
Multilabel Neural Networks with Applications to
Functional Genomics and Text Categorization

Min-Ling Zhang and Zhi-Hua Zhou, Senior Member, IEEE

Abstract—In multilabel learning, each instance in the training set is associated with a set of labels and the task is to output a label set

whose size is unknown a priori for each unseen instance. In this paper, this problem is addressed in the way that a neural network

algorithm named BP-MLL, i.e., Backpropagation for Multilabel Learning, is proposed. It is derived from the popular Backpropogation

algorithm through employing a novel error function capturing the characteristics of multilabel learning, i.e., the labels belonging to an

instance should be ranked higher than those not belonging to that instance. Applications to two real-world multilabel learning problems,

i.e., functional genomics and text categorization, show that the performance of BP-MLL is superior to that of some well-established

multilabel learning algorithms.

Index Terms—Machine learning, data mining, multilabel learning, neural networks, backpropagation, functional genomics, text

categorization.

Ç

1 INTRODUCTION

MULTILABEL learning tasks are ubiquitous in real-world
problems. For instance, in text categorization, each

document may belong to several predefined topics, such as
government and health [18], [28]; in bioinformatics, each gene
may be associated with a set of functional classes, such as
metabolism, transcription and protein synthesis [8]; in scene
classification, each scene image may belong to several
semantic classes, such as beach and urban [2]. In all these
cases, instances in the training set are each associated with a
set of labels and the task is to output the label set whose size
is not known a priori for the unseen instance.

Traditional two-class and multiclass problems can both

be cast into multilabel ones by restricting each instance to

have only one label. On the other hand, the generality of

multilabel problems inevitably makes them more difficult

to solve. An intuitive approach to solving a multilabel

problem is to decompose it into multiple independent

binary classification problems (one per category). However,

this kind of method does not consider the correlations

between the different labels of each instance and the

expressive power of such a system can be weak [8], [18],

[28]. Fortunately, several approaches specially designed for

multilabel learning tasks have been proposed, such as

multilabel text categorization algorithms [12], [18], [28], [30],

multilabel decision trees [4], [5], and multilabel kernel

methods [2], [8], [16]. In this paper, a neural network

algorithm named BP-MLL, i.e., Backpropagation for Multi-

label Learning, is proposed, which is the first multilabel

neural network algorithm. As its name implies, BP-MLL is

derived from the popular Backpropagation algorithm [24]

through replacing its error function with a new function
defined to capture the characteristics of multilabel learning;
that is, the labels belonging to an instance should be ranked
higher than those not belonging to that instance. Applica-
tions to two real-world multilabel learning problems, i.e.,
functional genomics and text categorization, show that BP-

MLL outperforms some well-established multilabel learning
algorithms.

The rest of this paper is organized as follows: In Section 2,
a formal definition of multilabel learning is given and
previous works in this area are reviewed. In Section 3, BP-

MLL is presented. In Section 4, evaluation metrics used in
multilabel learning are briefly introduced. In Section 5 and
Section 6, experiments of BP-MLL on two real-world
multilabel learning problems are reported, respectively.
Finally, in Section 7, the main contribution of this paper is
summarized.

2 MULTILABEL LEARNING

Let X ¼ IRd denote the domain of instances and let Y ¼
f1; 2; . . . ; Qg be the finite set of labels. Given a training set
T ¼ fðx1; Y1Þ; ðx2; Y2Þ; . . . ; ðxm; YmÞg ðxi 2 X ; Yi � YÞ i.i.d.
drawn from an unknown distribution D, the goal of the
learning system is to output a multilabel classifier
h : X ! 2Y , which optimizes some specific evaluation
metric. In most cases, however, instead of outputting a
multilabel classifier, the learning system will produce a
real-valued function of the form f : X � Y ! IR. It is
supposed that, given an instance xi and its associated label
set Yi, a successful learning system will tend to output
larger values for labels in Yi than those not in Yi, i.e.
fðxi; y1Þ > fðxi; y2Þ, for any y1 2 Yi and y2 =2 Yi. The real-
valued function fð�; �Þ can be transformed to a ranking
function rankfð�; �Þ, which maps the outputs of fðxi; yÞ for
any y 2 Y to f1; 2; . . . ; Qg such that, if fðxi; y1Þ > fðxi; y2Þ,
then rankfðxi; y1Þ < rankfðxi; y2Þ. Note that the correspond-
ing multilabel classifier hð�Þ can also be derived from the

1338 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 10, OCTOBER 2006

. The authors are with the National Laboratory for Novel Software
Technology, Nanjing University, Mailbox 419, Hankou Road 22, Nanjing
210093, China. E-mail: {zhangml, zhouzh}@lamda.nju.edu.cn.

Manuscript received 15 Sept. 2005; revised 11 Mar. 2006; accepted 24 May
2006; published online 18 Aug. 2006.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0373-0905.

1041-4347/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society
Authorized licensed use limited to: UNIVERSIDAD DE CORDOBA. Downloaded on February 23,2023 at 17:04:03 UTC from IEEE Xplore. Restrictions apply.

function fð�; �Þ: hðxiÞ ¼ fyjfðxi; yÞ > tðxiÞ; y 2 Yg, where
tð�Þ is a threshold function, which is usually set to be the
zero constant function.

As stated in the above section, the generality of multi-
label problems inevitably makes them more difficult to
solve than traditional single-label (two-class or multiclass)
problems. Until now, only a few works on multilabel
learning are available, which mainly concern the problems
of text categorization [5], [12], [16], [18], [28], [30], bioinfor-
matics [4], [8], and scene classification [2].

Research on multilabel learning was initially motivated
by the difficulty of concept ambiguity encountered in text
categorization, where each document may belong to several
topics (labels) simultaneously. One famous approach to
solving this problem is BOOSTEXTER, proposed by Schapire
and Singer [28], which is, in fact, extended from the popular
ensemble learning method ADABOOST [10]. In the training
phase, BOOSTEXTER maintains a set of weights over both
training examples and their labels, where training examples
and their corresponding labels that are hard (easy) to
predict correctly get incrementally higher (lower) weights.
In 1999, McCallum [18] proposed a Bayesian approach to
multilabel document classification, where a mixture prob-
abilistic model (one mixture component per category) is
assumed to generate each document and the EM algorithm
[6] is utilized to learn the mixture weights and the word
distributions in each mixture component. In 2003, Ueda and
Saito [30] presented two types of probabilistic generative
models for multilabel text, called parametric mixture
models (PMM1, PMM2), where the basic assumption under
PMMS is that multilabel text has a mixture of characteristic
words appearing in single-label text that belong to each
category of the multicategories. It is worth noting that the
generative models used in [18] and [30] are both based on
learning text frequencies in documents and are, thus,
specific to text applications. Also in 2003, Comité et al. [5]
extended alternating decision tree [9] to handle multilabel
data, where the ADABOOST.MH algorithm proposed by
Schapire and Singer [27] is employed to train the multilabel
alternating decision trees.

In 2004, Gao et al. [12] generalized the maximal figure-of-
merit (MFoM) approach [11] for binary classifier learning to
the case of multiclass, multilabel text categorization. They
defined a continuous and differentiable function of the
classifier parameters to simulate specific performance
metrics, such as precision and recall etc. (microaveraging
F1 in their paper). Their method assigns a uniform score
function to each category of interest for each given test
example and, thus, the classical Bayes decision rules can be
applied. One year later, Kazawa et al. [16] converted the
original multilabel learning problem of text categorization
into a multiclass single-label problem by regarding a set of
topics (labels) as a new class. To cope with the data
sparseness caused by the huge number of possible classes
(Q topics will yield 2Q classes), they embedded labels into a
similarity-induced vector space in which prototype vectors
of similar labels would be placed close to each other. They
also provided an approximation method in learning and
efficient classification algorithms in testing to overcome the
demanding computational cost of their method.

