in the 
hierarchy ( |H| ), maximum depth 
of the classes in the hierarchy 
( H

d
 ), average number of labels 

per example ( L ), and average 
number of leaf labels per 
example ( L

L
)

Note that the values for H
d
 are not always a natural number because 

the hierarchy has a form of a DAG and the maximum depth of a node 
is calculated as the average of the depths of its parents

Domain N
tr
∕N

te
D/C |H| H

d L L
L

ImCLEF07D 10000/1006 0/80 46 3.0 3.0 1.0
ImCLEF07A 10000/1006 0/80 96 3.0 3.0 1.0
Diatoms 2065/1054 0/371 377 3.0 1.95 0.94
Enron 988/660 0/1001 54 3.0 5.30 2.84
Reuters 3000/3000 0/47236 100 4.0 3.20 1.20
WIPO 1352/358 0/74435 183 4.0 4.0 1.0
Expression–FunCat 2494/1291 4/547 475 4.0 8.87 2.29
SCOP-GO 6507/3336 0/2003 523 5.5 6.26 0.95
Sequence-FunCat 2455/1264 2/4448 244 4.0 3.35 0.94
Yeast-GO 2310/1155 5588/342 133 6.3 5.74 0.66

http://mulan.sourceforge.net/datasets-mlc.html
https://dtai.cs.kuleuven.be/clus/hmc-ens/
http://kt.ijs.si/DragiKocev/PhD/resources/
http://clus.sourceforge.net
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4.2 � Experimental setup

We design the experimental evaluation of the proposed method by bearing in mind the fol-
lowing research questions: 

1.	 What is the number of base predictive models in the ensemble to obtain good predictive 
performance? Is this number stable across the tasks?

2.	 What is the optimal number of splits to be considered at each node in the tree construc-
tion for each of the SOP tasks?

3.	 Do Extra-PCTs ensembles yield better predictive performance than a single PCT?
4.	 How does the predictive performance of Extra-PCTs compare to the predictive perfor-

mance of standard tree-ensemble methods, such as bagging and random forest of PCTs?
5.	 Can Extra-PCTs be used to obtain a feature ranking for domains with structured out-

puts?

In order to answer these five questions, we design the following experimental setup. The 
predictive performance of the methods on the MLC and HMC datasets is assessed using 
the train-test splits from the original datasets, while for the MTR datasets we perform 
10-fold cross-validation.

There are multiple performance measures in use for SOP tasks. Specifically, for MTR 
we considered the correlation coefficient, the root mean squared error and the relative root 
mean squared error (RRMSE). For MLC, Madjarov et  al. (2012) present several perfor-
mance measures: example-based (Hamming loss, F1 score, accuracy, etc.), ranking-based 
(ranking loss, one-error, etc.) and label-based (micro precision, macro precision, etc.). 
For HMC, there are Area Under the Precision-Recall Curve (AUPRC) and Area Under the 
Average Precision-Recall Curve ( AUPRC ), presented by Vens et al. (2008).

In the results section, we will focus on RRMSE for MTR, threshold independent rank-
ing loss for MLC and AUPRC for HMC. While focusing on other performance measures 
slightly affects the parameter instantiations, the overall conclusions from the experiments 
remain similar.

Next, we define the parameter values used in the algorithms for constructing the single 
trees and the ensembles of PCTs. For the single trees, we use F-test as a pruning mecha-
nism (Vens et  al. 2008). Specifically, we check whether a given split/test in an internal 
node of the tree results in a reduction in variance that is statistically significant at a given 
significance level. If there is no split/test that can satisfy this, then the node is converted to 
a leaf. An optimal significance level is selected by using internal 3-fold cross validation, 
from the following values: 0.125, 0.1, 0.05, 0.01, 0.005 and 0.001.

The proposed Extra-PCTs require two input parameters: feature subset size at each 
node (k) and number of base predictive models. In this study, we investigate the influence 
of k on the predictive power of the Extra-PCTs by setting its value to various fractions of 
D: 0.01, 0.05, 0.1, 0.2, 0.3, 0.5, 0.75 and 1. Next, we construct ensembles with 10, 25, 50, 
75, 100, 150, 200 and 250 base predictive models.