In addition to text categorization, multilabel learning has
also manifested its effectiveness in other real-world
applications, such as bioinformatics and scene classification.
In 2001, Clare and King [4] adapted C4.5 decision tree [22]
to handle multilabel data (gene expression in their case)
through modifying the definition of entropy. They chose
decision trees as the baseline algorithm because its output
(equivalently, a set of symbolic rules) is interpretable and
can be compared with existing biological knowledge. It is
also noteworthy that their goal is to learn a set of accurate
rules, not necessarily a complete classification. One year
later, through defining a special cost function based on
ranking loss (as shown in (24)) and the corresponding
margin for multilabel models, Elisseeff and Weston [8]
proposed a kernel method for multilabel classification and
tested their algorithm on a yeast gene functional classifica-
tion problem with positive results. In 2004, Boutell et al. [2]
applied multilabel learning techniques to scene classifica-
tion. They decomposed the multilabel learning problem
into multiple independent binary classification problems
(one per category), where each example associated with
label set Y will be regarded as a positive example when
building classifier for class y 2 Y while regarded as a
negative example when building classifier for class y =2Y .
They also provided various labeling criteria to predict a set
of labels for each test instance based on its output on each
binary classifier. Note that, although most works on
multilabel learning assume that an instance can be
associated with multiple valid labels, there are also works
assuming that only one of the labels associated with an
instance is correct [14].1

As reviewed above, most of the existing multilabel
learning algorithms are derived from traditional learning
techniques such as probabilistic generative models [18],
[30], boosting methods [28], decision trees [4], [5], and
maximal margin methods [8], [2], [16]. However, as a
popular and effective learning mechanism, there has not
been any multilabel learning algorithm derived from a
neural network model. In the following section, the first
multilabel learning algorithm based on a neural network
model, i.e., BP-MLL, is proposed.

3 BP-MLL

3.1 Neural Networks

As defined in the literature [17], neural networks are
massively parallel interconnected networks of simple
(usually adaptive) elements and their hierarchical organiza-
tions, which are intended to interact with the objects of the
real world in the same way that biological nervous systems
do. The earliest work on neural networks dates back to
McCulloch and Pitts’s M-P model of a neuron [19], which is
then followed by considerable work in the 1950s and 1960s
on single-layer neural networks [23], [31]. Although single-
layer neural networks were successful in classifying certain
patterns, they had a number of limitations so that even
simple functions such as XOR could hardly be learned [20].
Such limitations led to the decline of research on neural

ZHANG AND ZHOU: MULTILABEL NEURAL NETWORKS WITH APPLICATIONS TO FUNCTIONAL GENOMICS AND TEXT CATEGORIZATION 1339

1. In this paper, only the former formalism of multilabel learning is
studied.

Authorized licensed use limited to: UNIVERSIDAD DE CORDOBA. Downloaded on February 23,2023 at 17:04:03 UTC from IEEE Xplore. Restrictions apply.

networks during the 1970s. In the early 1980s, research on
neural networks resurged largely due to successful learning
algorithms for multilayer neural networks. Currently,
diverse neural networks exist, such as multilayer feed-
forward networks, radial basis function networks, adaptive
resonance theory models, self-organizing feature mapping
networks, etc. Neural networks provide general and
practical techniques for learning from examples, which
have been widely used in various areas.

In this paper, traditional multilayer feed-forward neural
networks are adapted to learn from multilabel examples.
Feed-forward networks have neurons arranged in layers,
with the first layer taking inputs and the last layer
producing outputs. The middle layers have no connection
with the external world and, hence, are called hidden
layers. Each neuron in one layer is connected (usually fully)
to neurons on the next layer and there is no connection
among neurons in the same layer. Therefore, information is
constantly fed forward from one layer to the next one.
Parameters of the feed-forward networks are learned by
minimizing some error function defined over the training
examples, which commonly takes the form of the sum of the
squared difference between the network output values and
the target values on each training example. The most
popular approach to minimizing this sum-of-squares error
function is the backpropagation algorithm [24], which uses
gradient descent to update parameters of the feed-forward
networks by propagating the errors of the output layer
successively back to the hidden layers. More detailed
information about neural networks and related topics can
be found in textbooks such as [1] and [13].

Actually, adapting traditional feed-forward neural net-
works from handling single-label examples to multilabel
examples requires two keys. The first key is to design some
specific error function other than the simple sum-of-squares
function to capture the characteristics of multilabel learning.
Secondly, some revisions have to be made accordingly for the
classical learning algorithm in order to minimize the newly
designed error function. These two keys will be described in
detail in the following two sections, respectively.

3.2 Architecture

Let X ¼ IRd be the instance domain and Y ¼ f1; 2; . . . ; Qg be
the finite set of class labels. Suppose the training set is
composed of m multilabel instances, i.e.,

fðx1; Y1Þ; ðx2; Y2Þ; . . . ; ðxm; YmÞg;

where each instance xi 2 X is a d-dimensional feature vector
and Yi � Y is the set of labels associated with this instance.
Now, suppose a single-hidden-layer feed-forward BP-MLL

neural network, as shown in Fig. 1, is used to learn from the
training set. The BP-MLL neural network has d input units
each corresponding to a dimension of the d-dimensional
feature vector, Q output units each corresponding to one of
the possible classes, and one hidden layer with M hidden
units. The input layer is fully connected to the hidden layer
with weights V ¼ ½vhs� (1 � h � d; 1 � s �M) and the
hidden layer is also fully connected to the output layer
with weights W ¼ ½wsj� (1 � s �M; 1 � j � Q). The bias
parameters �s (1 � s �M) of the hidden units are shown as

weights from an extra input unit a0 having a fixed value of
1. Similarly, the bias parameters �j ð1 � j � QÞ of the output
units are shown as weights from an extra hidden unit b0,
with activation again fixed at 1.

Since the goal of multilabel learning is to predict the label
sets of unseen instances, an intuitive way to define the
global error of the network on the training set could be

E ¼
Xm
i¼1

Ei; ð1Þ

where Ei is the error of the network on xi, which could be
defined as

Ei ¼
XQ
j¼1

ðcij � dijÞ
2; ð2Þ

where cij ¼ cjðxiÞ is the actual output of the network on xi
on the jth class and dij is the desired output of xi on the
jth class, which takes the value of either +1 ðj 2 YiÞ or -1
ðj =2 YiÞ.

Combining (2) with (1), various optimization methods
can be directly applied to learn from the multilabel training
instances. In this paper, the classical Backpropagation
algorithm [24] is used to learn from this intuitive global
error function and the resulting algorithm is named as
BASICBP. However, although BASICBP is feasible, some
important characteristics of multilabel learning are not
considered by this method. Actually, the error function
defined in (2) concentrates only on individual label
discrimination, i.e., whether a particular label j 2 Y belongs
to the instance xi or not; it does not consider the correlations
between the different labels of xi, e.g., labels in Yi should be
ranked higher than those not in Yi. In this paper, these
characteristics of multilabel learning are appropriately
addressed by rewriting the global error function as follows:

E ¼
Xm
i¼1

Ei ¼
Xm
i¼1

1

jYijjY ij
X

ðk;lÞ2Yi�Y i

expð�ðcik � cilÞÞ: ð3Þ

As regards the right-hand side of (3), the ith error term

1

jYijjY ij
X

ðk;lÞ2Yi�Y i
exp � cik � cil

� �� �� �

1340 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 10, OCTOBER 2006

Fig. 1. Architecture of the BP-MLL neural network.

Authorized licensed use limited to: UNIVERSIDAD DE CORDOBA. Downloaded on February 23,2023 at 17:04:03 UTC from IEEE Xplore. Restrictions apply.

in the summation defines the error of the network on the
ith multilabel training example ðxi; YiÞ. Here, Y i is the
complementary set of Yi in Y and j � j measures the
cardinality of a set. Specifically, cik � cil measures the
difference between the outputs of the network on one label
belonging to xi (k 2 Yi) and one label not belonging to it
(l 2 Y i). It is obvious that the bigger the difference, the better
the performance. Furthermore, the negation of this differ-
ence is fed to the exponential function in order to severely
penalize the ith error term if cik (i.e., the output on the label
belonging to xi) is much smaller than cil (i.e., the output on
the label not belonging to xi). The summation in the
ith error term takes account of the accumulated difference
between the outputs of any pair of labels with one belonging
to xi and another not belonging to xi, which is then
normalized by the total number of possible pairs, i.e.
jYijjY ij.2 In this way, the correlations between different
labels of xi, i.e., labels in Yi should get larger network
outputs than those in Y i, are appropriately addressed.