For a better comparison, we also used random forests of PCTs with the same values of k 
and number of trees. The influence of the feature subset size on the performance of random 
forests of PCTs for MTR, MLC and HMC has not been investigated before. Kocev et al. 
(2013) use the recommended values as from the simpler classification and regression, but 
discuss that using log from the features might be undersampling and may lead to subopti-
mal results.
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Notably, random forests of PCTs, where we look at all the D attributes at each node, 
are equivalent to bagging ensembles. Following the findings from the study conducted by 
Bauer and Kohavi (1999), the trees in all of the ensembles were not pruned.

The feature ranking using ExtraPCTs-GENIE3 is performed as follows. For each of the 
tasks, we select a single dataset to showcase the potential of the algorithm. We then enlarge 
the feature spaces of each of the datasets by adding 100 random variables. We investi-
gate whether ExtraPCTs-GENIE3 will place the random variables at the tail of the feature 
ranking. The Extra-PCTs ensembles consisted of 100 trees and k was set to D.

In order to assess the statistical significance of the differences in performance of the 
studied algorithms, we adopt the recommendations by Demšar (Demšar 2006) for the sta-
tistical evaluation of the results. In particular, we use the Friedman test (Friedman 1940) 
for statistical significance—it is a non-parametric test for multiple hypotheses testing. It 
ranks the algorithms according to their performance for each dataset separately, thus the 
best performing algorithm gets the rank of 1, second best the rank of 2 etc; and in case of 
ties it assigns average ranks. Afterwards, to check where the statistically significant dif-
ferences appear (among which algorithms), we use the Nemenyi post-hoc test (Nemenyi 
1963) when we compare all of the methods with each other. In this post-hoc test, the per-
formance of two classifiers is significantly different if their average ranks differ more than 
some critical distance. The critical distance depends on the number of algorithms, number 
of datasets and critical value (for a given significance level) that is based on the Studen-
tized range statistic and can be found in statistical textbooks. We present the results from 
the statistical analysis with average rank diagrams (Demšar 2006). The ranks are depicted 
on the axis, in such a manner that the best ranking algorithms are at the left-most side of 
the diagram. The lines connect the algorithms whose average ranks are smaller than the 
critical distance (in our study, the significance level is set to 0.05). The difference in the 
performance of the algorithms connected with a line is not statistically significant at the 
given significance level.

5 � Results and discussion

In this section, we present and discuss the results from the comprehensive experimental 
evaluation. We first investigate the influence of the feature subset size considered at each 
node and the size of the ensemble (i.e., the number of base predictive models used in an 
ensemble). We next compare the performance of Extra-PCTs with the performance of a 
single PCT as well as with the performance of random forests of PCTs and bagging of 
PCTs. Finally, we show that Extra-PCTs can be used for performing feature ranking. All 
of the discussion is carried out for each of the tasks considered here: multi-target regres-
sion (MTR), multi-label classification (MLC) and hierarchical multi-label classification 
(HMC).

5.1 � Influence of the feature subset size and the number of base predictive models

We discuss the results for each task separately. We first focus on the MTR task. Figures 1 
and  2 depict the MTR performance obtained for different values of k and number of base 
predictive models for the Extra-PCTs and random forests of PCTs, respectively. We start 
by noticing that for both Extra-PCTs and random forests of PCTs increasing the number 
of trees in the ensemble generally improves the performance. However, the improvement of 
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the performance starts to saturate after adding 50 trees in the ensembles, i.e., after 50 trees 
the performance improvements are rarely noticeable. Furthermore, on the datasets with 
very few attributes (e.g., the dataset enb), the first few points show the same performance 
because k is the same for those ratios (0.01, 0.05 and sometimes also 0.1).

Conversely, the effect of k on performance is not as straightforward and shows more 
variance among the datasets. Let us first focus on Extra-PCTs. Increasing the value of k 
often improves the performance. The improvement is large at first, but then diminishes as 
k grows. This is not in  line with the recommendations for single-target regression which 
suggest using all features (Geurts et al. 2006a). On some datasets the performance starts 
decreasing when k approaches D (e.g., enb, soil_quality and most notably oes97, where 
the performance diminishes much sooner). We can make similar observations for random 
forests of PCTs, with the addition that the performance degradation at higher values for k is 
more noticeable. In the extreme case of the oes97 dataset, random forests seem to offer the 
best performance at the lowest value of k. 