As analyzed above, (3) focuses on the difference between
the network’s outputs on labels belonging to one instance
and on other labels not belonging to it. Therefore,
minimization of (3) will lead the system to output larger
values for labels belonging to the training instance and
smaller values for those not belonging to it. When the
training set sufficiently covers the distribution information
of the learning problem, the well-trained neural network
model encoding these information will also eventually give
larger outputs for the labels belonging to the test instance
than those labels not belonging to it. Actually, this error
function is closely related to the ranking loss criterion (as
shown in (24)) which will be introduced in Section 4.

In this paper, minimization of the global error function is
carried out by gradient descent combined with the error
backpropagation strategy [24], which is scrutinized in the
following section.

3.3 Training and Testing

For training instance xi and its associated label set Yi, the
actual output of the jth output unit is (omitting the
superscript i without loss of generality)

cj ¼ fðnetcj þ �jÞ; ð4Þ

where �j is the bias of the jth output unit; fðxÞ is the
activation function of the output units, which is set to be the
“tanh” function:

fðxÞ ¼ e
x � e�x
ex þ e�x ; ð5Þ

netcj is the input to the jth output unit:

netcj ¼
XM
s¼1

bswsj; ð6Þ

where wsj is the weight connecting the sth hidden unit and
the jth output unit; and M is the number of hidden units. bs
is the output of the sth hidden unit:

bs ¼ fðnetbs þ �sÞ; ð7Þ

where �s is the bias of the sth hidden unit and fðuÞ is also

the “tanh” function. netbs is the input to the sth hidden unit:

netbs ¼
Xd
h¼1

ahvhs; ð8Þ

where ah is the hth component of xi and vhs is the weight

connecting the hth input unit and the sth hidden unit.
Since the “tanh” function is differentiable, we can define

the general error of the jth output unit as

dj ¼ �
@Ei

@netcj
: ð9Þ

Considering cj ¼ fðnetcj þ �jÞ, we get

dj ¼ �
@Ei
@cj

@cj
@netcj

¼ � @Ei

@cj
f 0ðnetcj þ �jÞ: ð10Þ

Then, considering Ei ¼ 1
jYijjY ij

P
ðk;lÞ2Yi�Y i

expð�ðck � clÞÞ, we

get

@Ei

@cj
¼
@ 1
jYijjY ij

P
ðk;lÞ2Yi�Y i

expð�ðck � clÞÞ
h i

@cj

¼
� 1
jYijjY ij

P
l2Y i

expð�ðcj � clÞÞ; if j 2 Yi

1
jYijjY ij

P
k2Yi

expð�ðck � cjÞÞ; if j 2 Y i:

8><
>:

ð11Þ

Since f 0ðnetcj þ �jÞ ¼ ð1þ cjÞð1� cjÞ, then substituting this

equation and (11) into (10), we get

dj ¼

1
jYijjY ij

P
l2Y i

expð�ðcj � clÞÞ
 !

ð1þ cjÞð1� cjÞif j 2 Yi

� 1
jYijjY ij

P
k2Yi

expð�ðck � cjÞÞ
 !

ð1þ cjÞð1� cjÞif j 2 Y i:

8>>>>><
>>>>>:

ð12Þ

Similarly, we can define the general error of the sth

hidden unit as

es ¼ �
@Ei

@netbs
: ð13Þ

Considering bs ¼ fðnetbs þ �sÞ, we get

es ¼ �
@Ei

@bs

@bs
@netbs

¼ �
XQ
j¼1

@Ei

@netcj

@netcj
@bs

 !
f 0ðnetbs þ �sÞ:

ð14Þ

Then, considering dj ¼ � @Ei
@netcj

and netcj ¼
PM
s¼1

bswsj, we get

es ¼
XQ
j¼1

dj

@
PM
s¼1

bswsj

� �
@bs

0
BBB@

1
CCCAf 0ðnetbs þ �sÞ

¼
XQ
j¼1

djwsj

 !
f 0ðnetbs þ �sÞ:

ð15Þ

ZHANG AND ZHOU: MULTILABEL NEURAL NETWORKS WITH APPLICATIONS TO FUNCTIONAL GENOMICS AND TEXT CATEGORIZATION 1341

2. In this paper, the example ðxi; YiÞ is simply excluded from the training
set for BP-MLL if either Yi or Y i is an empty set.

Authorized licensed use limited to: UNIVERSIDAD DE CORDOBA. Downloaded on February 23,2023 at 17:04:03 UTC from IEEE Xplore. Restrictions apply.

Since f 0ðnetbs þ �sÞ ¼ ð1þ bsÞð1� bsÞ, then substituting this
equation into (15), we get

es ¼
XQ
j¼1

djwsj

 !
ð1þ bsÞð1� bsÞ: ð16Þ

In order to reduce error, we can use gradient descent
strategy, i.e., make the change of the weights be propor-
tional to negative gradient:

�wsj ¼ ��
@Ei

@wsj
¼ �� @Ei

@netcj

@netcj
@wsj

¼ �dj
@
PM
s¼1

bswsj

� �
@wsj

2
6664

3
7775 ¼ �djbs;

ð17Þ

�vhs ¼ ��
@Ei

@vhs
¼ �� @Ei

@netbs

@netbs
@vhs

¼ �es
@
Pd
h¼1

ahvhs

� �
@vhs

2
6664

3
7775 ¼ �esah:

ð18Þ

The biases are changed according to (by fixing the
activations of the extra input unit a0 and hidden unit b0 at 1)

��j ¼ �dj; ��s ¼ �es; ð19Þ

where � is the learning rate whose value is in the range of
ð0:0; 1:0Þ.

Therefore, based on the above derivation, the training
procedure of BP-MLL can be conveniently set up. In detail,
in each training epoch of BP-MLL, the training instances are
fed to the network one by one. For each multilabel instance
ðxi; YiÞ, the weights (and biases) are modified according to
(17) through (19). After that, ðxiþ1; Yiþ1Þ is fed to the
network and the training process is iterated until the global
error E doesn’t decrease any more or the number of
training epochs increases to a threshold.

When a trained BP-MLL network is used in prediction for
an unseen instance x, the actual outputs cj (j ¼ 1; 2; . . . ; Q)
will be used for label ranking. The associated label set for
x is determined by a threshold function tðxÞ, i.e.,
Y ¼ fjjcj > tðxÞ; j 2 Yg. A natural solution is to set tðxÞ
to be the zero constant function. Nevertheless, in this paper,
the threshold learning mechanism used in the literature
[8] is adopted, which generalizes the above natural
solution. In detail, tðxÞ is modeled by a linear function
tðxÞ ¼ wT � cðxÞ þ b, where cðxÞ ¼ ðc1ðxÞ; c2ðxÞ; . . . ; cQðxÞÞ
is the Q-dimensional vector whose jth component corre-
sponds to the actual output of the trained network on x on
the jth class. The procedure used to learn the parameters of
tðxÞ (i.e., the weight vector wT and bias value b) is described
as follows: For each multilabel training example ðxi; YiÞ
(1 � i � m), let cðxiÞ ¼ ðci1; ci2; . . . ; ciQÞ and set the target
values tðxiÞ as

tðxiÞ ¼ arg mint jfkjk 2 Yi; cik � tgj þ jfljl 2 Y i; c
i
l � tgj

� �
:

ð20Þ

When the minimum is not unique and the optimal values are
a segment, the middle of this segment is chosen. Based on the
above process, the parameters of the threshold function can
be learned through solving the matrix equation � �w0 ¼ t.
Here, matrix � has dimensionsm� ðQþ 1Þwhose ith row is
ðci1; . . . ; ciQ; 1Þ, w0 is the ðQþ 1Þ-dimensional vector ðw; bÞ, and
t is the m-dimensional vector ðtðx1Þ; tðx2Þ; . . . ; tðxmÞÞ. In this
paper, the linear least squares method is then applied to
find the solution of the above equation. When a test instance
x is given, it is first fed to the trained network to get the
output vector cðxÞ. After that, the threshold value for x is
computed via tðxÞ ¼ wT � cðxÞ þ b.

It is worth noting that the number of computations needed
to evaluate the derivatives of the error function scales
linearly with the size of the network. In words, let W be the
total number of weights and biases of the BP-MLL network,
i.e., W ¼ ðdþ 1Þ �M þ ðM þ 1Þ �Q (usually d	 Q and
M > Q). The total number of computations needed mainly
comes from three phases, i.e., the forward propagation phase
(computing bs and cj), the backward propagation phases
(computing dj and es), and the weights and biases update
phase (computing �wsj, �vhs, ��j, and ��s). In the forward
propagation phase, most computational cost is spent in
evaluating the sums as shown in (6) and (8), with the
evaluation of the activation functions as shown in (4) and (7)
representing a small overhead. Each term in the sum in (6)
and (8) requires one multiplication and one addition, leading
to an overall computational cost which is OðWÞ. In the
backward phase, as shown in (12) and (16), computing each
dj and ei both requiresOðQÞ computations. Thus, the overall
computational cost in the backward propagation phase is
OðQ2Þ þ OðQ�MÞ, which is at most OðWÞ. As for the
weights and biases update phase, it is evident that the overall
computational cost is again OðWÞ. To sum up, the total
number of computations needed to update the BP-MLL

network on each multilabel instance isOðW Þ, indicating that
the network training algorithm is very efficient. Thus, the
overall training cost of BP-MLL isOðW �m � nÞ, wherem is the
number of training examples and n is the total number of
training epochs. The issues of the total number of epochs
before a local solution is obtained and the possibility of
getting stuck in a “bad” local solution will be discussed in
Section 5.2.

4 EVALUATION METRICS

Before presenting comparative results of each algorithm,
evaluation metrics used in multilabel learning are intro-
duced in this section. The performance evaluation of a
multilabel learning system is different from that of a
classical single-label learning system. Popular evaluation
metrics used in single-label systems include accuracy,
precision, recall, and F-measure [29]. In multilabel learning,
the evaluation is much more complicated. Adopting the
same notations as used in the beginning of Section 2, for a
test set S ¼ fðx1; Y1Þ; ðx2; Y2Þ; :::; ðxp; YpÞg, the following
multilabel evaluation metrics proposed in [28] are used in
this paper:

1. Hamming loss evaluates how many times an instance-
label pair is misclassified, i.e., a label not belonging

1342 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 10, OCTOBER 2006

Authorized licensed use limited to: UNIVERSIDAD DE CORDOBA. Downloaded on February 23,2023 at 17:04:03 UTC from IEEE Xplore. Restrictions apply.

to the instance is predicted or a label belonging to
the instance is not predicted. The performance is
perfect when hlossSðhÞ ¼ 0; the smaller the value of
hlossSðhÞ, the better the performance.

hlossSðhÞ ¼
1

p

Xp
i¼1

1

Q
jhðxiÞ�Yij; ð21Þ

where � stands for the symmetric difference

between two sets and Q is the total number of

possible class labels. Note that when jYij ¼ 1 for all

instances, a multilabel system is in fact a multiclass

single-label one and the hamming loss is 2
Q times the

usual classification error.
While hamming loss is based on the multilabel

classifier hð�Þ, the following metrics are defined

based on the real-valued function fð�; �Þ and concern

the ranking quality of different labels for each

instance.
2. One-error evaluates how many times the top-ranked

label is not in the set of proper labels of the instance.
The performance is perfect when one-errorSðfÞ ¼ 0;
the smaller the value of one-errorSðfÞ, the better the
performance.

one-errorSðfÞ ¼
1

p

Xp
i¼1

½½½arg max
y2Y

fðxi; yÞ� =2Yi�� ð22Þ

where, for any predicate �, ½½��� equals 1 if � holds

and 0 otherwise. Note that, for single-label classifica-

tion problems, the one-error is identical to ordinary

classification error.
3. Coverage evaluates how far we need, on average, to

go down the list of labels in order to cover all the
proper labels of the instance. It is loosely related to
precision at the level of perfect recall. The smaller the
value of coverageSðfÞ, the better the performance.

coverageSðfÞ ¼
1

p

Xp
i¼1

max
y2Yi

rankfðxi; yÞ � 1: ð23Þ

As mentioned in the beginning of Section 2, rankfð�; �Þ
is derived from the real-valued function fð�; �Þ, which

maps the outputs of fðxi; yÞ for any y 2 Y to

f1; 2; . . . ; Qg such that if fðxi; y1Þ > fðxi; y2Þ, then

rankfðxi; y1Þ < rankfðxi; y2Þ.
4. Ranking loss evaluates the average fraction of label

pairs that are reversely ordered for the instance.
The performance is perfect when rlossSðfÞ ¼ 0;
the smaller the value of rlossSðfÞ, the better the
performance.

rlossSðfÞ ¼
1

p

Xp
i¼1

1

jYijjY ij
jfðy1; y2Þjfðxi; y1Þ � fðxi; y2Þ;ðy1; y2Þ 2 Yi � Y igj;

ð24Þ

where Y denotes the complementary set of Y in Y.
5. Average precision evaluates the average fraction of

labels ranked above a particular label y 2 Y ,
which, actually, are in Y . It was originally used

in information retrieval (IR) systems to evaluate
the document ranking performance for query
retrieval [26]. The performance is perfect when
avgprecSðfÞ ¼ 1; the bigger the value of avgprecSðfÞ,
the better the performance.

avgprecSðfÞ ¼
1

p

Xp
i¼1

1

jYij
X
y2Yi

jfy0jrankfðxi; y0Þ�rankfðxi; yÞ; y0 2 Yigj
rankfðxi; yÞ

:

ð25Þ

Note that, in the rest of this paper, the performance of

each multilabel learning algorithm is evaluated based on

the above five metrics.

5 APPLICATION TO FUNCTIONAL GENOMICS

5.1 Functional Genomics

Bioinformatics, or computational biology, is a new inter-

disciplinary field, where techniques from applied mathe-

matics, informatics, and computer science are applied to

biology in order to model systems, extract information,

understand processes, etc. Major efforts in this field include

sequence alignment, protein structure prediction, analysis

of protein-protein interactions, functional genomics, etc.

Among these, functional genomics is of great importance; it

aims at characterizing the function of genes and the proteins

they encode in determining traits, physiology, or develop-

ment of an organism. With the steady growing of the rate of

genome sequencing and increasing of the amount of

available data, computational functional genomics becomes

both possible and necessary. It uses high-throughput

techniques like DNA microarrays, proteomics, metabolo-

mics, and mutation analysis to describe the function and

interactions of genes. The range of recent work in

computational functional genomics includes improved

sequence similarity search algorithms, microarray expres-

sion analysis, computational prediction of protein second-

ary structure, differential genome analysis, etc. [3].
In this paper, the effectiveness of multilabel learning

algorithms is evaluated through predicting the gene

functional classes of the yeast Saccharomyces cerevisiae,

which is one of the best-studied organisms. Specifically,

the yeast data set studied in [8] and [21] is investigated.

Each gene is described by the concatenation of microarray

expression data and phylogenetic profile and is associated

with a set of functional classes whose maximum size can be

potentially more than 190. In order to make it easier,

Elisseeff and Weston preprocessed the data set where only

the known structure of the functional classes is used.