Figures 3 and 4  show the results for the MLC task obtained with Extra-PCTs and 
random forests of PCTs, respectively. Increasing the number of trees again improves the 
performance for both methods, also with smaller improvements for higher values as for 
MTR. For Extra-PCTs there are three datasets, where the performance decreases with 
the increase in the value of k (corel5k, bibtex, enron), five if we also include the medical 

Fig. 1   Results for Extra-PCTs on MTR datasets for different numbers of attributes considered in each node 
(subspaces as a fraction of D) and different numbers of base predictive models (i.e., no. of trees: 10, 25, 50, 
75, 100, 150, 250). The vertical dashed line is at the value for the square root from the descriptive features
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Fig. 2   Results for random forests of PCTs on MTR datasets for different numbers of attributes considered 
in each node (subspaces as a fraction of D) and different numbers of base predictive models (i.e., no. of 
trees: 10, 25, 50, 75, 100, 150, 250). The vertical dashed line is at the value for the square root from the 
descriptive features

Fig. 3   Results for Extra-PCTs on MLC datasets for different numbers of attributes considered in each node 
(subspaces as a fraction of D) and different numbers of base predictive models (i.e., no. of trees: 10, 25, 50, 
75, 100, 150, 250). The vertical dashed line is at the value for the square root from the descriptive features
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and tmc2007 datasets, where the smallest k is an exception. These five datasets only 
have binary attributes. This means that for every attribute there is only one possible 
split. Because there is no bootstrapping performed for Extra-PCTs ensembles, all mem-
bers are built on the same training set. On these datasets, k is the only thing that causes 
variance among the ensemble members, the larger the k the smaller the variance. When 
k = D , all ensemble members are the same, and the ensemble is equivalent to a single 
tree. This is the reason why on these datasets performance decreases significantly with 
increasing k. Additionally, on the mediamill and scene datasets there is very little differ-
ence in performance for different values of k (if we do not consider the lowest numbers 
of trees). However, there are still datasets where increasing the value of k to around 0.5 
significantly improves the performance (e.g., yeast and birds datasets). Because random 
forests perform bootstrapping, which provides variance among ensemble members, this 
is much less of an issue. Selecting k between 0.1D and 0.3D would fit well with these 
datasets. 

Fig. 4   Results for random forests of PCTs on MLC datasets for different numbers of attributes considered 
in each node (subspaces as a fraction of D) and different numbers of base predictive models (i.e., no. of 
trees: 10, 25, 50, 75, 100, 150, 250). The vertical dashed line is at the value for the square root from the 
descriptive features

Fig. 5   Results for Extra-PCTs on HMC datasets for different numbers of attributes considered in each node 
(subspaces as a fraction of D) and different numbers of base predictive models (i.e., no. of trees: 10, 25, 50, 
75, 100, 150, 250). The vertical dashed line is at the value for the square root from the descriptive features



2232	 Machine Learning (2020) 109:2213–2241

1 3

The results for HMC are presented in Fig. 5 (Extra-PCTs) and in Fig. 6 (random for-
ests). Note that here, in contrast to the previous two tasks higher value means better per-
formance. As for the other two tasks, increasing the number of trees improves the perfor-
mance for both Extra-PCTs and random forests, and the improvement of using more than 
50 trees is rarely noticeable. For Extra-PCTs increasing the value of k initially quickly 
improves the performance, but it can later degrade it slightly. There are three exceptions to 
this. The first is the enron dataset, where the performance is constantly decreasing. Here 
the attributes are again all binary. The other exceptions are Reuters and WIPO datasets, 
where the performance significantly drops for k = D . The attributes in these datasets are 
very sparse. Because the vast majority of examples have value zero for any given attribute, 
different (randomly selected) split thresholds only cause a very small change in the parti-
tions resulting from the splits. So, while the thresholds in different ensemble members are 
different, the tests selected and data partitions produced are mainly equal. Random forests 
also produce similar results, although they tend to reach their peak performance on lower 
values of k. Because of bootstrapping they are again resistant to extreme performance 
drops at k = D on datasets with binary and/or sparse attributes.