Actually, the whole set of functional classes is structured

into hierarchies up to four levels deep.3 In this paper, the

same data set as used in [8] is adopted. In this data set, only

functional classes in the top hierarchy (as depicted in Fig. 2)

are considered. The resulting multilabel data set contains

2,417 genes, each represented by a 103-dimensional feature

ZHANG AND ZHOU: MULTILABEL NEURAL NETWORKS WITH APPLICATIONS TO FUNCTIONAL GENOMICS AND TEXT CATEGORIZATION 1343

3. See http://mips.gsf.de/proj/yeast/catalogues/funcat/ for more
details.

Authorized licensed use limited to: UNIVERSIDAD DE CORDOBA. Downloaded on February 23,2023 at 17:04:03 UTC from IEEE Xplore. Restrictions apply.

vector. There are 14 possible class labels and the average
number of labels for each gene is 4:24
 1:57.

5.2 Results

As reviewed in Section 2, there have been several approaches
to solving multilabel problems. In this paper, BP-MLL is
compared with the boosting-style algorithm BOOSTEXTER4

[28], the multilabel decision tree ADTBOOST.MH5 [5], and the
multilabel kernel method RANK-SVM [8], which are all
general-purpose multilabel learning algorithms applicable to
various multilabel problems. In addition, BP-MLL is also
compared with BASICBP, i.e., the intuitive implementation of
neural networks for multilabel learning as described in
Section 3, to see whether the more complex global error
function as defined in (3) will perform better than the
intuitive solution.

For BP-MLL, the learning rate is set to be 0.05. The
number of hidden units of the network is set to be
20 percent to 100 percent of the number of input units with
an interval of 20 percent, while the number of training
epochs varies from 10 to 100 with an interval of 10.
Furthermore, in order to avoid overfitting, a regularization
term equal to one tenth of the sum of squares of all network
weights and biases is added to the global error function. For
BOOSTEXTER [28] and ADTBOOST.MH [5], the number of
boosting rounds is set to be 500 and 50, respectively,
because on the yeast data set (also the Reuters collection
studied in the next section), the performance of these two

algorithms will not significantly change after the specified
boosting rounds. For RANK-SVM [8], polynomial kernels
with degree 8 are used, which yield the best performance as
shown in [8]. For BASICBP, the number of training epochs is
set to be 1,500 and the number of hidden units is set to be
four times of the number of input units to yield comparable
results.

Tenfold cross validation is performed on this data set. In
detail, the original data set is randomly divided into
10 parts, each with approximately the same size. In each
fold, one part is held out for testing and the learning
algorithm is trained on the remaining data. The above
process is iterated 10 times so that each part is used as the
test data exactly once, where the averaged metric values out
of 10 runs are reported for the algorithm.

Fig. 3. illustrates how the global training error and
various metric values of BP-MLL change as the number of
training epochs increases. Different curves correspond to
different number of hidden neurons (¼ � � input dimen-
sionality) used by BP-MLL. Fig. 3 shows that when � is set to
be 20 percent, BP-MLL performs comparable to other values
of � in terms of hamming loss and one-error (Figs. 3b and 3c),
while slightly better than other values of � in terms of
coverage, ranking loss, and average precision (Figs. 3d, 3e,
and 3f). Furthermore, after 40 epochs of training, the global
training error (Fig. 3a) and those evaluation metric values
(Figs. 3b, 3c, 3d, 3e, and 3f) of BP-MLL will not significantly
change. Therefore, for the sake of computational cost, all the
results of BP-MLL shown in the rest of this paper are
obtained with the number of hidden units set to be
20 percent of the number of input units. The number of
training epochs for BP-MLL is fixed to be 100.

1344 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 10, OCTOBER 2006

4. Program available at http://www.cs.princeton.edu/~schapire/
boostexter.html.

5. The algorithm and a graphical user interface are available at http://
www.grappa.univ-lille3.fr/grappa/index.php3?info=logiciels. Further-
more, ranking loss is not provided by the outputs of this implementation.

Fig. 2. First level of the hierarchy of the yeast gene functional classes. One gene, for instance, the one named YAL062w, can belong to several

classes (shaded in gray) of the 14 possible classes.

Authorized licensed use limited to: UNIVERSIDAD DE CORDOBA. Downloaded on February 23,2023 at 17:04:03 UTC from IEEE Xplore. Restrictions apply.

Table 1 reports the experimental results of BP-MLL and
other multilabel learning algorithms on the yeast data,
where the best result on each metric is shown in bold face.
To make a clearer view of the relative performance between
each algorithm, a partial order “� ” is defined on the set of
all comparing algorithms for each evaluation criterion,
where A1 � A2 means that the performance of algorithm
A1 is statistically better than that of algorithm A2 on the

specific metric (based on two-tailed paired t-test at 5 percent
significance level). The partial order on all the comparing
algorithms in terms of each evaluation criterion is summar-
ized in Table 2, where the p-value shown in the parentheses
further gives a quantification of the significance level.

Note that the partial order “� ” only measures the
relative performance between two algorithms A1 and A2 on
one specific evaluation criterion. However, it is quite

ZHANG AND ZHOU: MULTILABEL NEURAL NETWORKS WITH APPLICATIONS TO FUNCTIONAL GENOMICS AND TEXT CATEGORIZATION 1345

Fig. 3. The performance of BP-MLL with different number of hidden neurons (¼ � � input dimensionality) changes as the number of training epochs

increases. (a) Global training error. (b) Hamming loss. (c) One-error. (d) Coverage. (e) Ranking loss. (f) Average precision.

Authorized licensed use limited to: UNIVERSIDAD DE CORDOBA. Downloaded on February 23,2023 at 17:04:03 UTC from IEEE Xplore. Restrictions apply.

possible that A1 performs better than A2 in terms of some
metrics but worse than A2 in terms of others. In this case, it
is hard to judge which algorithm is superior. Therefore, in
order to give an overall performance assessment of an
algorithm, a score is assigned to this algorithm which takes
account of its relative performance with other algorithms on
all metrics. Concretely, for each evaluation criterion, for
each possible pair of algorithms A1 and A2, if A1 � A2
holds, then A1 is rewarded by a positive score +1 and A2 is
penalized by a negative score -1. Based on the accumulated
score of each algorithm on all evaluation criteria, a total
order ”> ” is defined on the set of all comparing algorithms
as shown in the last line of Table 2, where A1 > A2 means
that A1 performs better than A2 on the yeast data. The
accumulated score of each algorithm is also shown in bold
face in the parentheses.

Table 2 shows that BP-MLL performs fairly well in terms
of all the evaluation criteria, where, on all the evaluation
criteria, no algorithm has outperformed BP-MLL. Especially,
BP-MLL outperforms all the other algorithms with respect to
ranking loss6 since minimization of the global error function
of BP-MLL could be viewed as approximately optimizing
the ranking loss criterion. Furthermore, BP-MLL outperforms
BASICBP on all the evaluation criteria except hamming loss,
on which the two algorithms are comparable. These facts

illustrate that the more complex global error function

employed by BP-MLL (as defined in (3)) really works better

than the intuitive one employed by BASICBP (as defined in

(1) and (2)). It is also worth noting that BOOSTEXTER

performs quite poorly compared to other algorithms. As

indicated in the literature [8], the reason may be that the

simple decision function realized by this method is not

suitable to learn from the yeast data set. On the whole (as

shown by the total order), BP-MLL outperforms all the other

algorithms on the multilabel learning problem of yeast

functional genomics.
Table 3 reports the computation time consumed by each

multilabel learning algorithm on the yeast data, where all

experiments are conducted on an HP Server equipped with

4G RAM and four Intel Xeron2 CPUs each running at

2.80 GHz.7 As shown in Table 3, BP-MLL consumes much

more time in the training phase than BOOSTEXTER,

ADTBOOST.MH and BASICBP, mainly due to its complex

global error function, which needs to be optimized, and the

iterative processing of training examples. On the other hand,

although the training complexity of BP-MLL is high, the

time cost of BP-MLL on testing unseen examples is quite

trivial.

1346 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 10, OCTOBER 2006

6. Note that ranking loss is not provided in the outputs of the
ADTBOOST.MH algorithm.

7. Codes of BOOSTEXTER and ADTBOOST.MH are written in C language,
while those of BP-MLL, RANK-SVM, and BASICBP are developed with
MATLAB2. Note that programs written in C usually run several times faster
than those written in MATLAB.