Based on these results, the recommended values for these two parameters can be sug-
gested. As noted above, having more trees in the ensemble improves the performance (at 
the cost of time complexity), but the gains diminish as the size of the ensembles increases. 
Based on the graphs from Figs. 1, 2, 3, 4, 5 and 6, we select 50 trees for both Extra-PCTs 
and random forests of PCTs as an optimal setting, for all the tasks considered. This is con-
sistent with the findings of Kocev (2011), where no statistically significant improvement 
was found for adding more than 50 trees to an ensemble.

Selecting the value for k is less straightforward because peak performance is reached 
at very different values, depending on the method and dataset. For every task we select 
the value of k that produces the best average rank among the datasets for that task, sepa-
rately for Extra-PCTs and random forests. To do so, we only compare different values 
of k with 50 trees in the ensemble. For Extra-PCTs we also treat datasets with only 
binary and/or sparse datasets separately, i.e. we select k for these datasets and other 
datasets separately. We also add ensembles with k = ⌈

√
D⌉ (because they are often used 

in the literature) as well as bagging ensembles of PCTs (random forests with k = D ), 

Fig. 6   Results for random forests of PCTs on HMC datasets for different numbers of attributes considered 
in each node (subspaces as a fraction of D) and different numbers of base predictive models (i.e., no. of 
trees: 10, 25, 50, 75, 100, 150, 250). The vertical dashed line is at the value for the square root from the 
descriptive features
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to see how well these selections of k perform. In the end, we compared 6 algorithms 
in three different tasks (using 21, 10 and 10 datasets for the tasks of MTR, MLC and 
HMC, respectively), using the Friedman test and the Nemenyi post-hoc test.

In short, for the MTR task, the average ranks of methods with different values of k 
are shown in Fig. 11 in the appendix. The selected values were thus 0.5D for random 
forests and 0.75D for Extra-PCTs (no binary/sparse datasets). Next, Figs.  12 and 14 
in the appendix show the average ranks for different values of k for the MLC task. We 
select 0.1D for random forests, 0.05D for Extra-PCTs on sparse/binary datasets and 
0.3 for Extra-PCTs otherwise. Finally, Figs. 13 and 14 in the appendix show the aver-
age ranks for different values of k for the HMC task. The best performing are 0.2D 
for random forests. For Extra-PCTs, 0.5D works best for datasets with sparse/binary 
attributes, and 0.75D otherwise. As we can see, the best results value of k depend on the 
task and algorithm, but, generally, k = 0.5D provide good results for most of the combi-
nations. A noticeable exception is MTR, where Extra-PCTs benefit from the usage of 
all the features. This is probably due to a combination of the effect of the finer (w.r.t. to 
other tasks) granularity of the evaluation measure used (i.e. RRMSE) and the additional 
(w.r.t. random forest) dimensions of randomization.

5.2 � Extra‑PCTs ensembles vs single PCTs and other ensemble methods

In the previous section, we analyzed the influence of the number of trees and the num-
ber of attributes considered at each node on the predictive performance of Extra-PCTs 
and random forests of PCTs. In this section, we perform a statistical analysis of their 
performance and compare the performance of the ensemble methods (single PCTs are 
used as the baseline). We consider three ensemble methods: Extra-PCTs, random forest 
and bagging (remember that random forests with k = D is equivalent to bagging). The 
parameters for the methods were determined above.

The results of the statistical analysis for the MTR task are presented in Fig. 7. Extra-
PCTs with recommended k have the best average rank followed by random forests with 
recommended k, but the difference is not statistically significant. However, random for-
ests seem to perform quite similarly to bagging, which is not the case of Extra-PCTs. 
In addition, popular choices k =

√
D and bagging have significantly worse performance 

than the best Extra-PCTs. As expected, a single PCT is statistically significantly worse 
than ensemble methods.

Fig. 7   Average ranking diagram 
comparing Extra-PCTs to single 
PCTs and other ensemble meth-
ods for the MTR task. Extra-
PCTs with recommended k 
achieve the best performance on 
17 of the 21 benchmark datasets



2234	 Machine Learning (2020) 109:2213–2241

1 3

Figure 8 presents the results of the statistical analysis for the MLC task. Random forests 
appear to have a slight edge over other methods, however the difference to other ensemble 
methods was not found to be statistically significant.

The results of the statistical comparisons for the HMC task are shown in Fig. 9. Simi-
lar to the MLC task, there are no statistically significant differences among the ensemble 
methods, but Extra-PCTs and random forests, with the suggested values for k, have notice-
ably better average ranks than the others. Along with bagging, they are also statistically 
significantly better than single PCTs. Selecting k =

√
D again does not seem optimal.

An additional finding is that the standard adopted in the literature for using the sqrt 
function for the feature subset size for random forests yields suboptimal performance when 
used in the context of structured output prediction. Similarly, the recommended values for 
Extra-PCTs for the single-target regression ( k = D ) and classification ( k = sqrt ) do not 
apply for the structured output prediction task.

5.3 � Feature ranking for SOP

We illustrate the potential of Extra-PCTs to be used for performing feature ranking for the 
three tasks considered here. For each task, we select a dataset and check whether Extra-
PCTs combined with GENIE3 scoring can properly delineate the real features from the 
100 random features included in the dataset. We perform an analysis of the rankings using 
logistic regression approximation function y = f (x) , where x represents the score returned 
by the proposed solution for a given feature, and y indicates if the feature is a real feature or 
a random feature ( y = 0 if the feature is a real feature and y = 1 if the feature is a random 
feature). The performance is then evaluated using ROC curves. Obtaining a value of 1 for 
the area under the ROC curve (AUROC) indicates that the algorithm is able to perfectly 

Fig. 8   Average ranking diagram 
comparing Extra-PCTs to single 
PCTs and other ensemble meth-
ods for the MLC task. Extra-
PCTs with recommended k 
achieve the best performance on 
4 of the 10 benchmark datasets

Fig. 9   Average ranking diagram 
comparing Extra-PCTs to single 
PCTs and other ensemble meth-
ods for the HMC task. Extra-
PCTs with recommended k 
achieve the best performance on 
6 of the 10 benchmark datasets
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Fig. 10   Feature ranking illustrative results. Images on the left-hand side: Points represent features. On the 
X axis we report the score returned by the proposed solution for the specific feature. On the Y axis we 
report 0 if the feature is a random feature and 1 if the feature is a real feature. The sigmoid curve is deter-
mined according to a logistic regression of Y with respect to X. The function shows a clear separation 
between random and real features. Images on the right-hand side: The ROC curve of the logistic regression 
approximation function y = f (x) , where x represents the score returned by the proposed solution for a given 
feature, and y indicates if the feature is a real feature or a random feature ( y = 0 if the feature is a real fea-
ture and y = 1 if the feature is a random feature)
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separate real features from random features. The value of 0.5 for AUROC indicates that the 
algorithm randomly separates real features from random features.

The obtained results of the feature ranking evaluation are shown in Fig. 10. The feature 
rankings correctly place the real features at the top of the ranking, ahead of the random 
features. For the datasets Waterquality (MTR) and ImageCLEF07A (HMC) the separation 
is perfect (AUC=1), while for the Emotions dataset the AUROC value is 0.9671. These 
results indicate that the proposed Extra-PCTs can be used for performing feature ranking 
for structured output prediction.

6 � Conclusions

In this work, we address the task of learning Extra-PCTs ensembles of predictive models 
for structured output prediction (SOP). We investigate three SOP tasks: multi-target regres-
sion (the output is a tuple/vector of continuous variables), multi-label classification (the 
output is a tuple/vector of binary variables) and hierarchical multi-label classification (the 
output is a tuple/vector of binary variables organized into a hierarchy).

Ensembles have proved to be highly effective methods for improving the predictive perfor-
mance of their constituent models, especially for classification and regression tree models. In 
particular, we consider the Extra-PCTs ensembles as predictive models. Extra-PCTs ensem-
bles are a well established method for predictive modelling, that has been successfully applied 
to computer vision and gene network inference. As base predictive models, we propose using 
predictive clustering trees (PCTs). These can be considered as a generalization of decision 
trees for predicting structured outputs, including multiple continuous variables (MTR), multi-
ple binary variables (MLC) and a hierarchy of multiple binary variables (HMC).

We perform a comprehensive experimental evaluation on 41 benchmark datasets: 21 
for MTR, 10 for MLC and 10 for HMC. The selection of the datasets covers a wide range 
of application domains including ecology, business and life sciences. We compare the per-
formance of three ensemble learning methods: Extra-PCTs, random forests and bagging 
of PCTs. Moreover, we compare the ensemble performance with a single base predictive 
model (i.e., a single PCT). The performance is measured with a variety of evaluation meas-
ures used for the specific tasks.