TABLE 2
Relative Performance between Each Multilabel Learning Algorithm on the Yeast Data

TABLE 1
Experimental Results of Each Multilabel Learning Algorithm (Mean
 Std. Deviation) on the Yeast Data

Authorized licensed use limited to: UNIVERSIDAD DE CORDOBA. Downloaded on February 23,2023 at 17:04:03 UTC from IEEE Xplore. Restrictions apply.

As analyzed at the end of Section 3.3, the total cost of
training a BP-MLL network scales to OðW �m � nÞ. Here, W
is the total number of weights and biases of the network, m
is the number of training examples, and n is the total
number of training epochs. In order to illustrate how many
training epochs are needed before a local solution is
obtained and the possibility of getting stuck in a “bad”
local solution, the following experiments are conducted. In
detail, 500 examples are randomly selected from the yeast
data (in total, 2,417 examples) constituting the test set and
the remaining 1,917 examples form the potential training
set. After that, 200 runs of experiments are performed
where, in each run, 1,000 examples are randomly selected
from the potential training set to train a BP-MLL neural
network and the trained model is then evaluated on the test
set. The maximum number of training epochs is set to be
200 and the training process terminates as long as the global
training error of BP-MLL does not decrease enough.
Concretely, let Et denote the global training error of
BP-MLL at the tth training epoch, the training process will
terminate before reaching the maximum number of training
epochs if the condition of Et � Etþ1 � � � Et is satisfied. It is
obvious that the smaller the value of �, the more training
epochs are executed before termination. In this paper, � is
set to be 10�6 for illustration purpose.

Fig. 4 gives the quantile plot regarding the number of
training epochs of BP-MLL out of 200 runs of experiments,
where each point ðx; yÞ in the plot means that the number of
training epochs of BP-MLL will be smaller than or equal to y
in 100 � x percent cases out of the 200 runs. It was shown
that the training process will terminate before 80 epochs in

about 50 percent of cases and before 140 epochs in about
80 percent of cases. Furthermore, Table 4 summarizes the
statistics of each evaluation criterion out of 200 runs of
experiments, where the minimal, maximal, and mean
(together with standard deviation) values of each metric
are illustrated. In this paper, the metric values that fall one
standard deviation outside of the mean value will be
regarded as “bad” local solutions.8 Based on this, the
probability of getting stuck in a “bad” local solution with
regard to a specific metric can be calculated as shown in the
last column of Table 4. It is revealed that BP-MLL will get
stuck in a “bad” local solution with no more than 20 percent
probability in terms of any evaluation metric. Since there is
no criterion available for judging whether the learning
algorithm has terminated as a “bad” or “good” during the
training phase, one possible solution is to train many
BP-MLL neural networks based on different initial config-
urations and, then, combine their predictions. In this way,
the power of ensemble learning [34] may be utilized to
achieve strong generalization ability and it will be an
interesting issue for future work as indicated in Section 7.

6 APPLICATION TO TEXT CATEGORIZATION

6.1 Text Categorization

Text categorization (TC) is the task of building learning
systems capable of classifying text (or hypertext) documents
under one or more of a set of predefined categories or
subject codes [15]. Due to the increased availability of ever
larger numbers of text documents in digital form and the
ensuing need to organize them for easier use, TC has
become one of the key techniques for handling and
organizing text data. TC is now being applied to a wide
range of applications, including document organization,
text filtering, automated metadata generation, word sense
disambiguation, Web page categorization under hierarchi-
cal catalogs, etc. [29].

In the 1980s, the most popular approach to TC was based
on knowledge engineering (KE) techniques, which aim at
manually defining a set of logical rules encoding expert
knowledge on how to classify documents under the given
categories. Since the early 1990s, the machine learning (ML)
approach to TC has gradually gained popularity, where a
general inductive process is employed to automatically
build a text classifier by learning from a set of preclassified
documents. The advantages of the ML approach over the
KE approach lie in the fact that the former can achieve
comparable performance to that achieved by human experts

ZHANG AND ZHOU: MULTILABEL NEURAL NETWORKS WITH APPLICATIONS TO FUNCTIONAL GENOMICS AND TEXT CATEGORIZATION 1347

8. For the metric average precision, “fall outside” means the value is more
than one standard deviation smaller than the mean value. For the other four
evaluation criteria, “fall outside” means the value is more than one
standard deviation larger than the mean value.

TABLE 3
Computation Time of Each Multilabel Learning Algorithm (Mean
 Std. Deviation) on the Yeast Data

Training time is measured in hours and testing time is measured in seconds.

Fig. 4. Quantile plot regarding the number of training epochs of BP-MLL

out of 200 runs of experiments.

Authorized licensed use limited to: UNIVERSIDAD DE CORDOBA. Downloaded on February 23,2023 at 17:04:03 UTC from IEEE Xplore. Restrictions apply.

while at the same time considerably saves the experts’ labor
costs [29].

The first step in ML-based TC is to transform docu-
ments, which typically are strings of characters, into a
representation suitable for the learning algorithm and the
classification task. The most commonly used document
representation is the so-called vector space model, where
each document d is represented as a vector of term weights
~d ¼< w1; w2; . . . ; wjT j > . Here, T is the set of terms (usually
the set of words) that occur at least once in at least one
document of the training set, and wi approximately
represents how much term ti 2 T contributes to the
semantics of document d. Various approaches are available
to determine the term weights, such as Boolean weighting
(set wi to 1 if term ti occurs in d and 0 otherwise),
frequency-based weighting (set wi to the frequency of term
ti in d) and the widely used tf-idf (term frequency-inverse
document frequency) weighting [29]. Note that the dimen-
sionality of the vector space may be prohibitively high (the
term set T could contain hundreds of thousands of terms)
for any ML algorithm to efficiently build classifiers;
dimensionality reduction (DR) techniques are necessary to
reduce the size of the vector space from jT j to jT 0j � jT j. A
lot of DR methods have been proposed, such as term
selection methods based on document frequency, informa-
tion gain, mutual information, �2 statistic, etc., and term
extraction methods based on term clustering and latent
semantic indexing [33]. Various ML methods have been
applied to solve TC problems, including decision trees,
support vector machines, nearest neighbor classifiers,
Bayesian probabilistic classifiers, inductive rule learning
algorithms, and more [29]. In most cases, the multilabel
learning problem of TC is decomposed into multiple
independent binary classification problems where a sepa-
rate classifier is built for each category. For more informa-
tion about TC research, an excellent and comprehensive
survey on this topic is given in [29].

6.2 Results

The Reuters collection is the most commonly used collection
for TC evaluation and various versions of this collection have
been studied in the TC community [29], [32]. In this paper,
the Reuters-21578 Distribution 1.09 is used to further
evaluate the performance of BP-MLL and other multilabel
learning algorithms. Reuters-21578 consists of 21,578 Reuters
newswire documents that appeared in 1987, where less than
half of the documents have human-assigned topic labels. All

documents without any topic label or with empty main text
are discarded from the collection. Each remaining document
belongs to at least one of the 135 possible topics (categories),
where a “subcategory” relation governs categories and nine
of them constitute the top level of this hierarchy. In this
paper, only those top level categories are used to label each
remaining document.

For each document, the following preprocessing opera-
tions are performed before experiments: All words were
converted to lower case, punctuation marks were removed,
and “function words” such as “of” and “the” on the
SMART stop-list [25] were removed. Additionally, all
strings of digits were mapped to a single common token.
Following the same data set generation scheme as used in
[28] and [5], subsets of the k categories with the largest
number of articles for k ¼ 3; . . . ; 9 are selected resulting in
seven different data sets denoted as FIRST3, FIRST4, . . . ,
FIRST9. The simple term selection method based on
document frequency (the number of documents containing a
specific term) is used to reduce the dimensionality of each
data set. Actually, only the 2 percent of words with the
highest document frequency are retained in the final
vocabulary.10 Note that other term selection methods such
as information gain could also be adopted. Each document in
the data set is described as a feature vector using the “Bag-
of-Words” representation [7], i.e., each dimension of the
feature vector corresponds to the number of times a word in
the vocabulary appears in this document. Table 5 sum-
marizes the characteristics of the preprocessed data sets.