We summarize the results of the evaluation by answering the research questions that 
guided the experimental design: 

1.	 What is the number of base predictive models in the ensemble to obtain good predictive 
performance? Is this number stable across the tasks?

	   Including more base predictive models in the ensemble improves the predictive per-
formance, but the improvement diminishes as ensemble sizes increase. Considering 
ensembles with 50 base predictive models is a good compromise between predictive 
power and computational efficiency. This is valid for the three tasks considered here and 
is in line with existing literature for non-SOP tasks.

2.	 What is the optimal number of splits to be considered at each node in the tree construc-
tion for each of the SOP tasks?

	   Extra-PCTs are sensitive to the number of splits considered (k), and it proved impor-
tant to treat datasets with only binary and/or sparse attributes separately. For the MTR 
task (no binary/sparse datasets), the recommended values are 0.75D for Extra-PCTs 



2237Machine Learning (2020) 109:2213–2241	

1 3

and 0.5D for random forests. For the MLC task, the recommended value for random 
forests is 0.1D, whereas for Extra-PCTs it is 0.05D for binary/sparse datasets and 
0.3D otherwise. Finally, for the HMC task, the recommended value for random forests 
is 0.2D, and for Extra-PCTs it is 0.5D for binary/sparse datasets and 0.75D otherwise. 
Additionally, the results show that the literature recommended values for the feature 
subset size for random forests and Extra-PCTs yield suboptimal performance when 
used in the context of structured output prediction.

3.	 Do Extra-PCTs ensembles yield better predictive performance than a single PCT?
	   The ensemble methods statistically significantly outperform single PCTs. For the 

MTR task, all of the ensembles are significantly better than a single PCT. For the MLC 
task, all of the ensembles are better than a single tree, while the difference is statisti-
cally significant only for random forests. For the HMC task, all of the ensembles are 
better than a single tree, while the difference is statistically significant for bagging and 
Extra-PCTs and random forests with recommended k values.

4.	 How does the predictive performance of Extra-PCTs compare to the predictive perfor-
mance of standard tree-ensemble methods, such as bagging and random forest of PCTs?

	   For the MTR and HMC tasks, Extra-PCTs are the best performing method. The dif-
ferences are sometimes statistically significant for the MTR task, where Extra-PCTs with 
recommended k are significantly better than bagging, random forests with k =

√
D and 

Extra-PCTs with k =
√
D . The best performing method for the MLC task is random forest 

with 0.1D, but the differences among ensemble methods were not statistically significant.
5.	 Can Extra-PCTs be used to obtain a feature ranking for domains with structured out-

puts?
	   The proof-of-concept experiments illustrate that Extra-PCTs can be used to obtain fea-

ture rankings across the SOP tasks considered here. The results show that the real features 
are placed at the top of the ranking, while the added random feature is at the bottom of the 
ranking.

 We plan to extend the work along the following major dimensions. First, Extra-PCTs can 
be extended to other types of structured outputs (such as time series or tuples of mixed 
primitive data types, both continuous and discrete). Next, other (more complex) distance 
measures on structured types can be used, thus extending the applicability of the method to 
new domains. Furthermore, we will extend Extra-PCTs towards semi-supervised learning. 
Finally, we plan to investigate in depth the potential of Extra-PCTs for performing feature 
ranking in the context of the SOP tasks considered here.
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See Figs. 11, 12, 13 and 14.
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Fig. 11   Average ranking diagrams of Extra-PCTs (left) and random forests of PCTs (right) with a different 
number of attributes considered in each node, for the task of MTR using RRMSE as the performance measure

Fig. 12   Average ranking diagrams of Extra-PCTs on datasets with only binary/sparse attributes (left) and 
others (right), with a different number of attributes considered in each node, for the task of MLC using 
Ranking Loss as the performance measure

Fig. 13   Average ranking diagrams of Extra-PCTs on datasets with only binary/sparse attributes (left) and 
others (right), with a different number of attributes considered in each node, for the task of HMC using 
AUPRC as the performance measure

Fig. 14   Average ranking diagrams of random forests of PCTs with a different number of attributes consid-
ered in each node, for the tasks of MLC (left) and HMC (right)
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