Adopting the same validation mechanism as used in [28]
and [5], threefold cross validation is performed on each data
set. In detail, each data set is randomly divided into three
parts, each with approximately the same size. In each fold,
one part is held out for testing and the learning algorithm is
trained on the remaining data. The above process is iterated
three times so that each part is used as the test data exactly
once, where the averaged metric values out of three runs
are reported for the algorithm.

1348 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 10, OCTOBER 2006

9. Data set available at http://www.daviddlewis.com/resources/
testcollections/reuters21578/.

10. It is worth noting that principles used in document weighting and
dimensionality reduction may have some differences. Although in several
document weighting schemes, such as tf-idf weighting [29], words that
occur in most documents are assumed to be less useful in representing
individual documents. For dimensionality reduction, however, the words
with the highest document frequency, excluding those “function words”
which have already been removed from the vocabulary using the SMART
stop-list [25], are representative in describing the information contained in
the corpus. Actually, based on a series of experiments, Yang and Pedersen
[33] have shown that, based on document frequency, it is possible to reduce
the dimensionality by a factor of 10 with no loss in effectiveness and by a
factor of 100 with just a small loss.

TABLE 4
Statistics of Each Evaluation Criterion out of 200 Runs of Experiments,

Where Values Falling One Standard Deviation Outside of the Mean Value Are Regarded as “Bad” Local Solutions

Authorized licensed use limited to: UNIVERSIDAD DE CORDOBA. Downloaded on February 23,2023 at 17:04:03 UTC from IEEE Xplore. Restrictions apply.

The experimental results on each evaluation criterion are
reported in Tables 6, 7, 8, 9, and 10, where the best result on
each data set is shown in bold face. Parameter configuration
for each algorithm is the same as that used in Section 5.
Similarly to the yeast data, the partial order “� ” (based on
a two-tailed paired t-test at a 5 perecent significance level)
and total order “> ” are also defined on the set of all
comparing algorithms, which are shown in Table 11. Again,
as in Table 2, p-value is given to indicate the level of
significance and the accumulated score of each algorithm is
shown in bold face in the parentheses in the last line.

Table 11 shows that BP-MLL and BOOSTEXTER are both
superior to ADTBOOST.MH, RANK-SVM, and BASICBP on all
evaluation criteria (ranking loss is not available for

ADTBOOST.MH). Furthermore, as shown in Tables 7, 8, 9,
and 10, BP-MLL is inferior to BOOSTEXTER when the
number of categories is small (from FIRST3 to FIRST6).
However, when the corresponding data sets get more
difficult to learn from, i.e., the number of categories
becomes larger and the portion of documents belonging to
more than one category increases (from FIRST7 to FIRST9),
BP-MLL outperforms BOOSTEXTER. In addition, the fact that
BP-MLL outperforms BASICBP on all the evaluation criteria
again proves that BP-MLL works better than BASICBP when
the more complex global error function (as defined in (3)) is
employed to learn from the multilabel training examples.
On the whole (as shown by the total order), BP-MLL is
comparable to BOOSTEXTER but is superior to all the other
algorithms on the Reuters collection.

As with the yeast data, Table 12 reports the computation
time consumed by each multilabel learning algorithm on

ZHANG AND ZHOU: MULTILABEL NEURAL NETWORKS WITH APPLICATIONS TO FUNCTIONAL GENOMICS AND TEXT CATEGORIZATION 1349

TABLE 5
Characteristics of the Preprocessed Data Sets

PMC denotes the percentage of documents belonging to more than one
category and ANL denotes the average number of labels for each
document.

TABLE 6
Experimental Results of Each Multilabel Learning Algorithm on

the Reuters-21578 Collection in Terms of Hamming Loss

TABLE 7
Experimental Results of Each Multilabel Learning Algorithm on

the Reuters-21578 Collection in Terms of One-Error

TABLE 8
Experimental Results of Each Multilabel Learning Algorithm on

the Reuters-21578 Collection in Terms of Coverage

TABLE 9
Experimental Results of Each Multilabel Learning Algorithm on

the Reuters-21578 Collection in Terms of Ranking Loss

TABLE 10
Experimental Results of Each Multilabel Learning Algorithm on
the Reuters-21578 Collection in Terms of Average Precision

Authorized licensed use limited to: UNIVERSIDAD DE CORDOBA. Downloaded on February 23,2023 at 17:04:03 UTC from IEEE Xplore. Restrictions apply.

the Reuters collection. As shown in Table 12, BP-MLL
consumes much more time in the training phase than all
the other algorithms but is quite efficient in the testing
phase to predict labels for unseen examples.

7 CONCLUSION

In this paper, a neural network algorithm, named BP-MLL,
which is the multilabel version of Backpropagation, is
proposed. Through employing a new error function,
BP-MLL captures the characteristics of multilabel learning,
i.e., the labels belonging to an instance should be ranked
higher than those not belonging to that instance. Applica-
tions to two real-world multilabel learning problems, i.e.,
functional genomics and text categorization, show that
BP-MLL achieves superior performance to some well-
established multilabel learning methods. Furthermore, as
a common characteristic of neural network methods, the
computational complexity of BP-MLL in the training phase
is high while the time cost of making predictions based on
the trained model is quite trivial.

Recent research has shown that neural network en-

semble could significantly improve the generalization

ability of neural network-based learning systems, which

has become a hot topic in both machine learning and

neural network communities [34]. So, it is interesting to see

that whether better results could be obtained with

ensembles of BP-MLL networks.

ACKNOWLEDGMENTS

The authors wish to express their gratitude toward the

associate editor and the anonymous reviewers because their

valuable comments and suggestions significantly improved

this paper. The authors also want to thank A. Elisseeff and J.

Weston for the yeast data and the implementation details of

RANK-SVM. This work was supported by the National

Science Foundation of China under Grant No. 60473046 and

the National Science Fund for Distinguished Young

Scholars of China under Grant No. 60325207.

1350 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 10, OCTOBER 2006

TABLE 11
Relative Performance between Each Multilabel Learning Algorithm on the Reuters-21578 Collection

TABLE 12
Computation Time of Each Multilabel Learning Algorithm on the Reuters-21578 Collection

Training time (denoted as TrPhase) is measured in hours while testing time (denoted as TePhase) is measured in seconds.

Authorized licensed use limited to: UNIVERSIDAD DE CORDOBA. Downloaded on February 23,2023 at 17:04:03 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] C.M. Bishop, Neural Networks for Pattern Recognition. New York:
Oxford Univ. Press, 1995.

[2] M.R. Boutell, J. Luo, X. Shen, and C.M. Brown, “Learning Multi-
Label Scene Classification,” Pattern Recognition, vol. 37, no. 9,
pp. 1757-1771, 2004.

[3] A. Clare, “Machine Learning and Data Mining for Yeast
Functional Genomics,” PhD dissertation, Dept. of Computer
Science, Univ. of Wales Aberystwyth, 2003.

[4] A. Clare and R.D. King, “Knowledge Discovery in Multi-Label
Phenotype Data,” Lecture Notes in Computer Science, L.D. Raedt and
A. Siebes, eds., vol. 2168, pp. 42-53. Berlin: Springer, 2001.

[5] F.D. Comité, R. Gilleron, and M. Tommasi, “Learning Multi-Label
Alternating Decision Tree from Texts and Data,” Lecture Notes in
Computer Science, P. Perner and A. Rosenfeld, eds., vol. 2734,
pp. 35-49. Berlin: Springer, 2003.

[6] A.P. Dempster, N.M. Laird, and D.B. Rubin, “Maximum Like-
lihood from Incomplete Data via the EM Algorithm,” J. Royal
Statistics Soc. B, vol. 39, no. 1, pp. 1-38, 1977.

[7] S.T. Dumais, J. Platt, D. Heckerman, and M. Sahami, “Inductive
Learning Algorithms and Representation for Text Categoriza-
tion,” Proc. Seventh ACM Int’l Conf. Information and Knowledge
Management (CIKM ’98), pp. 148-155, 1998.

[8] A. Elisseeff and J. Weston, “A Kernel Method for Multi-Labelled
Classification,” Advances in Neural Information Processing Systems,
T.G. Dietterich, S. Becker, and Z. Ghahramani, eds., vol. 14,
pp. 681-687, 2002.

[9] Y. Freund and L. Mason, “The Alternating Decision Tree Learning
Algorithm,” Proc. 16th Int’l Conf. Machine Learning (ICML ’99),
pp. 124-133, 1999.

[10] Y. Freund and R.E. Schapire, “A Decision-Theoretic General-
ization of On-Line Learning and an Application to Boosting,”
J. Computer and System Sciences, vol. 55, no. 1, pp. 119-139, 1997.

[11] S. Gao, W. Wu, C.-H. Lee, and T.-S. Chua, “A Maximal Figure-of-
Merit Learning Approach to Text Categorization,” Proc. 26th Ann.
Int’l ACM SIGIR Conf. Research and Development in Information
Retrieval (SIGIR ’03), pp. 174-181, 2003.

[12] S. Gao, W. Wu, C.-H. Lee, and T.-S. Chua, “A MFoM Learning
Approach to Robust Multiclass Multi-Label Text Categorization,”
Proc. 21st Int’l Conf. Machine Learning (ICML ’04), pp. 329-336, 2004.

[13] S. Haykin, Neural Networks: A Comprehensive Foundation, second
ed. Englewood Cliffs, N.J.: Prentice-Hall, 1999.

[14] R. Jin and Z. Ghahramani, “Learning with Multiple Labels,”
Advances in Neural Information Processing Systems, S. Becker,
S. Thrun, and K. Obermayer, eds., vol. 15, pp. 897-904, 2003.

[15] T. Joachims and F. Sebastiani, guest editors’ introduction,
J. Intelligent Information Systems, special issue on automated text
categorization, vol. 18, nos. 2/3, pp. 103-105, Mar.-May 2002.

[16] H. Kazawa, T. Izumitani, H. Taira, and E. Maeda, “Maximal
Margin Labeling for Multi-Topic Text Categorization,” Advances in
Neural Information Processing Systems, L.K. Saul, Y. Weiss, and
L. Bottou, eds., vol. 17, pp. 649-656, 2005.

[17] T. Kohonen, “An Introduction to Neural Computing,” Neural
Networks, vol. 1, no. 1, pp. 3–16, 1988.

[18] A. McCallum, “Multi-Label Text Classification with a Mixture
Model Trained by EM,” Proc. Working Notes Am. Assoc. Artificial
Intelligence Workshop Text Learning (AAAI ’99), 1999.

[19] W.S. McCulloch and W. Pitts, “A Logical Calculus of the Ideas
Immanent in Nervous Activity,” Bull. Math. Biophysics, vol. 5,
pp. 115-133, 1943.

[20] M. Minsky and S. Papert, Perceptrons. Cambridge, Mass.: MIT
Press, 1969.

[21] P. Pavlidis, J. Weston, J. Cai, and W.N. Grundy, “Combining
Microarray Expression Data and Phylogenetic Profiles to Learn
Functional Categories Using Support Vector Machines,” Proc. Fifth
Ann. Int’l Conf. Computational Molecular Biology (RECOMB ’01),
pp. 242-248, 2001.

[22] J.R. Quinlan, Programs for Machine Learning. San Mateo, Calif.:
Morgan Kaufmann, 1993.

[23] F. Rosenblatt, Principles of Neurodynamics: Perceptrons and the
Theory of Brain Mechanisms. Washington, D.C.: Spartan Books,
1962.

[24] D.E. Rumelhart, G.E. Hinton, and R.J. Williams, “Learning
Internal Representations by Error Propagation,” Parallel Distrib-
uted Processing: Explorations in the Microstructure of Cognition,
D.E. Rumelhart and J. L. McClelland, eds., vol. 1, pp. 318-362,
1986.

[25] G. Salton, Automatic Text Processing: The Transformation, Analysis,
and Retrieval of Information by Computer. Reading, Pa.: Addison-
Wesley, 1989.

[26] G. Salton, “Developments in Automatic Text Retrieval,” Science,
vol. 253, pp. 974-980, 1991.

[27] R.E. Schapire and Y. Singer, “Improved Boosting Algorithms
Using Confidence-Rated Predictions,” Proc. 11th Ann. Conf.
Computational Learning Theory (COLT ’98), pp. 80-91, 1998.

[28] R.E. Schapire and Y. Singer, “BoosTexter: A Boosting-Based
System for Text Categorization,” Machine Learning, vol. 39,
no. 2/3, pp. 135-168, 2000.

[29] F. Sebastiani, “Machine Learning in Automated Text Categoriza-
tion,” ACM Computing Surveys, vol. 34, no. 1, pp. 1-47 2002.

[30] N. Ueda and K. Saito, “Parametric Mixture Models for Multi-
Label Text,” Advances in Neural Information Processing Systems,
S. Becker, S. Thrun, and K. Obermayer, eds., vol. 15, pp. 721-728,
2003.

[31] B. Widrow and M.E. Hoff, “Adaptive Switching Circuits,” IRE
WESCON Convention Record, vol. 4, pp. 96-104, 1960.

[32] Y. Yang, “An Evaluation of Statistical Approaches to Text
Categorization,” Information Retrieval, vol. 1, no. 1-2, pp. 69-90,
1999.

[33] Y. Yang and J.O. Pedersen, “A Comparative Study on Feature
Selection in Text Categorization,” Proc. 14th Int’l Conf. Machine
Learning (ICML ’97), pp. 412-420, 1997.

[34] Z.-H. Zhou, J. Wu, and W. Tang, “Ensembling Neural Networks:
Many Could Be Better than All,” Artificial Intelligence, vol. 137,
no. 1-2, pp. 239-263, 2002.

Min-Ling Zhang received the BSc and MSc
degrees in computer science from Nanjing
University, China, in 2001 and 2004, respec-
tively. Currently, he is a PhD candidate in the
Department of Computer Science and Technol-
ogy at Nanjing University and a member of the
LAMDA Group. His main research interests
include machine learning and data mining,
especially in multi-instance learning and multi-
label learning.

Zhi-Hua Zhou (S’00, M’01, SM’06) received the
BSc, MSc and PhD degrees in computer science
from Nanjing University, China, in 1996, 1998,
and 2000, respectively, all with the highest
honors. He joined the Department of Computer
Science and Technology at Nanjing University
as a lecturer in 2001 and is a professor and head
of the LAMDA group at present. His research
interests are in artificial intelligence, machine
learning, data mining, pattern recognition, in-

formation retrieval, neural computing, and evolutionary computing. In
these areas, he has published more than 60 technical papers in refereed
international journals or conference proceedings. He has won the
Microsoft Fellowship Award (1999), the National Excellent Doctoral
Dissertation Award of China (2003), and the Award of National Science
Fund for Distinguished Young Scholars of China (2003). He is an
associate editor of Knowledge and Information Systems and serves on
the editorial boards of Artificial Intelligence in Medicine, the International
Journal of Data Warehousing and Mining, the Journal of Computer
Science & Technology, and the Journal of Software. He served as
program committee member for various international conferences and
chaired a number of native conferences. He is a senior member of the
China Computer Federation (CCF), the vice chair of the CCF Artificial
Intelligence and Pattern Recognition Society, an executive committee
member of the Chinese Association of Artificial Intelligence (CAAI), the
vice chair and chief secretary of the CAAI Machine Learning Society, a
member of the AAAI and the ACM, and a senior member of the IEEE
and the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ZHANG AND ZHOU: MULTILABEL NEURAL NETWORKS WITH APPLICATIONS TO FUNCTIONAL GENOMICS AND TEXT CATEGORIZATION 1351

Authorized licensed use limited to: UNIVERSIDAD DE CORDOBA. Downloaded on February 23,2023 at 17:04:03 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

